Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nanosponge Approach -A Plethora of Opportunities as a Promising Nanocarrier for Novel Drug Delivery

Author(s): Shah Esha Bhavin* and Gajjar Anuradha

Volume 16, Issue 4, 2022

Published on: 20 July, 2021

Page: [271 - 282] Pages: 12

DOI: 10.2174/1872210515666210720141736

Price: $65

conference banner
Abstract

Background: Nanotechnology is the need of the hour! The design of nanotechnologyaided carriers as a tool for the delivery of low solubility molecules offers a potential platform to overcome the issues of current clinical treatment and achieve good targeted release and bioaccessibility.

Objective: Nanosponges (NS) encapsulate types of nanocarriers capable of carrying both lipophilic and hydrophilic substances. They are synthesized by mixing a solution of polyester, which is biodegradable, with cross-linkers. These tiny, porous structures are round-shaped, having multiple cavities wherein drugs can be housed to offer programmable release.

Methods: The detailed literature review and patent search summarize the ongoing research on NS. Substances such as poorly soluble drugs, nutraceuticals, gases, proteins and peptides, volatile oils, genetic material, etc., can be loaded on these novel carriers, which are characterized using various analytical techniques. Target-specific drug delivery and controlled drug release are the advantages offered by NS, along with a myriad of other promising applications.

Results: This review stresses the development of cyclodextrin-based NS, the synthetic methods and characterization of NS, along with factors affecting NS formation, their applications and information on the patented work in this area. NS are solid in character and can be formulated in various dosage forms, such as parenteral, topical, oral or inhalation.

Conclusion: Therefore, owing to their promising benefits over other nanocarriers in terms of drug loading, adaptability, sustainability, solubility and tailored release profile, NS is an immediate technological revolution for drug entrapment and as novel drug carriers.The authors expect that these fundamental applications of NS could help the researchers to develop and gain insight about NS in novel drug delivery applications.

Keywords: Nanosponges, cyclodextrin, nanocarrier, nanotechnology, novel, bioaccessibility.

Graphical Abstract

[1]
Kapil A, Aggarwal G, Harikumar SL. Nanotechnology in novel drug delivery system. J Drug Deliv Ther 2014; 4(5): 21-8.
[http://dx.doi.org/10.22270/jddt.v4i5.942]
[2]
Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI. Nanotechnology in drug delivery. Recent Adv Novel Drug Carrier Sys 2012; pp. 69-106.
[3]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[4]
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine 2005; 1(3): 193-212.
[http://dx.doi.org/10.1016/j.nano.2005.06.004] [PMID: 17292079]
[5]
Ravichandran R. Nanotechnology-based drug delivery systems. NanoBiotechnology 2009; 5(1-4): 17-33.
[http://dx.doi.org/10.1007/s12030-009-9028-2]
[6]
Marcato PD, Durán N. New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 2008; 8(5): 2216-29.
[http://dx.doi.org/10.1166/jnn.2008.274] [PMID: 18572633]
[7]
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov Today 2012; 17(17-18): 1044-52.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[8]
Cai Z, Wang Y, Zhu LJ, Liu ZQ. Nanocarriers: A general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab 2010; 11(2): 197-207.
[http://dx.doi.org/10.2174/138920010791110836] [PMID: 20384585]
[9]
Huang Q, Yu H, Ru Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 2010; 75(1): R50-7.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01457.x] [PMID: 20492195]
[10]
Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 2009; 14(1): 3-15.
[http://dx.doi.org/10.1016/j.cocis.2008.01.002]
[11]
Aberoumandi SM, Mohammadhosseini M, Abasi E, et al. An update on applications of nanostructured drug delivery systems in cancer therapy: A review. Artif Cells Nanomed Biotechnol 2017; 45(6): 1-11.
[http://dx.doi.org/10.1080/21691401.2016.1228658] [PMID: 27632797]
[12]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[13]
Carbone C, Cupri S, Leonardi A, Puglisi G, Pignatello R. Lipid-based nanocarriers for drug delivery and targeting: A patent survey of methods of production and characterization. Pharm Pat Anal 2013; 2(5): 665-77.
[http://dx.doi.org/10.4155/ppa.13.43] [PMID: 24237173]
[14]
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications Natural polymer drug delivery systems. 2nd ed. Cham: Springer 2016; pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[15]
Vadlapudi AD, Mitra AK. Nanomicelles: An emerging platform for drug delivery to the eye. Ther Deliv 2013; 4(1): 1-3.
[http://dx.doi.org/10.4155/tde.12.122] [PMID: 23323774]
[16]
Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond) 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[17]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[18]
Dewan N, Dasgupta D, Pandit S, Ahmed P. Review on-herbosomes, a new arena for drug delivery. J Pharmacogn Phytochem 2016; 5(4): 104-8.
[19]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[20]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[21]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[22]
Singh A, Garg G, Sharma PK. Nanospheres: A novel approach for targeted drug delivery system. Int J Pharm Sci Rev Res 2010; 5(3): 84-8.
[23]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102-9.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[24]
Gursoy RN, Benita S. Self-Emulsifying Drug Delivery Systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004; 58(3): 173-82.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[25]
Jawahar N, Meyyanathan SN. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Health Allied Sci 2012; 1(4): 217-23.
[http://dx.doi.org/10.4103/2278-344X.107832]
[26]
Radhika PR, Sivakumar T. Nanocapsules: A new approach in drug delivery. Int J Pharm Sci Res 2011; 2(6): 1426-34.
[27]
Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur J Pharm Biopharm 2013; 85(3 Pt A): 427-43.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[28]
Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[29]
Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm 2010; 385(1-2): 113-42.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[30]
Pachpute T, Dwivedi J, Jeyabalan G. A review on nanospehere formulation. Int J Pharm Biol Arch 2017; 5(3): 1-4.
[31]
Patil TS, Nalawade NA, Kakade VK, Kale SN. Nanosponges: A novel targeted drug delivery for cancer treatment. Int J Adv Res Dev 2017; 2(4): 55-62.
[32]
Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: A potential nanocarrier for novel drug delivery-A review. Asian Pac J Trop Dis 2014; 4: S519-26.
[http://dx.doi.org/10.1016/S2222-1808(14)60667-8]
[33]
Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014; 11(6): 931-41.
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[34]
Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 2014; 11(1): 111-20.
[http://dx.doi.org/10.1517/17425247.2014.865013] [PMID: 24298891]
[35]
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173: 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[36]
Jeganath S, Abdelmagid KF. A review on nanosponges–a promising novel drug delivery system. Res J Pharm Technol 2021; 14(1): 501-5.
[http://dx.doi.org/10.5958/0974-360X.2021.00091.3]
[37]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric micelles: General considerations and their applications. Indian J Pharm Educ Res 2011; 45(2): 128-38.
[38]
Wakaskar RR. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 2018; 26(4): 311-8.
[http://dx.doi.org/10.1080/1061186X.2017.1367006] [PMID: 28797169]
[39]
Patel EK, Oswal RJ. Nanosponge and micro sponges: A novel drug delivery system. Int J Res Pharm Chem 2012; 2(2): 2281-781.
[40]
S S, S A, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system--review. J Pharm Pharm Sci 2012; 15(1): 103-11.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[41]
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013; 63(3): 335-58.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[42]
Ahmed RZ, Patil G, Zaheer Z. Nanosponges - a completely new nano-horizon: Pharmaceutical applications and recent advances. Drug Dev Ind Pharm 2013; 39(9): 1263-72.
[http://dx.doi.org/10.3109/03639045.2012.694610] [PMID: 22681585]
[43]
Anandam S, Selvamuthukumar S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J Mater Sci 2014; 49(23): 8140-53.
[http://dx.doi.org/10.1007/s10853-014-8523-6]
[44]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Hierarchy analysis of different cross-linkers used for the preparation of cross-linked cyclodextrin as drug nanocarriers. Chem Eng Commun 2018; 205(6): 759-71.
[http://dx.doi.org/10.1080/00986445.2017.1416354]
[45]
Venuti V, Rossi B, Mele A, et al. Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin Drug Deliv 2017; 14(3): 331-40.
[http://dx.doi.org/10.1080/17425247.2016.1215301] [PMID: 27449474]
[46]
Waghmare SG, Nikhade RR, Satish D, Kosalge B. Nanosponges: A novel approach for controlled release drug delivery system. Int J Pharm Pharm Sci 2017; 9(3): 101-16.
[47]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8(1): 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[48]
Indira B, Bolisetti SS, Samrat C, Reddy SM, Reddy NS. Nanosponges: A new era in drug delivery. J Pharm Res 2012; 5(12): 5293-6.
[49]
Rao MR, Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev Ind Pharm 2015; 41(12): 2029-36.
[http://dx.doi.org/10.3109/03639045.2015.1044903] [PMID: 26006328]
[50]
Kamble M, Zaheer Z, Mokale S, Zainuddin R. Formulation optimization and biopharmaceutical evaluation of imatinib mesylate loaded β-cyclodextrin nanosponges. Pharm Nanotechnol 2019; 7(5): 343-61.
[http://dx.doi.org/10.2174/2211738507666190919121445] [PMID: 31549599]
[51]
Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of beta cyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 2007; 57(1-4): 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]
[52]
Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm 2017; 43(12): 2076-84.
[http://dx.doi.org/10.1080/03639045.2017.1371732] [PMID: 28845699]
[53]
Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 2013; 75(3-4): 315-22.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[54]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[55]
Srinivas P, Jahnavi Reddy A. Formulation and evaluation of isoniazid loaded nanosponges for topical delivery. Pharm Nanotechnol 2015; 3(1): 68-76.
[http://dx.doi.org/10.2174/2211738503666150501003906]
[56]
Swaminathan S, Cavalli R, Trotta F, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem 2010; 68(1-2): 183-91.
[http://dx.doi.org/10.1007/s10847-010-9765-9]
[57]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[58]
Trotta F, Cavalli R, Martina K, et al. Cyclodextrin nanosponges as effective gas carriers. J Incl Phenom Macrocycl Chem 2011; 71(1-2): 189-94.
[http://dx.doi.org/10.1007/s10847-011-9926-5]
[59]
Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010; 402(1-2): 254-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.025] [PMID: 20888402]
[60]
Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J Mol Catal, B Enzym 2010; 62(2): 155-61.
[http://dx.doi.org/10.1016/j.molcatb.2009.10.002]
[61]
Conceicao J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as drug carriers in pharmaceutical technology: The state of the art. Curr Pharm Des 2018; 24(13): 1405-33.
[http://dx.doi.org/10.2174/1381612824666171218125431] [PMID: 29256342]
[62]
Osmani AM, Hani U. R Bhosale R, Vaghela R, K Kulkarni P. Cyclodextrin based nanosponges: Impending carters in drug delivery and nanotherapeutics. Curr Drug Ther 2015; 10(1): 3-19.
[http://dx.doi.org/10.2174/157488551001150825095513]
[63]
Osmani RA, Hani U, Bhosale RR, Kulkarni PK, Shanmuganathan S. Nanosponge carriers-an archetype swing in cancer therapy: A comprehensive review. Curr Drug Targets 2017; 18(1): 108-18.
[http://dx.doi.org/10.2174/1389450116666151001105449] [PMID: 26424399]
[64]
Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013; 18(3): 619-25.
[http://dx.doi.org/10.3109/10837450.2011.649855] [PMID: 22235935]
[65]
Raja CH, Kumar GK, Anusha K. Fabrication and evaluation of ciprofloxacin loaded nanosponges for sustained release. Int J Res Pharm Nano Sci 2013; 2: 1-9.
[66]
Aggarwal G, Nagpal M, Kaur G. Development and comparison of nanosponge and niosome based gel for the topical delivery of tazarotene. Pharm Nanotechnol 2016; 4(3): 213-28.
[http://dx.doi.org/10.2174/2211738504666160804154213] [PMID: 29052500]
[67]
Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-encapsulated cyclodextrin nanosponges. Supramolecules in drug discovery and drug delivery 2021; 2207: 247-83.
[68]
Swaminathan S, Vavia PR, Trotta F, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem 2013; 76(1-2): 201-11.
[http://dx.doi.org/10.1007/s10847-012-0192-y]
[69]
Pandey P, Purohit D, Dureja H. Nanosponges–a promising novel drug delivery system. Recent Pat Nanotechnol 2018; 12(3): 180-91.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[70]
Mura P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J Pharm Biomed Anal 2015; 113: 226-38.
[http://dx.doi.org/10.1016/j.jpba.2015.01.058] [PMID: 25743620]
[71]
Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Paclitaxel loaded nanosponges: In-vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv 2011; 8(2): 194-202.
[http://dx.doi.org/10.2174/156720111794479934] [PMID: 21235471]
[72]
Hayiyana Z, Choonara YE, Makgotloe A, du Toit LC, Kumar P, Pillay V. Ester-based hydrophilic cyclodextrin nanosponges for topical ocular drug delivery. Curr Pharm Des 2016; 22(46): 6988-97.
[http://dx.doi.org/10.2174/1381612822666161216113207] [PMID: 27981908]
[73]
Pawar S, Shende P. A comprehensive patent review on β-cyclodextrin cross-linked nanosponges for multiple applications. Recent Pat Nanotechnol 2020; 14(1): 75-89.
[http://dx.doi.org/10.2174/1872210513666190603083930] [PMID: 31161998]
[74]
Wadhwa A, Mathura V, Lewis SA. Emerging novel nanopharmaceuticals for drug delivery. Asian J Pharm Clin Res 2018; 11(7): 35-42.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25149]
[75]
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. US Patent 11630403, 2008.
[76]
Trotta F, Tumiatti V, Cavalli R, Rogero C, Mognetti B, Berta G. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO 3656:A1, 2009.
[77]
Trotta F, Shende P, Biasizzo M. Method for preparing dextrin nanosponges. WO2012147069A1, 2011.
[78]
Gilardi G, Di Nardo G, Trotta F, Tumiatti V, Cavalli R, Ferruti P. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies. WO2009149883A1, 2008.
[79]
Trotta F, Caldera F. Cross-linked starch-based polymers for drugdelivery. WO2019202148A1, 2018.
[80]
Trotta F, Tumiatti W, Cavalli R. Nanosponges based on cyclodextrins functionalized with carboxyl groups in the synthesis and use decontamination from heavy metals and organic compounds by chromatographic separations and drug delivery. IT Patent MI20040614A1, 2004.
[81]
Wingnien Wylie O, Tinlok LI, Lin Zhijian. Cross-linked nanoporous saccharide-based material and methods for fabrication thereof. WO Patent 2020011197A1, 2020.
[82]
Choi Won Il, Yoong Tae Gi. Heparin nanosponge for controlled release of growth factors and method for manufacturing thereof. KR Patent 101920284B1, 2017.
[83]
Xiaofang LI, Sun Qiang. Licoflavone nanosponges and its preparation process. CN Patent 108703944A, 2018.
[84]
Choi Won LI, Lee Jin Sil. Injectable thermosponge nanoparticle based hydrogel and its use. KR Patent 20190122368A, 2019.
[85]
Choi WI. Thermosponge nanoparticle platform for simultaneous delivery of hydrophilic and hydrophobic drugs, and use thereof. WO Patent 2019182278A1, 2018.
[86]
Huang CY, Chen YH, Yu CJ. Porous copper sulfide nano/micro hollow sphere and method for preparing the same. US Patent US 12/314,101, 2009.
[87]
Farrell D, Limaye SY, Subramanian S. Silicon nanosponge particles. US Patent US 7569202B2, 2009.
[88]
Trinh T, Cappel JP, Geis PA, et al. Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces. US Patent US 5714137A, 1997.
[89]
Roggero CM, Dicarlo S, Tumiatti V, et al. Use of functionalized nanosponges for the growth, conservation, protection and disinfection of vegetable organisms. WO Patent 2013046165A1, 2018.
[90]
Lian K. Nanoparticles, nanosponges, methods of synthesis and methods of use. US Patent 20170152439A1, 2017.
[91]
Harth EM, Van Der Ende AE, Hamilton SK, Croce TA. Multifunctional degradable nanoparticles with control over size and functionalities. WO Patent 2011082432A1, 2011.
[92]
Dongjin C. Preparation method for graphene sponge reinforced nanofiber membrane. CN Patent 108486862A, 2018.
[93]
Muthusamy E, Katla S. Template free and polymer free metal nanosponge and a process thereof. US Patent 20110014300A1, 2011.
[94]
Jiangwei W, Huimin G, Qin Y. Modification method of oleophilic and hydrophobic nanosponge. CN Patent 104987528A, 2015.
[95]
Trotta F, Tumiatti V. Cross-linked polymers based on cyclodextrins for removing polluting agents. US Patent 20050154198A1, 2005.
[96]
Xiaocun W, Dragon P. Nanosponges application and negative ions in the air in the air purification apparatus for processing and purification method combined fine particulate matter. CN Patent 105180312B, 2017.
[97]
Zhiqiang X. High and cold nanosponge synergistic improving the sound absorbing property of silica aerogels interior paint. CN Patent 104962139B, 2017.
[98]
Changhua W, Hongmin P, Gang S. Preparation method TiO2 (b) nanosponges. CN Patent 104649319B, 2016.
[99]
Qiang Y, Yanna H, Sun L. Class of binary alloy Pt-Cu nanosponges. CN Patent 108372315A, 2018.
[100]
Yang P. Sleeve-type stainless steel nanosponge spiral filter. CN Patent 204017486U, 2014.
[101]
Creasey D, Guenther D. Detection of explosives using raman spectroscopy with gold and silver nanosponge alloy. US Patent 20170205352 A1, 2017.
[102]
Junjie N, Akihiro K, Chao W, Li J. Sulfur nanosponge cathode for lithium-sulfur battery and methods of manufacture thereof. US Patent 20160190558A1, 2016.
[103]
Ferruti P, Ranucci E, Trotta F. Hyperbranched polymers based on cyclodextrins and poly (amidoamines) for the controlled release of insoluble drugs. US Patent US8372933B2, 2008.
[104]
Alonji J, Poskovic M, Frache A. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE & PA6. Carbohydr Polym 2012; 88(4): 1387-94.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.038]
[105]
Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019; 565: 333-50.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[106]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[107]
Hu CM, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 2013; 8(5): 336-40.
[http://dx.doi.org/10.1038/nnano.2013.54] [PMID: 23584215]
[108]
Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27): 10980-5.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[109]
Allahyari S, Esmailnezhad N, Valizadeh H, et al. In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. J Drug Deliv Sci Technol 2021; 61: 102275-9.
[http://dx.doi.org/10.1016/j.jddst.2020.102275]
[110]
Baboota S, Khanna R, Agarwal SP, Ali J, Ahuja A. Cyclodextrins in drug delivery systems: An update. Pharmaceutical Information 2003; 112(58): 73-4.
[111]
Wong VN, Fernando G, Wagner AR, et al. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 2009; 25(3): 1459-65.
[http://dx.doi.org/10.1021/la802723r] [PMID: 19123797]
[112]
Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym 2011; 86(1): 127-35.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.022]
[113]
Alongi J, Pošković M, Frache A, Trotta F. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym Degrad Stabil 2010; 95(10): 2093-100.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.030]
[114]
Hombreiro-Pérez M, Siepmann J, Zinutti C, et al. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: Preparation, characterization and drug release modeling. J Control Release 2003; 88(3): 413-28.
[http://dx.doi.org/10.1016/S0168-3659(03)00030-0] [PMID: 12644367]
[115]
Rasheed A. Cyclodextrins as drug carrier molecule: A review. Sci Pharm 2008; 76(4): 567-98.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[116]
Bilensoy E, Hincal AA. Cyclodextrin‐based nanomaterials in pharmaceutical field. Pharmaceut Sci Encycl: Drug Discov, Develop. Manufact 2010; 10(1): 1-23.
[117]
Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 1996; 85(10): 1017-25.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[118]
Kumar PS, Hematheerthani N, Vijaya Ratna J, Saikishore V. Design and characterization of miconazole nitrate loaded nanosponges containing vaginal gels. Int J Pharm Ana Res 2016; 5(3): 410-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy