Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Drug-Induced Peripheral Neuropathy: Diagnosis and Management

Author(s): Diala Merheb, Georgette Dib, Maroun Bou Zerdan, Clara El Nakib, Saada Alame and Hazem I. Assi*

Volume 22, Issue 1, 2022

Published on: 20 July, 2021

Page: [49 - 76] Pages: 28

DOI: 10.2174/1568009621666210720142542

Price: $65

Abstract

Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug-induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug-induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.

Keywords: Peripheral neuropathy, chemotherapy-induced, taxanes, platinum drugs, vinca alkaloids, proteasome inhibitors, epithelones, eribulin, brentuximab, suramin, nitrous oxide, disulfiram.

[1]
Remiche, G.; Kadhim, H.; Maris, C.; Mavroudakis, N. Peripheral neuropathies, from diagnosis to treatment, review of the literature and lessons from the local experience. Rev. Med. Brux., 2013, 34(4), 211-220.
[PMID: 24195230]
[2]
Singh, S.; Dallenga, T.; Winkler, A.; Roemer, S.; Maruschak, B.; Siebert, H.; Brück, W.; Stadelmann, C. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J. Neuroinflammation, 2017, 14(1), 57.
[http://dx.doi.org/10.1186/s12974-017-0831-8] [PMID: 28302146]
[3]
Hanewinckel, R.; Ikram, M.; Van Doorn, P. Peripheral neuropathies.Handbook of Clinical Neurology; Elsevier, 2016, 138, pp. 263-282.
[4]
Hughes, R.A. Epidemiology of peripheral neuropathy. Curr. Opin. Neurol., 1995, 8(5), 335-338.
[http://dx.doi.org/10.1097/00019052-199510000-00001] [PMID: 8542035]
[5]
Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain, 2014, 155(12), 2461-2470.
[http://dx.doi.org/10.1016/j.pain.2014.09.020] [PMID: 25261162]
[6]
Gordon-Williams, R.; Farquhar-Smith, P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000 Res., 2020, 9, 9.
[http://dx.doi.org/10.12688/f1000research.21625.1] [PMID: 32201575]
[7]
Weimer, L.H. Medication-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep., 2003, 3(1), 86-92.
[http://dx.doi.org/10.1007/s11910-003-0043-8] [PMID: 12507417]
[8]
Morris, P.G.; Fornier, M.N. Microtubule active agents: beyond the taxane frontier. Clin. Cancer Res., 2008, 14(22), 7167-7172.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0169] [PMID: 19010832]
[9]
Yared, J.A.; Tkaczuk, K.H. Update on taxane development: new analogs and new formulations. Drug Des. Devel. Ther., 2012, 6, 371-384.
[PMID: 23251087]
[10]
Hilkens, P.H.; Verweij, J.; Vecht, C.J.; Stoter, G.; van den Bent, M.J. Clinical characteristics of severe peripheral neuropathy induced by docetaxel (Taxotere). Ann. Oncol., 1997, 8(2), 187-190.
[http://dx.doi.org/10.1023/A:1008245400251] [PMID: 9093729]
[11]
Chon, H.J.; Rha, S.Y.; Im, C.K.; Kim, C.; Hong, M.H.; Kim, H.R.; An, J.R.; Noh, S.H.; Chung, H.C.; Jeung, H.C. Docetaxel versus paclitaxel combined with 5-FU and leucovorin in advanced gastric cancer: combined analysis of two phase II trials. Cancer Res. Treat., 2009, 41(4), 196-204.
[http://dx.doi.org/10.4143/crt.2009.41.4.196] [PMID: 20057964]
[12]
Forsyth, P.A.; Balmaceda, C.; Peterson, K.; Seidman, A.D.; Brasher, P.; DeAngelis, L.M. Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J. Neurooncol., 1997, 35(1), 47-53.
[http://dx.doi.org/10.1023/A:1005805907311] [PMID: 9266440]
[13]
Winer, E.P.; Berry, D.A.; Woolf, S.; Duggan, D.; Kornblith, A.; Harris, L.N.; Michaelson, R.A.; Kirshner, J.A.; Fleming, G.F.; Perry, M.C.; Graham, M.L.; Sharp, S.A.; Keresztes, R.; Henderson, I.C.; Hudis, C.; Muss, H.; Norton, L. Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: cancer and leukemia group B trial 9342. J. Clin. Oncol., 2004, 22(11), 2061-2068.
[http://dx.doi.org/10.1200/JCO.2004.08.048] [PMID: 15169793]
[14]
Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin., 2013, 63(6), 419-437.
[http://dx.doi.org/10.3322/caac.21204] [PMID: 24590861]
[15]
Pace, A.; Nisticò, C.; Cuppone, F.; Bria, E.; Galiè, E.; Graziano, G.; Natoli, G.; Sperduti, I.; Jandolo, B.; Calabretta, F.; Tomao, S.; Terzoli, E. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin. Breast Cancer, 2007, 7(7), 550-554.
[http://dx.doi.org/10.3816/CBC.2007.n.010] [PMID: 17509163]
[16]
Baldwin, R.M.; Owzar, K.; Zembutsu, H.; Chhibber, A.; Kubo, M.; Jiang, C.; Watson, D.; Eclov, R.J.; Mefford, J.; McLeod, H.L.; Friedman, P.N.; Hudis, C.A.; Winer, E.P.; Jorgenson, E.M.; Witte, J.S.; Shulman, L.N.; Nakamura, Y.; Ratain, M.J.; Kroetz, D.L. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res., 2012, 18(18), 5099-5109.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1590] [PMID: 22843789]
[17]
Ghoreishi, Z.; Esfahani, A.; Djazayeri, A.; Djalali, M.; Golestan, B.; Ayromlou, H.; Hashemzade, S.; Asghari Jafarabadi, M.; Montazeri, V.; Keshavarz, S.A.; Darabi, M. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: a randomized double-blind placebo controlled trial. BMC Cancer, 2012, 12(1), 355.
[http://dx.doi.org/10.1186/1471-2407-12-355] [PMID: 22894640]
[18]
Chaudhry, V.; Chaudhry, M.; Crawford, T.O.; Simmons-O’Brien, E.; Griffin, J.W. Toxic neuropathy in patients with pre-existing neuropathy. Neurology, 2003, 60(2), 337-340.
[http://dx.doi.org/10.1212/01.WNL.0000043691.53710.53] [PMID: 12552058]
[19]
De Iuliis, F.; Taglieri, L.; Salerno, G.; Lanza, R.; Scarpa, S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit. Rev. Oncol. Hematol., 2015, 96(1), 34-45.
[http://dx.doi.org/10.1016/j.critrevonc.2015.04.011] [PMID: 26004917]
[20]
McCracken, L.M. Social context and acceptance of chronic pain: the role of solicitous and punishing responses. Pain, 2005, 113(1-2), 155-159.
[http://dx.doi.org/10.1016/j.pain.2004.10.004] [PMID: 15621376]
[21]
Park, S.B.; Lin, C.S.Y.; Krishnan, A.V.; Friedlander, M.L.; Lewis, C.R.; Kiernan, M.C. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel-induced neuropathy. Muscle Nerve, 2011, 43(3), 367-374.
[http://dx.doi.org/10.1002/mus.21874] [PMID: 21321953]
[22]
Tofthagen, C.; McAllister, R.D.; Visovsky, C. Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J. Adv. Pract. Oncol., 2013, 4(4), 204-215.
[PMID: 25032002]
[23]
Eckhoff, L.; Knoop, A.; Jensen, M.B.; Ewertz, M. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors. Eur. J. Cancer, 2015, 51(3), 292-300.
[http://dx.doi.org/10.1016/j.ejca.2014.11.024] [PMID: 25541155]
[24]
Bober, B.G.; Shah, S.B. Paclitaxel alters sensory nerve biomechanical properties. J. Biomech., 2015, 48(13), 3559-3567.
[http://dx.doi.org/10.1016/j.jbiomech.2015.07.020] [PMID: 26321364]
[25]
LaPointe, N.E.; Morfini, G.; Brady, S.T.; Feinstein, S.C.; Wilson, L.; Jordan, M.A. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology, 2013, 37, 231-239.
[http://dx.doi.org/10.1016/j.neuro.2013.05.008] [PMID: 23711742]
[26]
Shemesh, O.A.; Spira, M.E. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol., 2010, 119(2), 235-248.
[http://dx.doi.org/10.1007/s00401-009-0586-0] [PMID: 19727778]
[27]
Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P.M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain, 2011, 152(2), 308-313.
[http://dx.doi.org/10.1016/j.pain.2010.10.030] [PMID: 21145656]
[28]
Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci., 2019, 20(6), 1451.
[http://dx.doi.org/10.3390/ijms20061451] [PMID: 30909387]
[29]
Siau, C.; Bennett, G.J. Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth. Analg., 2006, 102(5), 1485-1490.
[http://dx.doi.org/10.1213/01.ane.0000204318.35194.ed] [PMID: 16632831]
[30]
Zhang, H.; Dougherty, P.M. Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology, 2014, 120(6), 1463-1475.
[http://dx.doi.org/10.1097/ALN.0000000000000176] [PMID: 24534904]
[31]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[http://dx.doi.org/10.1016/j.redox.2014.01.006] [PMID: 24494204]
[32]
Doyle, T.; Chen, Z.; Muscoli, C.; Bryant, L.; Esposito, E.; Cuzzocrea, S.; Dagostino, C.; Ryerse, J.; Rausaria, S.; Kamadulski, A.; Neumann, W.L.; Salvemini, D. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J. Neurosci., 2012, 32(18), 6149-6160.
[http://dx.doi.org/10.1523/JNEUROSCI.6343-11.2012] [PMID: 22553021]
[33]
Zaks-Zilberman, M.; Zaks, T.Z.; Vogel, S.N. Induction of proinflammatory and chemokine genes by lipopolysaccharide and paclitaxel (Taxol) in murine and human breast cancer cell lines. Cytokine, 2001, 15(3), 156-165.
[http://dx.doi.org/10.1006/cyto.2001.0935] [PMID: 11554785]
[34]
Hershman, D.L.; Lacchetti, C.; Dworkin, R.H.; Lavoie Smith, E.M.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M.B.; Paice, J.; Schneider, B.; Smith, M.L.; Smith, T.; Terstriep, S.; Wagner-Johnston, N.; Bak, K.; Loprinzi, C.L. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol., 2014, 32(18), 1941-1967.
[http://dx.doi.org/10.1200/JCO.2013.54.0914] [PMID: 24733808]
[35]
Pachman, D.R.; Watson, J.C.; Lustberg, M.B.; Wagner-Johnston, N.D.; Chan, A.; Broadfield, L.; Cheung, Y.T.; Steer, C.; Storey, D.J.; Chandwani, K.D.; Paice, J.; Jean-Pierre, P.; Oh, J.; Kamath, J.; Fallon, M.; Strik, H.; Koeppen, S.; Loprinzi, C.L. Management options for established chemotherapy-induced peripheral neuropathy. Support. Care Cancer, 2014, 22(8), 2281-2295.
[http://dx.doi.org/10.1007/s00520-014-2289-x] [PMID: 24879391]
[36]
Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; Gilman, P.B.; Shapiro, C.L. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA, 2013, 309(13), 1359-1367.
[http://dx.doi.org/10.1001/jama.2013.2813] [PMID: 23549581]
[37]
Kundranda, M.N.; Niu, J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des. Devel. Ther., 2015, 9, 3767-3777.
[http://dx.doi.org/10.2147/DDDT.S88023] [PMID: 26244011]
[38]
Carlson, K.; Ocean, A.J. Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin. Breast Cancer, 2011, 11(2), 73-81.
[http://dx.doi.org/10.1016/j.clbc.2011.03.006] [PMID: 21569993]
[39]
Gradishar, W.J. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother., 2006, 7(8), 1041-1053.
[http://dx.doi.org/10.1517/14656566.7.8.1041] [PMID: 16722814]
[40]
Desai, A.V.; Marks, G.; Grunstein, R. Does sleep deprivation worsen mild obstructive sleep apnea? Sleep, 2003, 26(8), 1038-1041.
[http://dx.doi.org/10.1093/sleep/26.8.1038] [PMID: 14746387]
[41]
Framson, P.E.; Sage, E.H. SPARC and tumor growth: where the seed meets the soil? J. Cell. Biochem., 2004, 92(4), 679-690.
[http://dx.doi.org/10.1002/jcb.20091] [PMID: 15211566]
[42]
Goldblum, S.E.; Ding, X.; Funk, S.E.; Sage, E.H. SPARC (secreted protein acidic and rich in cysteine) regulates endothelial cell shape and barrier function. Proc. Natl. Acad. Sci. USA, 1994, 91(8), 3448-3452.
[http://dx.doi.org/10.1073/pnas.91.8.3448] [PMID: 8159767]
[43]
Trieu, V.; Frankel, T.; Labao, E.; Soon-Shiong, P.; Desai, N. SPARC expression in breast tumors may correlate to increased tumor distribution of nanoparticle albumin-bound paclitaxel (ABI-007) vs taxol; AACR, 2005.
[44]
John, T.A.; Vogel, S.M.; Tiruppathi, C.; Malik, A.B.; Minshall, R.D. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 284(1), L187-L196.
[http://dx.doi.org/10.1152/ajplung.00152.2002] [PMID: 12471015]
[45]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[46]
Peng, L.; Bu, Z.; Ye, X.; Zhou, Y.; Zhao, Q. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: a meta-analysis. Eur. J. Cancer Care (Engl.), 2017, 26(5), e12407.
[http://dx.doi.org/10.1111/ecc.12407] [PMID: 26537178]
[47]
Guo, X.; Sun, H.; Dong, J.; Feng, Y.; Li, H.; Zhuang, R.; Wang, P.; Cai, W.; Zhou, Y. Does nab-paclitaxel have a higher incidence of peripheral neuropathy than solvent-based paclitaxel? Evidence from a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2019, 139, 16-23.
[http://dx.doi.org/10.1016/j.critrevonc.2019.04.021] [PMID: 31112878]
[48]
Lee, J.J.; Swain, S.M. Peripheral neuropathy induced by microtubule-stabilizing agents. J. Clin. Oncol., 2006, 24(10), 1633-1642.
[http://dx.doi.org/10.1200/JCO.2005.04.0543] [PMID: 16575015]
[49]
Swain, S.M.; Arezzo, J.C. Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin. Adv. Hematol. Oncol., 2008, 6(6), 455-467.
[PMID: 18567992]
[50]
Yamashita, Y.; Egashira, N.; Masuguchi, K.; Ushio, S.; Kawashiri, T.; Oishi, R. Comparison of peripheral neuropathy induced by standard and nanoparticle albumin-bound paclitaxel in rats. J. Pharmacol. Sci., 2011, 117(2), 116-120.
[http://dx.doi.org/10.1254/jphs.11062SC] [PMID: 21897056]
[51]
Amptoulach, S; Tsavaris, N. Neurotoxicity caused by the treatment with platinum analogues. Chemotherapy Research and Practice, 2011.
[http://dx.doi.org/10.1155/2011/843019]
[52]
Mollman, J.E. Cisplatin neurotoxicity; Mass Medical Soc, 1990.
[http://dx.doi.org/10.1056/NEJM199001113220210]
[53]
Prestayko, A.W.; D’Aoust, J.C.; Issell, B.F.; Crooke, S.T. Cisplatin (cis-diamminedichloroplatinum II). Cancer Treat. Rev., 1979, 6(1), 17-39.
[http://dx.doi.org/10.1016/S0305-7372(79)80057-2] [PMID: 378370]
[54]
Avan, A.; Postma, T.J.; Ceresa, C.; Avan, A.; Cavaletti, G.; Giovannetti, E.; Peters, G.J. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist, 2015, 20(4), 411-432.
[http://dx.doi.org/10.1634/theoncologist.2014-0044] [PMID: 25765877]
[55]
Albers, JW; Chaudhry, V; Cavaletti, G; Donehower, RC Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database of Systematic Reviews, 2014, (3)
[http://dx.doi.org/10.1002/14651858.CD005228.pub4]
[56]
Starobova, H.; Vetter, I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 174.
[http://dx.doi.org/10.3389/fnmol.2017.00174] [PMID: 28620280]
[57]
Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit. Rev. Oncol. Hematol., 2012, 82(1), 51-77.
[http://dx.doi.org/10.1016/j.critrevonc.2011.04.012] [PMID: 21908200]
[58]
Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): what we need and what we know. J. Peripher. Nerv. Syst., 2014, 19(2), 66-76.
[http://dx.doi.org/10.1111/jns5.12073] [PMID: 24976572]
[59]
Ip, V.; Liu, J.J.; McKeage, M.J. Evaluation of effects of copper histidine on copper transporter 1-mediated accumulation of platinum and oxaliplatin-induced neurotoxicity in vitro and in vivo. Clin. Exp. Pharmacol. Physiol., 2013, 40(6), 371-378.
[http://dx.doi.org/10.1111/1440-1681.12088] [PMID: 23556474]
[60]
Liu, J.J.; Kim, Y.; Yan, F.; Ding, Q.; Ip, V.; Jong, N.N.; Mercer, J.F.; McKeage, M.J. Contributions of rat Ctr1 to the uptake and toxicity of copper and platinum anticancer drugs in dorsal root ganglion neurons. Biochem. Pharmacol., 2013, 85(2), 207-215.
[http://dx.doi.org/10.1016/j.bcp.2012.10.023] [PMID: 23123662]
[61]
Safaei, R.; Howell, S.B. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. Hematol., 2005, 53(1), 13-23.
[http://dx.doi.org/10.1016/j.critrevonc.2004.09.007] [PMID: 15607932]
[62]
Zhu, C.; Raber, J.; Eriksson, L.A. Hydrolysis process of the second generation platinum-based anticancer drug cis-amminedichlorocyclohexylamineplatinum(II). J. Phys. Chem. B, 2005, 109(24), 12195-12205.
[http://dx.doi.org/10.1021/jp0518916] [PMID: 16852504]
[63]
Chválová, K.; Brabec, V.; Kaspárková, J. Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin. Nucleic Acids Res., 2007, 35(6), 1812-1821.
[http://dx.doi.org/10.1093/nar/gkm032] [PMID: 17329374]
[64]
McDonald, E.S.; Randon, K.R.; Knight, A.; Windebank, A.J. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol. Dis., 2005, 18(2), 305-313.
[http://dx.doi.org/10.1016/j.nbd.2004.09.013] [PMID: 15686959]
[65]
Meijer, C.; de Vries, E.G.; Marmiroli, P.; Tredici, G.; Frattola, L.; Cavaletti, G. Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology, 1999, 20(6), 883-887.
[PMID: 10693969]
[66]
Dzagnidze, A.; Katsarava, Z.; Makhalova, J.; Liedert, B.; Yoon, M-S.; Kaube, H.; Limmroth, V.; Thomale, J. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci., 2007, 27(35), 9451-9457.
[http://dx.doi.org/10.1523/JNEUROSCI.0523-07.2007] [PMID: 17728458]
[67]
Ta, L.E.; Espeset, L.; Podratz, J.; Windebank, A.J. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology, 2006, 27(6), 992-1002.
[http://dx.doi.org/10.1016/j.neuro.2006.04.010] [PMID: 16797073]
[68]
McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther., 2009, 8(1), 10-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0840] [PMID: 19139108]
[69]
Argyriou, A.A.; Polychronopoulos, P.; Iconomou, G.; Chroni, E.; Kalofonos, H.P. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat. Rev., 2008, 34(4), 368-377.
[http://dx.doi.org/10.1016/j.ctrv.2008.01.003] [PMID: 18281158]
[70]
Neijt, J.P.; Engelholm, S.A.; Tuxen, M.K.; Sørensen, P.G.; Hansen, M.; Sessa, C.; de Swart, C.A.; Hirsch, F.R.; Lund, B.; van Houwelingen, H.C. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol., 2000, 18(17), 3084-3092.
[http://dx.doi.org/10.1200/JCO.2000.18.17.3084] [PMID: 10963636]
[71]
Parmar, M.K.; Ledermann, J.A.; Colombo, N.; du Bois, A.; Delaloye, J.F.; Kristensen, G.B.; Wheeler, S.; Swart, A.M.; Qian, W.; Torri, V.; Floriani, I.; Jayson, G.; Lamont, A.; Tropé, C. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet, 2003, 361(9375), 2099-2106.
[http://dx.doi.org/10.1016/S0140-6736(03)13718-X] [PMID: 12826431]
[72]
Canetta, R.; Rozencweig, M.; Carter, S.K. Carboplatin: the clinical spectrum to date. Cancer Treat. Rev., 1985, 12(Suppl. A), 125-136.
[http://dx.doi.org/10.1016/0305-7372(85)90027-1] [PMID: 3002623]
[73]
Kelley, M.R.; Jiang, Y.; Guo, C.; Reed, A.; Meng, H.; Vasko, M.R. Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLoS One, 2014, 9(9), e106485.
[http://dx.doi.org/10.1371/journal.pone.0106485] [PMID: 25188410]
[74]
Chiorazzi, A.; Semperboni, S.; Marmiroli, P. Current view in platinum drug mechanisms of peripheral neurotoxicity. Toxics, 2015, 3(3), 304-321.
[http://dx.doi.org/10.3390/toxics3030304] [PMID: 29051466]
[75]
de Cos Escuín, JS; Delgado, IU; Rodríguez, JC; López, MJ; Vicente, CD; Miranda, JAR Stage IIIA and IIIB non-small cell lung cancer: results of chemotherapy combined with radiation therapy and analysis of prognostic factors. Archivos de Bronconeumología ((English Edition)), 2007, 43(7), 358-365.
[76]
Helbekkmo, N.; Sundstrøm, S.H.; Aasebø, U.; Brunsvig, P.F.; von Plessen, C.; Hjelde, H.H.; Garpestad, O.K.; Bailey, A.; Bremnes, R.M. Vinorelbine/carboplatin vs gemcitabine/carboplatin in advanced NSCLC shows similar efficacy, but different impact of toxicity. Br. J. Cancer, 2007, 97(3), 283-289.
[http://dx.doi.org/10.1038/sj.bjc.6603869] [PMID: 17595658]
[77]
Heinzlef, O.; Lotz, J-P.; Roullet, E. Severe neuropathy after high dose carboplatin in three patients receiving multidrug chemotherapy. J. Neurol. Neurosurg. Psychiatry, 1998, 64(5), 667-669.
[http://dx.doi.org/10.1136/jnnp.64.5.667] [PMID: 9598687]
[78]
High-dose cisplatin therapy in ovarian cancer.Ozols, R.F.; Young, R.C., Eds.; Seminars in oncology; , 1985.
[79]
Roelofs, R.I.; Hrushesky, W.; Rogin, J.; Rosenberg, L. Peripheral sensory neuropathy and cisplatin chemotherapy. Neurology, 1984, 34(7), 934-938.
[http://dx.doi.org/10.1212/WNL.34.7.934] [PMID: 6330613]
[80]
Thompson, S.W.; Davis, L.E.; Kornfeld, M.; Hilgers, R.D.; Standefer, J.C. Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer, 1984, 54(7), 1269-1275.
[http://dx.doi.org/10.1002/1097-0142(19841001)54:7<1269::AID-CNCR2820540707>3.0.CO;2-9] [PMID: 6088023]
[81]
Krarup-Hansen, A.; Helweg-Larsen, S.; Schmalbruch, H.; Rørth, M.; Krarup, C. Neuronal involvement in cisplatin neuropathy: prospective clinical and neurophysiological studies. Brain, 2007, 130(Pt 4), 1076-1088.
[http://dx.doi.org/10.1093/brain/awl356] [PMID: 17301082]
[82]
Von Hoff, D.D.; Schilsky, R.; Reichert, C.M.; Reddick, R.L.; Rozencweig, M.; Young, R.C.; Muggia, F.M. Toxic effects of cis-dichlorodiammineplatinum(II) in man. Cancer Treat. Rep., 1979, 63(9-10), 1527-1531.
[PMID: 387223]
[83]
Siegal, T.; Haim, N. Cisplatin-induced peripheral neuropathy. Frequent off-therapy deterioration, demyelinating syndromes, and muscle cramps. Cancer, 1990, 66(6), 1117-1123.
[http://dx.doi.org/10.1002/1097-0142(19900915)66:6<1117::AID-CNCR2820660607>3.0.CO;2-O] [PMID: 2169332]
[84]
Argyriou, A.A.; Cavaletti, G.; Briani, C.; Velasco, R.; Bruna, J.; Campagnolo, M.; Alberti, P.; Bergamo, F.; Cortinovis, D.; Cazzaniga, M.; Santos, C.; Papadimitriou, K.; Kalofonos, H.P. Clinical pattern and associations of oxaliplatin acute neurotoxicity: a prospective study in 170 patients with colorectal cancer. Cancer, 2013, 119(2), 438-444.
[http://dx.doi.org/10.1002/cncr.27732] [PMID: 22786764]
[85]
Pharmacokinetics and safety profile of oxaliplatin.Extra, J-M.; Marty, M.; Brienza, S.; Misset, J-L., Eds.; Seminars in oncology; , 1998.
[86]
Cersosimo, R.J. Cisplatin neurotoxicity. Cancer Treat. Rev., 1989, 16(4), 195-211.
[http://dx.doi.org/10.1016/0305-7372(89)90041-8] [PMID: 2561592]
[87]
Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures.Gamelin, E.; Gamelin, L.; Bossi, L.; Quasthoff, S., Eds.; Seminars in oncology; , 2002.
[88]
Cassidy, J.; Misset, J-L., Eds.; Oxaliplatin-related side effects: characteristics and management. Seminars in oncology; WB Saunders, 2002.
[89]
Saif, M.W.; Reardon, J. Management of oxaliplatin-induced peripheral neuropathy. Ther. Clin. Risk Manag., 2005, 1(4), 249-258.
[PMID: 18360567]
[90]
Cavaletti, G.; Alberti, P.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol., 2011, 12(12), 1151-1161.
[http://dx.doi.org/10.1016/S1470-2045(11)70131-0] [PMID: 21719347]
[91]
Alejandro, L.M.; Behrendt, C.E.; Chen, K.; Openshaw, H.; Shibata, S. Predicting acute and persistent neuropathy associated with oxaliplatin. Am. J. Clin. Oncol., 2013, 36(4), 331-337.
[http://dx.doi.org/10.1097/COC.0b013e318246b50d] [PMID: 22547012]
[92]
Alberti, P.; Rossi, E.; Cornblath, D.R.; Merkies, I.S.; Postma, T.J.; Frigeni, B.; Bruna, J.; Velasco, R.; Argyriou, A.A.; Kalofonos, H.P.; Psimaras, D.; Ricard, D.; Pace, A.; Galiè, E.; Briani, C.; Dalla Torre, C.; Faber, C.G.; Lalisang, R.I.; Boogerd, W.; Brandsma, D.; Koeppen, S.; Hense, J.; Storey, D.; Kerrigan, S.; Schenone, A.; Fabbri, S.; Valsecchi, M.G.; Cavaletti, G. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin. Ann. Oncol., 2014, 25(1), 257-264.
[http://dx.doi.org/10.1093/annonc/mdt409] [PMID: 24256846]
[93]
Curcio, K.R. Instruments for Assessing Chemotherapy-Induced Peripheral Neuropathy: A Review of the Literature. Clin. J. Oncol. Nurs., 2016, 20(2), 144-151.
[http://dx.doi.org/10.1188/16.CJON.20-01AP] [PMID: 26991707]
[94]
Kanat, O.; Ertas, H.; Caner, B. Platinum-induced neurotoxicity: A review of possible mechanisms. World J. Clin. Oncol., 2017, 8(4), 329-335.
[http://dx.doi.org/10.5306/wjco.v8.i4.329] [PMID: 28848699]
[95]
Inoue, N.; Ishida, H.; Sano, M.; Kishino, T.; Okada, N.; Kumamoto, K.; Ishibashi, K. Discrepancy between the NCI-CTCAE and DEB-NTC scales in the evaluation of oxaliplatin-related neurotoxicity in patients with metastatic colorectal cancer. Int. J. Clin. Oncol., 2012, 17(4), 341-347.
[http://dx.doi.org/10.1007/s10147-011-0298-z] [PMID: 21833683]
[96]
Verstappen, C.C.; Heimans, J.J.; Hoekman, K.; Postma, T.J. Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs, 2003, 63(15), 1549-1563.
[http://dx.doi.org/10.2165/00003495-200363150-00003] [PMID: 12887262]
[97]
Hill, A.; Bergin, P.; Hanning, F.; Thompson, P.; Findlay, M.; Damianovich, D.; McKeage, M.J. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability. BMC Cancer, 2010, 10(1), 451.
[http://dx.doi.org/10.1186/1471-2407-10-451] [PMID: 20731872]
[98]
Park, S.B.; Lin, C.S-Y.; Krishnan, A.V.; Goldstein, D.; Friedlander, M.L.; Kiernan, M.C. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain, 2009, 132(Pt 10), 2712-2723.
[http://dx.doi.org/10.1093/brain/awp219] [PMID: 19745023]
[99]
Yang, L.; Yu, L.; Chen, X.; Hu, Y.; Wang, B. Clinical analysis of adverse drug reactions between vincristine and triazoles in children with acute lymphoblastic leukemia. Med. Sci. Monit., 2015, 21, 1656-1661.
[http://dx.doi.org/10.12659/MSM.893142] [PMID: 26050202]
[100]
Gidding, C.E.; Kellie, S.J.; Kamps, W.A.; de Graaf, S.S. Vincristine revisited. Crit. Rev. Oncol. Hematol., 1999, 29(3), 267-287.
[http://dx.doi.org/10.1016/S1040-8428(98)00023-7] [PMID: 10226730]
[101]
Gan, P.P.; McCarroll, J.A.; Po’uha, S.T.; Kamath, K.; Jordan, M.A.; Kavallaris, M. Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin. Mol. Cancer Ther., 2010, 9(5), 1339-1348.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0679] [PMID: 20442307]
[102]
Gutierrez-Camino, Á.; Umerez, M.; Martin-Guerrero, I.; García de Andoin, N.; Santos, B.; Sastre, A.; Echebarria-Barona, A.; Astigarraga, I.; Navajas, A.; Garcia-Orad, A. Mir-pharmacogenetics of Vincristine and peripheral neurotoxicity in childhood B-cell acute lymphoblastic leukemia. Pharmacogenomics J., 2018, 18(6), 704-712.
[http://dx.doi.org/10.1038/s41397-017-0003-3] [PMID: 29282364]
[103]
Chan, S.Y.; Worth, R.; Ochs, S. Block of axoplasmic transport in vitro by vinca alkaloids. J. Neurobiol., 1980, 11(3), 251-264.
[http://dx.doi.org/10.1002/neu.480110304] [PMID: 6156229]
[104]
Devor, M. Sodium channels and mechanisms of neuropathic pain. J. Pain, 2006, 7(1)(Suppl. 1), S3-S12.
[http://dx.doi.org/10.1016/j.jpain.2005.09.006] [PMID: 16426998]
[105]
Boehmerle, W.; Huehnchen, P.; Peruzzaro, S.; Balkaya, M.; Endres, M. Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci. Rep., 2014, 4, 6370.
[http://dx.doi.org/10.1038/srep06370] [PMID: 25231679]
[106]
Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett., 2015, 596, 90-107.
[http://dx.doi.org/10.1016/j.neulet.2014.10.014] [PMID: 25459280]
[107]
Lavoie Smith, E.M.; Li, L.; Chiang, C.; Thomas, K.; Hutchinson, R.J.; Wells, E.M.; Ho, R.H.; Skiles, J.; Chakraborty, A.; Bridges, C.M.; Renbarger, J. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J. Peripher. Nerv. Syst., 2015, 20(1), 37-46.
[http://dx.doi.org/10.1111/jns.12114] [PMID: 25977177]
[108]
Kavcic, M.; Koritnik, B.; Krzan, M.; Velikonja, O.; Prelog, T.; Stefanovic, M.; Debeljak, M.; Jazbec, J. Electrophysiological studies to detect peripheral neuropathy in children treated with vincristine. J. Pediatr. Hematol. Oncol., 2017, 39(4), 266-271.
[http://dx.doi.org/10.1097/MPH.0000000000000825] [PMID: 28375940]
[109]
Haim, N.; Epelbaum, R.; Ben-Shahar, M.; Yarnitsky, D.; Simri, W.; Robinson, E. Full dose vincristine (without 2-mg dose limit) in the treatment of lymphomas. Cancer, 1994, 73(10), 2515-2519.
[http://dx.doi.org/10.1002/1097-0142(19940515)73:10<2515::AID-CNCR2820731011>3.0.CO;2-G] [PMID: 8174048]
[110]
Barton, D.L.; Wos, E.J.; Qin, R.; Mattar, B.I.; Green, N.B.; Lanier, K.S.; Bearden, J.D., III; Kugler, J.W.; Hoff, K.L.; Reddy, P.S.; Rowland, K.M., Jr; Riepl, M.; Christensen, B.; Loprinzi, C.L. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support. Care Cancer, 2011, 19(6), 833-841.
[http://dx.doi.org/10.1007/s00520-010-0911-0] [PMID: 20496177]
[111]
Mora, E.; Smith, E.M.L.; Donohoe, C.; Hertz, D.L. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. Cancer Res., 2016, 6(11), 2416-2430.
[PMID: 27904761]
[112]
El Hayek, M.; Trad, O.; Jamil, A. Vincristine-induced urinary bladder paralysis. J. Pediatr. Hematol. Oncol., 2005, 27(5), 286-287.
[http://dx.doi.org/10.1097/01.mph.0000165130.21539.a3] [PMID: 15891567]
[113]
Lee, D.H.; Goldberg, A.L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol., 1998, 8(10), 397-403.
[http://dx.doi.org/10.1016/S0962-8924(98)01346-4] [PMID: 9789328]
[114]
Moreau, P.; Karamanesht, I.I.; Domnikova, N.; Kyselyova, M.Y.; Vilchevska, K.V.; Doronin, V.A.; Schmidt, A.; Hulin, C.; Leleu, X.; Esseltine, D.L.; Venkatakrishnan, K.; Skee, D.; Feng, H.; Girgis, S.; Cakana, A.; van de Velde, H.; Deraedt, W.; Facon, T. Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin. Pharmacokinet., 2012, 51(12), 823-829.
[http://dx.doi.org/10.1007/s40262-012-0010-0] [PMID: 23018466]
[115]
Delforge, M.; Bladé, J.; Dimopoulos, M.A.; Facon, T.; Kropff, M.; Ludwig, H.; Palumbo, A.; Van Damme, P.; San-Miguel, J.F.; Sonneveld, P. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol., 2010, 11(11), 1086-1095.
[http://dx.doi.org/10.1016/S1470-2045(10)70068-1] [PMID: 20932799]
[116]
Crawford, L.J.; Walker, B.; Ovaa, H.; Chauhan, D.; Anderson, K.C.; Morris, T.C.; Irvine, A.E. Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res., 2006, 66(12), 6379-6386.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0605] [PMID: 16778216]
[117]
Łuczkowska, K.; Litwińska, Z.; Paczkowska, E.; Machaliński, B. Pathophysiology of drug-induced peripheral neuropathy in multiple myeloma patients. J. Physiol. Pharmacol., 2018, 69, 165-172.
[118]
Kaplan, G.S.; Torcun, C.C.; Grune, T.; Ozer, N.K.; Karademir, B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med., 2017, 103, 1-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.007] [PMID: 27940347]
[119]
Velasco, R.; Petit, J.; Clapés, V.; Verdú, E.; Navarro, X.; Bruna, J. Neurological monitoring reduces the incidence of bortezomib-induced peripheral neuropathy in multiple myeloma patients. J. Peripher. Nerv. Syst., 2010, 15(1), 17-25.
[http://dx.doi.org/10.1111/j.1529-8027.2010.00248.x] [PMID: 20433602]
[120]
Lakshman, A; Modi, M; Prakash, G; Malhotra, P; Khadwal, A; Jain, S Evaluation of bortezomib-induced neuropathy using total neuropathy score (reduced and clinical versions) and NCI CTCAE v4. 0 in newly diagnosed patients with multiple myeloma receiving bortezomib-based induction. Clinical Lymphoma Myeloma and Leukemia, 2017, 17(8), 513-519.
[121]
Landowski, T.H.; Megli, C.J.; Nullmeyer, K.D.; Lynch, R.M.; Dorr, R.T. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res., 2005, 65(9), 3828-3836.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3684] [PMID: 15867381]
[122]
Hideshima, T.; Ikeda, H.; Chauhan, D.; Okawa, Y.; Raje, N.; Podar, K.; Mitsiades, C.; Munshi, N.C.; Richardson, P.G.; Carrasco, R.D.; Anderson, K.C. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood, 2009, 114(5), 1046-1052.
[http://dx.doi.org/10.1182/blood-2009-01-199604] [PMID: 19436050]
[123]
Azoulay, D.; Lavie, D.; Horowitz, N.; Suriu, C.; Gatt, M.E.; Akria, L.; Perlman, R.; Braester, A.; Ben-Yehuda, D. Bortezomib-induced peripheral neuropathy is related to altered levels of brain-derived neurotrophic factor in the peripheral blood of patients with multiple myeloma. Br. J. Haematol., 2014, 164(3), 454-456.
[http://dx.doi.org/10.1111/bjh.12624] [PMID: 24164472]
[124]
Broyl, A.; Corthals, S.L.; Jongen, J.L.; van der Holt, B.; Kuiper, R.; de Knegt, Y.; van Duin, M.; el Jarari, L.; Bertsch, U.; Lokhorst, H.M.; Durie, B.G.; Goldschmidt, H.; Sonneveld, P. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol., 2010, 11(11), 1057-1065.
[http://dx.doi.org/10.1016/S1470-2045(10)70206-0] [PMID: 20864405]
[125]
Meregalli, C.; Canta, A.; Carozzi, V.A.; Chiorazzi, A.; Oggioni, N.; Gilardini, A.; Ceresa, C.; Avezza, F.; Crippa, L.; Marmiroli, P.; Cavaletti, G. Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur. J. Pain, 2010, 14(4), 343-350.
[http://dx.doi.org/10.1016/j.ejpain.2009.07.001] [PMID: 19695912]
[126]
Meregalli, C.; Ceresa, C.; Canta, A.; Carozzi, V.A.; Chiorazzi, A.; Sala, B.; Oggioni, N.; Lanza, M.; Letari, O.; Ferrari, F.; Avezza, F.; Marmiroli, P.; Caselli, G.; Cavaletti, G. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J. Pain Res., 2012, 5, 151-167.
[PMID: 22792002]
[127]
Casafont, I.; Berciano, M.T.; Lafarga, M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox. Res., 2010, 17(2), 167-178.
[http://dx.doi.org/10.1007/s12640-009-9086-1] [PMID: 19609631]
[128]
Cavaletti, G.; Gilardini, A.; Canta, A.; Rigamonti, L.; Rodriguez-Menendez, V.; Ceresa, C.; Marmiroli, P.; Bossi, M.; Oggioni, N.; D’Incalci, M.; De Coster, R. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp. Neurol., 2007, 204(1), 317-325.
[http://dx.doi.org/10.1016/j.expneurol.2006.11.010] [PMID: 17214983]
[129]
Meregalli, C.; Canta, A.; Chiorazzi, A.; Gilardini, A. RODRIGUEZ MENENDEZ V Annual Meeting of the Peripheral-Nerve-Society, 2009.
[130]
Ravaglia, S.; Corso, A.; Piccolo, G.; Lozza, A.; Alfonsi, E.; Mangiacavalli, S.; Varettoni, M.; Zappasodi, P.; Moglia, A.; Lazzarino, M.; Costa, A. Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin. Neurophysiol., 2008, 119(11), 2507-2512.
[http://dx.doi.org/10.1016/j.clinph.2008.08.007] [PMID: 18829381]
[131]
Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 2012, 291(1-3), 1-9.
[http://dx.doi.org/10.1016/j.tox.2011.10.019] [PMID: 22079234]
[132]
Wang, H; Liu, Z; Yang, W; Liao, A; Zhang, R; Wu, B Study on mechanism of bortezomib inducing peripheral neuropathy and the reversing effect of reduced glutathione. Zhonghua xue ye xue za zhi= Zhonghua xueyexue zazhi, 2011, 32(2), 107-111.
[133]
Dick, L.R.; Fleming, P.E. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today, 2010, 15(5-6), 243-249.
[http://dx.doi.org/10.1016/j.drudis.2010.01.008] [PMID: 20116451]
[134]
Saifee, T.A.; Elliott, K.J.; Rabin, N.; Yong, K.L.; D’Sa, S.; Brandner, S.; Lunn, M.P.; Blake, J.; Reilly, M.M. Bortezomib-induced inflammatory neuropathy. J. Peripher. Nerv. Syst., 2010, 15(4), 366-368.
[http://dx.doi.org/10.1111/j.1529-8027.2010.00287.x] [PMID: 21199108]
[135]
Thawani, S.P.; Tanji, K.; De Sousa, E.A.; Weimer, L.H.; Brannagan, T.H., III Bortezomib-associated demyelinating neuropathy--clinical and pathologic features. J. Clin. Neuromuscul. Dis., 2015, 16(4), 202-209.
[http://dx.doi.org/10.1097/CND.0000000000000077] [PMID: 25996966]
[136]
Windebank, A.J.; Grisold, W. Chemotherapy-induced neuropathy. J. Peripher. Nerv. Syst., 2008, 13(1), 27-46.
[http://dx.doi.org/10.1111/j.1529-8027.2008.00156.x] [PMID: 18346229]
[137]
Argyriou, A.A.; Cavaletti, G.; Bruna, J.; Kyritsis, A.P.; Kalofonos, H.P. Bortezomib-induced peripheral neurotoxicity: an update. Arch. Toxicol., 2014, 88(9), 1669-1679.
[http://dx.doi.org/10.1007/s00204-014-1316-5] [PMID: 25069804]
[138]
Lanzani, F.; Mattavelli, L.; Frigeni, B.; Rossini, F.; Cammarota, S.; Petrò, D.; Jann, S.; Cavaletti, G. Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst., 2008, 13(4), 267-274.
[http://dx.doi.org/10.1111/j.1529-8027.2008.00192.x] [PMID: 19192066]
[139]
Stratogianni, A.; Tosch, M.; Schlemmer, H.; Weis, J.; Katona, I.; Isenmann, S.; Haensch, C.A. Bortezomib-induced severe autonomic neuropathy. Clin. Auton. Res., 2012, 22(4), 199-202.
[http://dx.doi.org/10.1007/s10286-012-0164-8] [PMID: 22532274]
[140]
Giannoccaro, M.P.; Donadio, V.; Gomis Pèrez, C.; Borsini, W.; Di Stasi, V.; Liguori, R. Somatic and autonomic small fiber neuropathy induced by bortezomib therapy: an immunofluorescence study. Neurol. Sci., 2011, 32(2), 361-363.
[http://dx.doi.org/10.1007/s10072-010-0475-2] [PMID: 21290160]
[141]
Favis, R.; Sun, Y.; van de Velde, H.; Broderick, E.; Levey, L.; Meyers, M.; Mulligan, G.; Harousseau, J.L.; Richardson, P.G.; Ricci, D.S. Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet. Genomics, 2011, 21(3), 121-129.
[http://dx.doi.org/10.1097/FPC.0b013e3283436b45] [PMID: 21228734]
[142]
Corthals, S.L.; Kuiper, R.; Johnson, D.C.; Sonneveld, P.; Hajek, R.; van der Holt, B.; Magrangeas, F.; Goldschmidt, H.; Morgan, G.J.; Avet-Loiseau, H. Genetic factors underlying the risk of bortezomib induced peripheral neuropathy in multiple myeloma patients. Haematologica, 2011, 96(11), 1728-1732.
[http://dx.doi.org/10.3324/haematol.2011.041434] [PMID: 21791469]
[143]
Badros, A.; Goloubeva, O.; Dalal, J.S.; Can, I.; Thompson, J.; Rapoport, A.P.; Heyman, M.; Akpek, G.; Fenton, R.G. Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer, 2007, 110(5), 1042-1049.
[http://dx.doi.org/10.1002/cncr.22921] [PMID: 17654660]
[144]
Stubblefield, M.D.; McNeely, M.L.; Alfano, C.M.; Mayer, D.K. A prospective surveillance model for physical rehabilitation of women with breast cancer: chemotherapy-induced peripheral neuropathy. Cancer, 2012, 118(8)(Suppl.), 2250-2260.
[http://dx.doi.org/10.1002/cncr.27463] [PMID: 22488699]
[145]
Kanbayashi, Y.; Hosokawa, T.; Okamoto, K.; Konishi, H.; Otsuji, E.; Yoshikawa, T.; Takagi, T.; Taniwaki, M. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anticancer Drugs, 2010, 21(9), 877-881.
[http://dx.doi.org/10.1097/CAD.0b013e32833db89d] [PMID: 20679888]
[146]
Wang, L.; Wang, K-F.; Chang, B-Y.; Chen, X-Q.; Xia, Z-J. Once-weekly subcutaneous administration of bortezomib in patients with multiple myeloma. Asian Pac. J. Cancer Prev., 2015, 16(5), 2093-2098.
[http://dx.doi.org/10.7314/APJCP.2015.16.5.2093] [PMID: 25773856]
[147]
Richardson, P.G.; Xie, W.; Mitsiades, C.; Chanan-Khan, A.A.; Lonial, S.; Hassoun, H.; Avigan, D.E.; Oaklander, A.L.; Kuter, D.J.; Wen, P.Y.; Kesari, S.; Briemberg, H.R.; Schlossman, R.L.; Munshi, N.C.; Heffner, L.T.; Doss, D.; Esseltine, D.L.; Weller, E.; Anderson, K.C.; Amato, A.A. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J. Clin. Oncol., 2009, 27(21), 3518-3525.
[http://dx.doi.org/10.1200/JCO.2008.18.3087] [PMID: 19528374]
[148]
Argyriou, A.A.; Iconomou, G.; Kalofonos, H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 2008, 112(5), 1593-1599.
[http://dx.doi.org/10.1182/blood-2008-04-149385] [PMID: 18574024]
[149]
Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol., 1982, 5(6), 649-655.
[http://dx.doi.org/10.1097/00000421-198212000-00014] [PMID: 7165009]
[150]
Ajani, J.A.; Welch, S.R.; Raber, M.N.; Fields, W.S.; Krakoff, I.H. Comprehensive criteria for assessing therapy-induced toxicity. Cancer Invest., 1990, 8(2), 147-159.
[http://dx.doi.org/10.3109/07357909009017560] [PMID: 2400936]
[151]
Miller, A; Hoogstraten, B; Staquet, M; Winkler, A Reporting results of cancer treatment. cancer, 1981, 47(1), 207-214.
[152]
Nicolini, G.; Monfrini, M.; Scuteri, A. Axonal transport impairment in chemotherapy-induced peripheral neuropathy. Toxics, 2015, 3(3), 322-341.
[http://dx.doi.org/10.3390/toxics3030322] [PMID: 29051467]
[153]
Lee, J.J.; Swain, S.M., Eds.; Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Seminars in oncology; Elsevier, 2005.
[154]
Steinberg, M. Ixabepilone: a novel microtubule inhibitor for the treatment of locally advanced or metastatic breast cancer. Clin. Ther., 2008, 30(9), 1590-1617.
[http://dx.doi.org/10.1016/j.clinthera.2008.09.015] [PMID: 18840366]
[155]
Hoffmann, J.; Vitale, I.; Buchmann, B.; Galluzzi, L.; Schwede, W.; Senovilla, L.; Skuballa, W.; Vivet, S.; Lichtner, R.B.; Vicencio, J.M.; Panaretakis, T.; Siemeister, G.; Lage, H.; Nanty, L.; Hammer, S.; Mittelstaedt, K.; Winsel, S.; Eschenbrenner, J.; Castedo, M.; Demarche, C.; Klar, U.; Kroemer, G. Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res., 2008, 68(13), 5301-5308.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0237] [PMID: 18593931]
[156]
Klar, U.; Buchmann, B.; Schwede, W.; Skuballa, W.; Hoffmann, J.; Lichtner, R.B. Total synthesis and antitumor activity of ZK-EPO: the first fully synthetic epothilone in clinical development. Angew. Chem. Int. Ed. Engl., 2006, 45(47), 7942-7948.
[http://dx.doi.org/10.1002/anie.200602785] [PMID: 17006870]
[157]
Argyriou, A.A.; Marmiroli, P.; Cavaletti, G.; Kalofonos, H.P. Epothilone-induced peripheral neuropathy: a review of current knowledge. J. Pain Symptom Manage., 2011, 42(6), 931-940.
[http://dx.doi.org/10.1016/j.jpainsymman.2011.02.022] [PMID: 21621965]
[158]
Vahdat, L.T.; Thomas, E.S.; Roché, H.H.; Hortobagyi, G.N.; Sparano, J.A.; Yelle, L.; Fornier, M.N.; Martín, M.; Bunnell, C.A.; Mukhopadhyay, P.; Peck, R.A.; Perez, E.A. Ixabepilone-associated peripheral neuropathy: data from across the phase II and III clinical trials. Support. Care Cancer, 2012, 20(11), 2661-2668.
[http://dx.doi.org/10.1007/s00520-012-1384-0] [PMID: 22382588]
[159]
Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol., 2010, 6(12), 657-666.
[http://dx.doi.org/10.1038/nrneurol.2010.160] [PMID: 21060341]
[160]
Cioroiu, C.; Weimer, L.H. Update on chemotherapy-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep., 2017, 17(6), 47.
[http://dx.doi.org/10.1007/s11910-017-0757-7] [PMID: 28421360]
[161]
Cortes, J.; O’Shaughnessy, J.; Loesch, D.; Blum, J.L.; Vahdat, L.T.; Petrakova, K.; Chollet, P.; Manikas, A.; Diéras, V.; Delozier, T.; Vladimirov, V.; Cardoso, F.; Koh, H.; Bougnoux, P.; Dutcus, C.E.; Seegobin, S.; Mir, D.; Meneses, N.; Wanders, J.; Twelves, C. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet, 2011, 377(9769), 914-923.
[http://dx.doi.org/10.1016/S0140-6736(11)60070-6] [PMID: 21376385]
[162]
Twelves, C.; Cortes, J.; Vahdat, L.; Olivo, M.; He, Y.; Kaufman, P.A.; Awada, A. Efficacy of eribulin in women with metastatic breast cancer: a pooled analysis of two phase 3 studies. Breast Cancer Res. Treat., 2014, 148(3), 553-561.
[http://dx.doi.org/10.1007/s10549-014-3144-y] [PMID: 25381136]
[163]
Wozniak, K.M.; Vornov, J.J.; Wu, Y.; Liu, Y.; Carozzi, V.A.; Rodriguez-Menendez, V.; Ballarini, E.; Alberti, P.; Pozzi, E.; Semperboni, S.; Cook, B.M.; Littlefield, B.A.; Nomoto, K.; Condon, K.; Eckley, S.; DesJardins, C.; Wilson, L.; Jordan, M.A.; Feinstein, S.C.; Cavaletti, G.; Polydefkis, M.; Slusher, B.S. Peripheral neuropathy induced by microtubule-targeted chemotherapies: insights into acute injury and long-term recovery. Cancer Res., 2018, 78(3), 817-829.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1467] [PMID: 29191802]
[164]
Okouneva, T.; Azarenko, O.; Wilson, L.; Littlefield, B.A.; Jordan, M.A. Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol. Cancer Ther., 2008, 7(7), 2003-2011.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0095] [PMID: 18645010]
[165]
Jordan, M.A.; Kamath, K.; Manna, T.; Okouneva, T.; Miller, H.P.; Davis, C.; Littlefield, B.A.; Wilson, L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther., 2005, 4(7), 1086-1095.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0345] [PMID: 16020666]
[166]
Kannarkat, G.; Lasher, E.E.; Schiff, D. Neurologic complications of chemotherapy agents. Curr. Opin. Neurol., 2007, 20(6), 719-725.
[http://dx.doi.org/10.1097/WCO.0b013e3282f1a06e] [PMID: 17992096]
[167]
Visovsky, C. Chemotherapy-induced peripheral neuropathy. Cancer Invest., 2003, 21(3), 439-451.
[http://dx.doi.org/10.1081/CNV-120018236] [PMID: 12901290]
[168]
Ansell, S.M. Brentuximab vedotin. Blood, 2014, 124(22), 3197-3200.
[http://dx.doi.org/10.1182/blood-2014-06-537514] [PMID: 25293772]
[169]
Connors, J.M.; Jurczak, W.; Straus, D.J.; Ansell, S.M.; Kim, W.S.; Gallamini, A.; Younes, A.; Alekseev, S.; Illés, Á.; Picardi, M.; Lech-Maranda, E.; Oki, Y.; Feldman, T.; Smolewski, P.; Savage, K.J.; Bartlett, N.L.; Walewski, J.; Chen, R.; Ramchandren, R.; Zinzani, P.L.; Cunningham, D.; Rosta, A.; Josephson, N.C.; Song, E.; Sachs, J.; Liu, R.; Jolin, H.A.; Huebner, D.; Radford, J. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med., 2018, 378(4), 331-344.
[http://dx.doi.org/10.1056/NEJMoa1708984] [PMID: 29224502]
[170]
Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; Rossi, G.; Kim, W.S.; Feldman, T.; Lennard, A.; Belada, D.; Illés, Á.; Tobinai, K.; Tsukasaki, K.; Yeh, S.P.; Shustov, A.; Hüttmann, A.; Savage, K.J.; Yuen, S.; Iyer, S.; Zinzani, P.L.; Hua, Z.; Little, M.; Rao, S.; Woolery, J.; Manley, T.; Trümper, L. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet, 2019, 393(10168), 229-240.
[http://dx.doi.org/10.1016/S0140-6736(18)32984-2] [PMID: 30522922]
[171]
Deng, C.; Pan, B.; O’Connor, O.A. Brentuximab vedotin. Clin. Cancer Res., 2013, 19(1), 22-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0290] [PMID: 23155186]
[172]
Smith, C.A.; Gruss, H-J.; Davis, T.; Anderson, D.; Farrah, T.; Baker, E.; Sutherland, G.R.; Brannan, C.I.; Copeland, N.G.; Jenkins, N.A. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell, 1993, 73(7), 1349-1360.
[http://dx.doi.org/10.1016/0092-8674(93)90361-S] [PMID: 8391931]
[173]
Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood, 2012, 119(3), 651-665.
[http://dx.doi.org/10.1182/blood-2011-04-325225] [PMID: 22053109]
[174]
Sutherland, M.S.K.; Sanderson, R.J.; Gordon, K.A.; Andreyka, J.; Cerveny, C.G.; Yu, C.; Lewis, T.S.; Meyer, D.L.; Zabinski, R.F.; Doronina, S.O.; Senter, P.D.; Law, C.L.; Wahl, A.F. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem., 2006, 281(15), 10540-10547.
[http://dx.doi.org/10.1074/jbc.M510026200] [PMID: 16484228]
[175]
Okeley, N.M.; Miyamoto, J.B.; Zhang, X.; Sanderson, R.J.; Benjamin, D.R.; Sievers, E.L.; Senter, P.D.; Alley, S.C. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin. Cancer Res., 2010, 16(3), 888-897.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2069] [PMID: 20086002]
[176]
Fromm, J.R.; McEarchern, J.A.; Kennedy, D.; Thomas, A.; Shustov, A.R.; Gopal, A.K. Clinical binding properties, internalization kinetics, and clinicopathologic activity of brentuximab vedotin: an antibody-drug conjugate for CD30-positive lymphoid neoplasms. Clin. Lymphoma Myeloma Leuk., 2012, 12(4), 280-283.
[http://dx.doi.org/10.1016/j.clml.2012.01.012] [PMID: 22542449]
[177]
Mariotto, S.; Tecchio, C.; Sorio, M.; Bertolasi, L.; Turatti, M.; Tozzi, M.C.; Benedetti, F.; Cavaletti, G.; Monaco, S.; Ferrari, S. Clinical and neurophysiological serial assessments of brentuximab vedotin-associated peripheral neuropathy. Leuk. Lymphoma, 2019, 60(11), 2806-2809.
[http://dx.doi.org/10.1080/10428194.2019.1605068] [PMID: 31057013]
[178]
Corbin, Z.A.; Nguyen-Lin, A.; Li, S.; Rahbar, Z.; Tavallaee, M.; Vogel, H.; Salva, K.A.; Wood, G.S.; Kim, Y.H.; Nagpal, S. Characterization of the peripheral neuropathy associated with brentuximab vedotin treatment of Mycosis Fungoides and Sézary Syndrome. J. Neurooncol., 2017, 132(3), 439-446.
[http://dx.doi.org/10.1007/s11060-017-2389-9] [PMID: 28271282]
[179]
Suri, A.; Mould, D.R.; Song, G.; Collins, G.P.; Endres, C.J.; Gomez-Navarro, J.; Venkatakrishnan, K. Population Pharmacokinetic Modeling and Exposure-Response Assessment for the Antibody-Drug Conjugate Brentuximab Vedotin in Hodgkin’s Lymphoma in the Phase III ECHELON-1 Study. Clin. Pharmacol. Ther., 2019, 106(6), 1268-1279.
[http://dx.doi.org/10.1002/cpt.1530] [PMID: 31152605]
[180]
Mariotto, S; Ferrari, S; Sorio, M; Benedetti, F; Tridente, G; Cavallaro, T Brentuximab vedotin: axonal microtubule’s Apollyon. Blood cancer journal, 2015, 5(8), e343.
[http://dx.doi.org/10.1038/bcj.2015.72]
[181]
McGeary, R.P.; Bennett, A.J.; Tran, Q.B.; Cosgrove, K.L.; Ross, B.P. Suramin: clinical uses and structure-activity relationships. Mini Rev. Med. Chem., 2008, 8(13), 1384-1394.
[http://dx.doi.org/10.2174/138955708786369573] [PMID: 18991754]
[182]
De Clercq, E. Suramin: a potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett., 1979, 8(1), 9-22.
[http://dx.doi.org/10.1016/0304-3835(79)90017-X] [PMID: 92362]
[183]
Broder, S.; Yarchoan, R.; Collins, J.M.; Lane, H.C.; Markham, P.D.; Klecker, R.W.; Redfield, R.R.; Mitsuya, H.; Hoth, D.F.; Gelmann, E. Effects of suramin on HTLV-III/LAV infection presenting as Kaposi’s sarcoma or AIDS-related complex: clinical pharmacology and suppression of virus replication in vivo. Lancet, 1985, 2(8456), 627-630.
[http://dx.doi.org/10.1016/S0140-6736(85)90002-9] [PMID: 2863631]
[184]
Eisenberger, M.A.; Reyno, L.M.; Jodrell, D.I.; Sinibaldi, V.J.; Tkaczuk, K.H.; Sridhara, R.; Zuhowski, E.G.; Lowitt, M.H.; Jacobs, S.C.; Egorin, M.J. Suramin, an active drug for prostate cancer: interim observations in a phase I trial. J. Natl. Cancer Inst., 1993, 85(8), 611-621.
[http://dx.doi.org/10.1093/jnci/85.8.611] [PMID: 8468719]
[185]
Myers, C.; Cooper, M.; Stein, C.; LaRocca, R.; Walther, M.M.; Weiss, G.; Choyke, P.; Dawson, N.; Steinberg, S.; Uhrich, M.M. Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer. J. Clin. Oncol., 1992, 10(6), 881-889.
[http://dx.doi.org/10.1200/JCO.1992.10.6.881] [PMID: 1375283]
[186]
Chaudhry, V.; Eisenberger, M.A.; Sinibaldi, V.J.; Sheikh, K.; Griffin, J.W.; Cornblath, D.R. A prospective study of suramin-induced peripheral neuropathy. Brain, 1996, 119(Pt 6), 2039-2052.
[http://dx.doi.org/10.1093/brain/119.6.2039] [PMID: 9010008]
[187]
Russell, J.W.; Gill, J.S.; Sorenson, E.J.; Schultz, D.A.; Windebank, A.J. Suramin-induced neuropathy in an animal model. J. Neurol. Sci., 2001, 192(1-2), 71-80.
[http://dx.doi.org/10.1016/S0022-510X(01)00633-5] [PMID: 11701155]
[188]
Constantopoulos, G.; Rees, S.; Cragg, B.G.; Barranger, J.A.; Brady, R.O. Effect of suramin on the activities of degradative enzymes of sphingolipids in rats. Res. Commun. Chem. Pathol. Pharmacol., 1981, 32(1), 87-97.
[PMID: 7291729]
[189]
Quasthoff, S.; Hartung, H.P. Chemotherapy-induced peripheral neuropathy. J. Neurol., 2002, 249(1), 9-17.
[http://dx.doi.org/10.1007/PL00007853] [PMID: 11954874]
[190]
Voogd, T.E.; Vansterkenburg, E.L.; Wilting, J.; Janssen, L.H. Recent research on the biological activity of suramin. Pharmacol. Rev., 1993, 45(2), 177-203.
[PMID: 8396782]
[191]
Peltier, A.C.; Russell, J.W. Recent advances in drug-induced neuropathies. Curr. Opin. Neurol., 2002, 15(5), 633-638.
[http://dx.doi.org/10.1097/00019052-200210000-00015] [PMID: 12352008]
[192]
Gill, J.S.; Windebank, A.J. Suramin induced ceramide accumulation leads to apoptotic cell death in dorsal root ganglion neurons. Cell Death Differ., 1998, 5(10), 876-883.
[http://dx.doi.org/10.1038/sj.cdd.4400410] [PMID: 10203686]
[193]
Gill, J.S.; Hobday, K.L.; Windebank, A.J. Mechanism of suramin toxicity in stable myelinating dorsal root ganglion cultures. Exp. Neurol., 1995, 133(2), 113-124.
[http://dx.doi.org/10.1006/exnr.1995.1014] [PMID: 7649218]
[194]
Mayer, C.; Quasthoff, S.; Grafe, P. Differences in the sensitivity to purinergic stimulation of myelinating and non-myelinating Schwann cells in peripheral human and rat nerve. Glia, 1998, 23(4), 374-382.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199808)23:4<374::AID-GLIA9>3.0.CO;2-2] [PMID: 9671967]
[195]
von der Ahe, D.; Huehnchen, P.; Balkaya, M.; Peruzzaro, S.; Endres, M.; Boehmerle, W. Suramin-Induced Neurotoxicity: Preclinical Models and Neuroprotective Strategies. Molecules, 2018, 23(2), E346.
[http://dx.doi.org/10.3390/molecules23020346] [PMID: 29414872]
[196]
Martin, K.; Bentaberry, F.; Dumoulin, C.; Miremont-Salamé, G.; Haramburu, F.; Dehais, J.; Schaeverbeke, T. Peripheral neuropathy associated with leflunomide: is there a risk patient profile? Pharmacoepidemiol. Drug Saf., 2007, 16(1), 74-78.
[http://dx.doi.org/10.1002/pds.1282] [PMID: 16845649]
[197]
Kho, L.K.; Kermode, A.G. Leflunomide-induced peripheral neuropathy. J. Clin. Neurosci., 2007, 14(2), 179-181.
[http://dx.doi.org/10.1016/j.jocn.2005.08.021] [PMID: 17107800]
[198]
Richards, B.L.; Spies, J.; McGill, N.; Richards, G.W.; Vaile, J.; Bleasel, J.F.; Youssef, P.P. Effect of leflunomide on the peripheral nerves in rheumatoid arthritis. Intern. Med. J., 2007, 37(2), 101-107.
[http://dx.doi.org/10.1111/j.1445-5994.2007.01266.x] [PMID: 17229252]
[199]
Breedveld, F.C.; Dayer, J.M. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis., 2000, 59(11), 841-849.
[http://dx.doi.org/10.1136/ard.59.11.841] [PMID: 11053058]
[200]
Weaver, A.; Caldwell, J.; Olsen, N.; Cohen, S.; Strand, V. Treatment of active rheumatoid arthritis with leflunomide compared to placebo or methotrexate. Arthritis Rheum., 1998, 41(9)
[201]
Mladenovic, V.; Domljan, Z.; Rozman, B.; Jajic, I.; Mihajlovic, D.; Dordevic, J. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Arthritis & Rheumatism. Official Journal of the American College of Rheumatology., 1995, 38(11), 1595-1603.
[PMID: 7488280]
[202]
Weber, W; Harnisch, L Leflunomide in rheumatoid arthritis: population pharmacokinetic analysis of phase III studies. Rheumatol Eur1998, 1998.
[203]
Cohen, S.; Cannon, G.W.; Schiff, M.; Weaver, A.; Fox, R.; Olsen, N.; Furst, D.; Sharp, J.; Moreland, L.; Caldwell, J.; Kaine, J.; Strand, V. Two-year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Arthritis Rheum., 2001, 44(9), 1984-1992.
[http://dx.doi.org/10.1002/1529-0131(200109)44:9<1984::AID-ART346>3.0.CO;2-B] [PMID: 11592358]
[204]
Rozman, B. Clinical pharmacokinetics of leflunomide. Clin. Pharmacokinet., 2002, 41(6), 421-430.
[http://dx.doi.org/10.2165/00003088-200241060-00003] [PMID: 12074690]
[205]
Bonnel, R.A.; Graham, D.J. Peripheral neuropathy in patients treated with leflunomide. Clin. Pharmacol. Ther., 2004, 75(6), 580-585.
[http://dx.doi.org/10.1016/j.clpt.2004.01.016] [PMID: 15179412]
[206]
Martin, K.; Bentaberry, F.; Dumoulin, C.; Longy-Boursier, M.; Lifermann, F.; Haramburu, F.; Dehais, J.; Schaeverbeke, T.; Bégaud, B.; Moore, N. Neuropathy associated with leflunomide: a case series. Ann. Rheum. Dis., 2005, 64(4), 649-650.
[http://dx.doi.org/10.1136/ard.2004.027193] [PMID: 15769926]
[207]
Carulli, M.T.; Davies, U.M. Peripheral neuropathy: an unwanted effect of leflunomide? Rheumatology (Oxford), 2002, 41(8), 952-953.
[http://dx.doi.org/10.1093/rheumatology/41.8.952] [PMID: 12154221]
[208]
Fleming, A.; Dodman, S.; Crown, J.M.; Corbett, M. Extra-articular features in early rheumatoid disease. BMJ, 1976, 1(6020), 1241-1243.
[http://dx.doi.org/10.1136/bmj.1.6020.1241] [PMID: 1083759]
[209]
Weller, R.O.; Bruckner, F.E.; Chamberlain, M.A. Rheumatoid neuropathy: a histological and electrophysiological study. J. Neurol. Neurosurg. Psychiatry, 1970, 33(5), 592-604.
[http://dx.doi.org/10.1136/jnnp.33.5.592] [PMID: 4320255]
[210]
Schlumpf, U.; Meyer, M.; Ulrich, J.; Friede, R.L. Neurologic complications induced by gold treatment. Arthritis Rheum., 1983, 26(7), 825-831.
[http://dx.doi.org/10.1002/art.1780260702] [PMID: 6409125]
[211]
Lescher, F.G. Nervous complications following treatment by gold salts. BMJ, 1936, 2(3964), 1303-1305.
[http://dx.doi.org/10.1136/bmj.2.3964.1303] [PMID: 20780372]
[212]
Sundelin, FF Die Goldbehandlung der chronischen Arthritis unter besonderer Berücksichtigung der Komplikationen: aus" Nynäs Kuranstalt", Krankenhaus d. schwed. kgl. Pensionsdirektion f. Nerven-u. Rheumakranke, u. aus d. Staatl. Inst. f. menschl. Erblichkeitsforschg u. Rassenbiologie zu Uppsala: Acta Medica Skandinavica 1941.
[213]
Chang, R.J.; Persellin, R.H. Gold thiomalate-induced weight gain in guinea pigs. Proc. Soc. Exp. Biol. Med., 1968, 129(2), 568-571.
[http://dx.doi.org/10.3181/00379727-129-33372] [PMID: 5696784]
[214]
Endtz, L.J. Complications nerveuses du traitement aurique; aperçu des symptomes neurologiques et psychiatriques; résultats du traitement par le B.A.L. Rev. Neurol. (Paris), 1958, 99(3), 395-410.
[PMID: 13624417]
[215]
Meyer, M.; Haecki, M.; Ziegler, W.; Forster, W.; Schiller, H. Autonomic dysfunction and myokymia in gold neuropathy. Peripheral Neuropathies; Elsevier, 1978, pp. 475-480.
[216]
Walsh, J.C. Gold neuropathy. Neurology, 1970, 20(5), 455-458.
[http://dx.doi.org/10.1212/WNL.20.5.455] [PMID: 4314824]
[217]
Tegnér, R.; Tomé, F.M.; Godeau, P.; Lhermitte, F.; Fardeau, M. Morphological study of peripheral nerve changes induced by chloroquine treatment. Acta Neuropathol., 1988, 75(3), 253-260.
[http://dx.doi.org/10.1007/BF00690533] [PMID: 2831692]
[218]
Sghirlanzoni, A.; Mantegazza, R.; Mora, M.; Pareyson, D.; Cornelio, F. Chloroquine myopathy and myasthenia-like syndrome. Muscle Nerve, 1988, 11(2), 114-119.
[http://dx.doi.org/10.1002/mus.880110205] [PMID: 3343986]
[219]
Garcin, R.; Rondot, P.; Fardeau, M. Sur les accidents neuromusculaires et en particulier sur une “myopathie vacuolaire” observés au cours d’un traitement prolongé par la chloroquine. Rev. Neurol. (Paris), 1964, 111, 177-195.
[220]
Bonard, E.C. Neuropathy caused by chloroquine. Schweiz. Med. Wochenschr., 1966, 96(34), 1103-1105.
[PMID: 5985860]
[221]
Lhermitte, F.; Marteau, R.; Chedru, F.; Mallecourt, J.; Estrade, G.; Godet-Guillain, J.; Chevallay, M. Chloroquine neuromyopathy. One case in prophylactic maleriatherapy (author’s transl). Nouv. Presse Med., 1977, 6(35), 3205-3207.
[PMID: 200890]
[222]
Victor, M. Myopathies due to drugs, toxins, and nutritional deficiency. Myology., 1994, 2, 1697-1725.
[223]
Chloroquine neuromyopathy. Whisnant, J.; Espinosa, R.; Kierland, R.; Lambert, E., Eds.; Proceedings of the staff meetings Mayo Clinic, 1963.
[224]
Mastaglia, F.L.; Papadimitriou, J.M.; Dawkins, R.L.; Beveridge, B. Vacuolar myopathy associated with chloroquine, lupus erythematosus and thymoma. Report of a case with unusual mitochondrial changes and lipid accumulation in muscle. J. Neurol. Sci., 1977, 34(3), 315-328.
[http://dx.doi.org/10.1016/0022-510X(77)90149-6] [PMID: 591993]
[225]
Neville, H.E.; Maunder-Sewry, C.A.; McDougall, J.; Sewell, J.R.; Dubowitz, V. Chloroquine-induced cytosomes with curvilinear profiles in muscle. Muscle Nerve, 1979, 2(5), 376-381.
[http://dx.doi.org/10.1002/mus.880020509] [PMID: 492214]
[226]
Gérard, J-M.; Stoupel, N.; Collier, A.; Flament-Durand, J. Morphologic study of a neuromyopathy caused by prolonged chloroquine treatment. Eur. Neurol., 1973, 9(6), 363-379.
[http://dx.doi.org/10.1159/000114244] [PMID: 4712543]
[227]
Léger, J.M.; Puifoulloux, H.; Dancea, S.; Hauw, J.J.; Bouche, P.; Rougemont, D.; Laplane, D. Chloroquine neuromyopathies: 4 cases during antimalarial prevention. Rev. Neurol. (Paris), 1986, 142(10), 746-752.
[PMID: 3029852]
[228]
Bregman, C.L.; Buroker, R.A.; Hirth, R.S.; Crosswell, A.R.; Durham, S.K. Etoposide- and BMY-40481-induced sensory neuropathy in mice. Toxicol. Pathol., 1994, 22(5), 528-535.
[http://dx.doi.org/10.1177/019262339402200508] [PMID: 7899782]
[229]
Grisold, W; Cavaletti, G; Windebank, AJ Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-oncology, 2012, 14(suppl_4), iv45-iv54.
[http://dx.doi.org/10.1093/neuonc/nos203]
[230]
Semiglazov, VF; Semiglazov, VV; Dashyan, GA; Ziltsova, EK; Ivanov, VG; Bozhok, AA Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor‐positive breast cancer. cancer, 2007, 110(2), 244-254.
[231]
Nishihori, T.; Choi, J.; DiGiovanna, M.P.; Thomson, J.G.; Kohler, P.C.; McGurn, J.; Chung, G.G. Carpal tunnel syndrome associated with the use of aromatase inhibitors in breast cancer. Clin. Breast Cancer, 2008, 8(4), 362-365.
[http://dx.doi.org/10.3816/CBC.2008.n.043] [PMID: 18757265]
[232]
Shoults, K. Case report: neurological complications of nitrous oxide abuse. BCMJ, 2016, 58, 192-194.
[233]
Safari, A.; Emadi, F.; Jamali, E.; Borhani-Haghighi, A. Clinical and MRI manifestations of nitrous oxide induced vitamin B12 deficiency: A case report. Iran. J. Neurol., 2013, 12(3), 111-113.
[PMID: 24250916]
[234]
Moddel, G.; Bilbao, J.M.; Payne, D.; Ashby, P. Disulfiram neuropathy. Arch. Neurol., 1978, 35(10), 658-660.
[http://dx.doi.org/10.1001/archneur.1978.00500340034006] [PMID: 211996]
[235]
Tran, A.T.; Rison, R.A.; Beydoun, S.R. Disulfiram neuropathy: two case reports. J. Med. Case Reports, 2016, 10(1), 72.
[http://dx.doi.org/10.1186/s13256-016-0865-z] [PMID: 27029711]
[236]
Kuncl, R.W.; Duncan, G.; Watson, D.; Alderson, K.; Rogawski, M.A.; Peper, M. Colchicine myopathy and neuropathy. N. Engl. J. Med., 1987, 316(25), 1562-1568.
[http://dx.doi.org/10.1056/NEJM198706183162502] [PMID: 3035372]
[237]
Shrestha, S.; Chaudhary, S.; Giri, H.; Marahatta, S. Dapsone-induced optic atrophy: a rare case report. Lepr. Rev., 2020, 91, 291-294.
[http://dx.doi.org/10.47276/lr.91.3.291]
[238]
Choi, S.S.; Chan, K.F.; Ng, H.K.; Mak, W.P. Colchicine-induced myopathy and neuropathy. Hong Kong Med. J., 1999, 5(2), 204-207.
[PMID: 11821595]
[239]
Wong, Sh.; Silva, F.; Acheson, J.; Plant, G. An old friend revisited: chloramphenicol optic neuropathy. JRSM Short Rep., 2013, 4(3), 20.
[http://dx.doi.org/10.1177/2042533313476692] [PMID: 23560219]
[240]
Chalioulias, K.; Mayer, E.; Darvay, A.; Antcliff, R. Anterior ischaemic optic neuropathy associated with Dapsone. Eye (Lond.), 2006, 20(8), 943-945.
[http://dx.doi.org/10.1038/sj.eye.6702050] [PMID: 16215545]
[241]
McCarty, M. How clinically relevant is dapsone-related peripheral neuropathy?: an overview of available data with emphasis on clinical recognition. J. Clin. Aesthet. Dermatol., 2010, 3(3), 19-21.
[PMID: 20725539]
[242]
Fang, J.T.; Chen, Y.C.; Chang, M.Y. Ethambutol-induced optic neuritis in patients with end stage renal disease on hemodialysis: two case reports and literature review. Ren. Fail., 2004, 26(2), 189-193.
[http://dx.doi.org/10.1081/JDI-120038521] [PMID: 15287205]
[243]
Tugwell, P.; James, S.L. Peripheral neuropathy with ethambutol. Postgrad. Med. J., 1972, 48(565), 667-670.
[http://dx.doi.org/10.1136/pgmj.48.565.667] [PMID: 4346665]
[244]
Si, M.; Li, H.; Chen, Y.; Peng, H. Ethambutol and isoniazid induced severe neurotoxicity in a patient undergoing continuous ambulatory peritoneal dialysis. BMJ Case Rep., 2018, 2018, bcr-2017-bcr-223187.
[http://dx.doi.org/10.1136/bcr-2017-223187] [PMID: 29776936]
[245]
Cohen, J.S. Peripheral neuropathy associated with fluoroquinolones. Ann. Pharmacother., 2001, 35(12), 1540-1547.
[http://dx.doi.org/10.1345/aph.1Z429] [PMID: 11793615]
[246]
Popescu, C. Severe acute axonal neuropathy induced by ciprofloxacin: a case report. Case Rep. Neurol., 2018, 10(2), 124-129.
[http://dx.doi.org/10.1159/000489303] [PMID: 29928218]
[247]
Tan, I.L.; Polydefkis, M.J.; Ebenezer, G.J.; Hauer, P.; McArthur, J.C. Peripheral nerve toxic effects of nitrofurantoin. Arch. Neurol., 2012, 69(2), 265-268.
[http://dx.doi.org/10.1001/archneurol.2011.1120] [PMID: 22332195]
[248]
Toole, J.F.; Parrish, M.L. Nitrofurantoin polyneuropathy. Neurology, 1973, 23(5), 554-559.
[http://dx.doi.org/10.1212/WNL.23.5.554] [PMID: 4349239]
[249]
Cação, G.; Fontes, S.; Salgado, M.; Rodrigues, T.; Damásio, J. Metronidazole-induced central and peripheral nervous system toxicity. Neurol. Sci., 2015, 36(9), 1737-1739.
[http://dx.doi.org/10.1007/s10072-015-2260-8] [PMID: 25990105]
[250]
Sharma, P.; Sharma, R. Toxic optic neuropathy. Indian J. Ophthalmol., 2011, 59(2), 137-141.
[http://dx.doi.org/10.4103/0301-4738.77035] [PMID: 21350283]
[251]
Zaworski, J.; Delannoy, P-Y.; Boussekey, N.; Thellier, D.; Georges, H.; Leroy, O. Lithium: one drug, five complications. J. Intensive Care, 2017, 5(1), 70.
[http://dx.doi.org/10.1186/s40560-017-0257-5] [PMID: 29276608]
[252]
Shorvon, S.D.; Reynolds, E.H. Anticonvulsant peripheral neuropathy: a clinical and electrophysiological study of patients on single drug treatment with phenytoin, carbamazepine or barbiturates. J. Neurol. Neurosurg. Psychiatry, 1982, 45(7), 620-626.
[http://dx.doi.org/10.1136/jnnp.45.7.620] [PMID: 6288881]
[253]
Kirkendall, W.M.; Page, E.B. Polyneuritis occurring during hydralazine therapy; report of two cases and discussion of adverse reactions to hydralazine. J. Am. Med. Assoc., 1958, 167(4), 427-432.
[http://dx.doi.org/10.1001/jama.1958.02990210013003] [PMID: 13538717]
[254]
Tsujimoto, G.; Horai, Y.; Ishizaki, T.; Itoh, K. Hydralazine-induced peripheral neuropathy seen in a Japanese slow acetylator patient. Br. J. Clin. Pharmacol., 1981, 11(6), 622-625.
[http://dx.doi.org/10.1111/j.1365-2125.1981.tb01181.x] [PMID: 6268134]
[255]
Bhalla, S.; Singh, N.; Jaggi, A.S. Statins: do they aggravate or ameliorate neuropathic pain? J. Pain, 2014, 15(11), 1069-1080.
[http://dx.doi.org/10.1016/j.jpain.2014.06.012] [PMID: 25086324]
[256]
Emad, M.; Arjmand, H.; Farpour, H.R.; Kardeh, B. Lipid-lowering drugs (statins) and peripheral neuropathy. Electron. Physician, 2018, 10(3), 6527-6533.
[http://dx.doi.org/10.19082/6527] [PMID: 29765578]
[257]
Erdem, S.; Freimer, M.L.; O’Dorisio, T.; Mendell, J.R. Procainamide-induced chronic inflammatory demyelinating polyradiculoneuropathy. Neurology, 1998, 50(3), 824-825.
[http://dx.doi.org/10.1212/WNL.50.3.824] [PMID: 9521292]
[258]
Hooijmans, C.R.; Draper, D.; Ergün, M.; Scheffer, G.J. The effect of analgesics on stimulus evoked pain-like behaviour in animal models for chemotherapy induced peripheral neuropathy- a meta-analysis. Sci. Rep., 2019, 9(1), 17549.
[http://dx.doi.org/10.1038/s41598-019-54152-8] [PMID: 31772391]
[259]
Matthews, E.A.; Dickenson, A.H. A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology, 2002, 96(3), 633-640.
[http://dx.doi.org/10.1097/00000542-200203000-00020] [PMID: 11873039]
[260]
Moulin, D.E.; Palma, D.; Watling, C.; Schulz, V. Methadone in the management of intractable neuropathic noncancer pain. Can. J. Neurol. Sci., 2005, 32(3), 340-343.
[http://dx.doi.org/10.1017/S0317167100004236] [PMID: 16225176]
[261]
Mannino, R.; Coyne, P.; Swainey, C.; Hansen, L.A.; Lyckholm, L. Methadone for cancer-related neuropathic pain: a review of the literature. J. Opioid. Manag., 2006, 2(5), 269-276.
[http://dx.doi.org/10.5055/jom.2006.0040] [PMID: 17319258]
[262]
Rahn, E.J.; Hohmann, A.G. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics, 2009, 6(4), 713-737.
[http://dx.doi.org/10.1016/j.nurt.2009.08.002] [PMID: 19789075]
[263]
Fornasari, D. Pharmacotherapy for neuropathic pain: a review. Pain Ther., 2017, 6(1)(Suppl. 1), 25-33.
[http://dx.doi.org/10.1007/s40122-017-0091-4] [PMID: 29178034]
[264]
Sindrup, S.H.; Otto, M.; Finnerup, N.B.; Jensen, T.S. Antidepressants in the treatment of neuropathic pain. Basic Clin. Pharmacol. Toxicol., 2005, 96(6), 399-409.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_96696601.x] [PMID: 15910402]
[265]
Dharmshaktu, P.; Tayal, V.; Kalra, B.S. Efficacy of antidepressants as analgesics: a review. J. Clin. Pharmacol., 2012, 52(1), 6-17.
[http://dx.doi.org/10.1177/0091270010394852] [PMID: 21415285]
[266]
Lee, Y-C.; Chen, P-P. A review of SSRIs and SNRIs in neuropathic pain. Expert Opin. Pharmacother., 2010, 11(17), 2813-2825.
[http://dx.doi.org/10.1517/14656566.2010.507192] [PMID: 20642317]
[267]
Taylor, C.P.; Angelotti, T.; Fauman, E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res., 2007, 73(2), 137-150.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.09.008] [PMID: 17126531]
[268]
Hincker, A.; Frey, K.; Rao, L.; Wagner-Johnston, N.; Ben Abdallah, A.; Tan, B.; Amin, M.; Wildes, T.; Shah, R.; Karlsson, P.; Bakos, K.; Kosicka, K.; Kagan, L.; Haroutounian, S. Somatosensory predictors of response to pregabalin in painful chemotherapy-induced peripheral neuropathy: a randomized, placebo-controlled, crossover study. Pain, 2019, 160(8), 1835-1846.
[http://dx.doi.org/10.1097/j.pain.0000000000001577] [PMID: 31335651]
[269]
Visovsky, C.; Collins, M.; Abbott, L.; Aschenbrenner, J.; Hart, C. Putting evidence into practice: evidence-based interventions for chemotherapy-induced peripheral neuropathy. Clin. J. Oncol. Nurs., 2007, 11(6), 901-913.
[http://dx.doi.org/10.1188/07.CJON.901-913] [PMID: 18063548]
[270]
Limb Hypothermia for the Prevention of Chemotherapy-Induced Peripheral Neuropathy-Modality for Optimal Cooling. Bandla, A.; Santhanakrishnan, P.; Magarajah, G.; Vaidya, G.A.; Subramanian, A.; Wei, H., Eds.; 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE2020.
[271]
van den Hurk, C.J.; Peerbooms, M.; van de Poll-Franse, L.V.; Nortier, J.W.; Coebergh, J.W.W.; Breed, W.P. Scalp cooling for hair preservation and associated characteristics in 1411 chemotherapy patients - results of the Dutch Scalp Cooling Registry. Acta Oncol., 2012, 51(4), 497-504.
[http://dx.doi.org/10.3109/0284186X.2012.658966] [PMID: 22304489]
[272]
Kennet, J.; Hardaker, N.; Hobbs, S.; Selfe, J. Cooling efficiency of 4 common cryotherapeutic agents. J. Athl. Train., 2007, 42(3), 343-348.
[PMID: 18059988]
[273]
Kanlayanaphotporn, R.; Janwantanakul, P. Comparison of skin surface temperature during the application of various cryotherapy modalities. Arch. Phys. Med. Rehabil., 2005, 86(7), 1411-1415.
[http://dx.doi.org/10.1016/j.apmr.2004.11.034] [PMID: 16003673]
[274]
Hanai, A.; Ishiguro, H.; Sozu, T.; Tsuda, M.; Yano, I.; Nakagawa, T.; Imai, S.; Hamabe, Y.; Toi, M.; Arai, H.; Tsuboyama, T. Effects of cryotherapy on objective and subjective symptoms of paclitaxel-induced neuropathy: prospective self-controlled trial. JNCI. J. Natl. Cancer Inst., 2018, 110(2), 141-148.
[http://dx.doi.org/10.1093/jnci/djx178] [PMID: 29924336]
[275]
Eckhoff, L.; Knoop, A.S.; Jensen, M-B.; Ejlertsen, B.; Ewertz, M. Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res. Treat., 2013, 142(1), 109-118.
[http://dx.doi.org/10.1007/s10549-013-2728-2] [PMID: 24132874]
[276]
Scotté, F.; Banu, E.; Medioni, J.; Levy, E.; Ebenezer, C.; Marsan, S.; Banu, A.; Tourani, J.M.; Andrieu, J.M.; Oudard, S. Matched case-control phase 2 study to evaluate the use of a frozen sock to prevent docetaxel-induced onycholysis and cutaneous toxicity of the foot. Cancer, 2008, 112(7), 1625-1631.
[http://dx.doi.org/10.1002/cncr.23333] [PMID: 18286527]
[277]
Kanbayashi, Y.; Sakaguchi, K.; Ishikawa, T.; Ouchi, Y.; Nakatsukasa, K.; Tabuchi, Y.; Kanehisa, F.; Hiramatsu, M.; Takagi, R.; Yokota, I.; Katoh, N.; Taguchi, T. Comparison of the efficacy of cryotherapy and compression therapy for preventing nanoparticle albumin-bound paclitaxel-induced peripheral neuropathy: A prospective self-controlled trial. Breast, 2020, 49, 219-224.
[http://dx.doi.org/10.1016/j.breast.2019.12.011] [PMID: 31901783]
[278]
Barber, F.A.; McGuire, D.A.; Click, S. Continuous-flow cold therapy for outpatient anterior cruciate ligament reconstruction. Arthroscopy, 1998, 14(2), 130-135.
[http://dx.doi.org/10.1016/S0749-8063(98)70030-1] [PMID: 9531122]
[279]
Murgier, J.; Cassard, X. Cryotherapy with dynamic intermittent compression for analgesia after anterior cruciate ligament reconstruction. Preliminary study. Orthop. Traumatol. Surg. Res., 2014, 100(3), 309-312.
[http://dx.doi.org/10.1016/j.otsr.2013.12.019] [PMID: 24679367]
[280]
Sundar, R.; Bandla, A.; Tan, S.S.H.; Liao, L-D.; Kumarakulasinghe, N.B.; Jeyasekharan, A.D.; Ow, S.G.; Ho, J.; Tan, D.S.; Lim, J.S.; Vijayan, J.; Therimadasamy, A.K.; Hairom, Z.; Ang, E.; Ang, S.; Thakor, N.V.; Lee, S.C.; Wilder-Smith, E.P. Limb hypothermia for preventing paclitaxel-induced peripheral neuropathy in breast cancer patients: a pilot study. Front. Oncol., 2017, 6, 274.
[http://dx.doi.org/10.3389/fonc.2016.00274] [PMID: 28119855]
[281]
Oneda, E.; Meriggi, F.; Zanotti, L.; Zaina, E.; Bighè, S.; Andreis, F.; Rueda, S.; Zaniboni, A. Innovative Approach for the Prevention of Chemotherapy-Induced Peripheral Neuropathy in Cancer Patients: A Pilot Study With the Hilotherm Device, the Poliambulanza Hospital Experience. Integr. Cancer Ther., 2020, 19, 1534735420943287.
[http://dx.doi.org/10.1177/1534735420943287] [PMID: 32856475]
[282]
Argyriou, A.A.; Bruna, J.; Park, S.B.; Cavaletti, G. Emerging pharmacological strategies for the management of chemotherapy-induced peripheral neurotoxicity (CIPN), based on novel CIPN mechanisms. Expert Rev. Neurother., 2020, 20(10), 1005-1016.
[http://dx.doi.org/10.1080/14737175.2020.1796639] [PMID: 32667212]
[283]
Chen, M. Interactions between multi-kinase inhibitors and solute carrier transporters; The Ohio State University, 2020.
[284]
Karlsson, J.O.G.; Ignarro, L.J.; Lundström, I.; Jynge, P.; Almén, T. Calmangafodipir [Ca4Mn(DPDP)5], mangafodipir (MnDPDP) and MnPLED with special reference to their SOD mimetic and therapeutic properties. Drug Discov. Today, 2015, 20(4), 411-421.
[http://dx.doi.org/10.1016/j.drudis.2014.11.008] [PMID: 25463039]
[285]
Morrison, E.E.; Oatey, K.; Gallagher, B.; Grahamslaw, J.; O’Brien, R.; Black, P.; Oosthuyzen, W.; Lee, R.J.; Weir, C.J.; Henriksen, D.; Dear, J.W. Principal results of a randomised open label exploratory, safety and tolerability study with calmangafodipir in patients treated with a 12 h regimen of N-acetylcysteine for paracetamol overdose (POP trial). EBioMedicine, 2019, 46, 423-430.
[http://dx.doi.org/10.1016/j.ebiom.2019.07.013] [PMID: 31311721]
[286]
Shinbo, T.; Kokubo, K.; Sato, Y.; Hagiri, S.; Hataishi, R.; Hirose, M.; Kobayashi, H. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(4), H542-H550.
[http://dx.doi.org/10.1152/ajpheart.00844.2012] [PMID: 23771690]
[287]
Hu, S.; Huang, K.M.; Adams, E.J.; Loprinzi, C.L.; Lustberg, M.B. Recent developments of novel pharmacologic therapeutics for prevention of chemotherapy-induced peripheral neuropathy. Clin. Cancer Res., 2019, 25(21), 6295-6301.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2152] [PMID: 31123053]
[288]
Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol., 2019, 33, 2058738419838383.
[http://dx.doi.org/10.1177/2058738419838383] [PMID: 30900486]
[289]
Kyte, S.L.; Toma, W.; Bagdas, D.; Meade, J.A.; Schurman, L.D.; Lichtman, A.H.; Chen, Z.J.; Del Fabbro, E.; Fang, X.; Bigbee, J.W.; Damaj, M.I.; Gewirtz, D.A. Nicotine prevents and reverses paclitaxel-induced mechanical allodynia in a mouse model of CIPN. J. Pharmacol. Exp. Ther., 2018, 364(1), 110-119.
[http://dx.doi.org/10.1124/jpet.117.243972] [PMID: 29042416]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy