Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Eco-Friendly Intracellular Biosynthesis of CdS Quantum Dots Using Pseudomonas aeruginosa: Evaluation of Antimicrobial Effects and DNA Cleavage Activities

Author(s): Necip Öcal*, Ahmet Ceylan and Fatih Duman

Volume 17, Issue 1, 2023

Published on: 23 September, 2021

Page: [59 - 67] Pages: 9

DOI: 10.2174/1872210515666210719122353

Price: $65

Abstract

Background: Intracellular biosynthesis of Quantum Dots (QDs) based on microorganisms offers a green alternative and eco-friendly for the production of nanocrystals with superior properties. This study focused on the production of intracellular CdS QDs by stimulating the detoxification metabolism of Pseudomonas aeruginosa.

Methods: For this aim, Pseudomonas aeruginosa ATCC 27853 strain was incubated in a solution of 1mM cadmium sulphate (CdSO4) to manipulate the detoxification mechanism. The intracellularly formed Cd-based material was extracted, and its characterization was carried out by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Energy Dispersive X-ray (EDX) and dynamic light scattering (DLS) analyses and absorption-emission spectra.

Results: The obtained material showed absorption peaks at 385 nm and a luminescence peak at 411 nm, and the particle sizes were measured in the range 4.63-17.54 nm. It was determined that the material was sphere-shaped, with a cubic crystalline structure, including Cd and S elements. The antibacterial and antifungal activities of CdS QDs against patent eleven bacterial (four Grampositive and seven Gram-negative) and one fungal strains were investigated by the agar disk diffusion method. It was revealed that the obtained material has antibacterial effects on both Grampositive and Gram-negative bacteria. However, cleavage activity of CdS QDs on pBR322 DNA was not detected.

Conclusion: As a result, it has been proposed that the stimulation of the detoxification mechanism can be an easy and effective way of producing green and cheap luminescent QDs or nanomaterial.

Keywords: Quantum dots, antimicrobial activity, biosynthesis, CdS, DNA cleavage, Pseudomonas aeruginosa.

[1]
McHugh KJ, Jing L, Behrens AM, et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 2018; 30(18): e1706356.
[http://dx.doi.org/10.1002/adma.201706356] [PMID: 29468747]
[2]
Jadhav P, Bhand GR, Mohite KC, Chaure NB. CdS quantum dots synthesized by low-cost wet chemical technique. AIP Conf Proc 2017; 1832: 1-3.
[http://dx.doi.org/10.1063/1.4980379]
[3]
Mal J, Nancharaiah YV, Van Hullebusch ED, Lens PNL. Metal chalcogenide quantum dots: Biotechnological synthesis and applications. RSC Advances 2016; 6: 41477-95.
[http://dx.doi.org/10.1039/C6RA08447H]
[4]
Rengers CNG, Gaponik N, Eychmüller A. Quantum Dots and Quantum Rods. In: Gehr P, Zellner Springer R, Eds. Biological responses to nanoscale particles Nano Scienc. Cham 2019; pp. 29-51.
[http://dx.doi.org/10.1007/978-3-030-12461-8_2]
[5]
Borovaya M, Pirko Y, Krupodorova T, Naumenko A, Blume Y, Yemets A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol Biotec Eq 2015; 29: 1156-63.
[http://dx.doi.org/10.1080/13102818.2015.1064264]
[6]
Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 2010; 1: 516.
[http://dx.doi.org/10.3402/nano.v1i0.5161] [PMID: 22110865]
[7]
Gallardo-Benavente C, Carrión O, Todd JD, et al. Biosynthesis of CdS quantum dots mediated by volatile sulfur compounds released by antarctic Pseudomonas fragi. Front Microbiol 2019; 10: 1866.
[http://dx.doi.org/10.3389/fmicb.2019.01866] [PMID: 31456780]
[8]
Faraon A, Englund D, Fushman I, Stoltz N, Petroff P. Local quantum dot tuning on photonic crystal chips. Appl Phys Lett 2007; 90: 213110.
[http://dx.doi.org/10.1063/1.2742789]
[9]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[10]
Biermann B, Sokoll S, Klueva J, et al. Imaging of molecular surface dynamics in brain slices using single-particle tracking. Nat Commun 2014; 5: 3024.
[http://dx.doi.org/10.1038/ncomms4024] [PMID: 24429796]
[11]
Grigsby CL, Ho YP, Leong KW. Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine (Lond) 2012; 7(4): 565-77.
[http://dx.doi.org/10.2217/nnm.12.28] [PMID: 22471720]
[12]
Li H, Shih WY, Shih WH. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind Eng Chem 2007; 7: 2013-9.
[http://dx.doi.org/10.1021/ie060963s]
[13]
Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19(7): 631-5.
[http://dx.doi.org/10.1038/90228] [PMID: 11433273]
[14]
Vibin M, Vinayakan R, John A, Fernandez FB, Abraham A. Effective cellular internalization of silica-coated CdSe quantum dots for high contrast cancer imaging and labelling applications. Cancer Nanotechnol 2014; 5(1): 1.
[http://dx.doi.org/10.1186/s12645-014-0001-y] [PMID: 26561509]
[15]
Raj R, Dalei K, Chakraborty J, Das S. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 2016; 462: 166-75.
[http://dx.doi.org/10.1016/j.jcis.2015.10.004] [PMID: 26454375]
[16]
Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011; 82(4): 489-94.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.023] [PMID: 21055786]
[17]
Jimeno-Romero A, Bilbao E, Valsami-Jones E, Cajaraville MP, Soto M, Marigómez I. Bioaccumulation, tissue and cell distribution, biomarkers and toxicopathic effects of CdS quantum dots in mussels, Mytilus galloprovincialis. Ecotoxicol Environ Saf 2019; 167: 288-300.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.035] [PMID: 30343143]
[18]
Bruna N, Collao B, Tello A, Caravantes P, Díaz-Silva N, Monrás JP. Órdenes- Aenishanslins N, Flores M, Espinoza-Gonzalez R, Bravo & Pérez-Donoso JM. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile D halophilic bacteria. Sci Rep 2019; 9: 1953.
[http://dx.doi.org/10.1038/s41598-018-38330-8] [PMID: 30760793]
[19]
Qin Z, Yue Q, Liang Y, et al. Extracellular biosynthesis of biocompatible cadmium sulfide quantum dots using Trametes versicolor. J Biotechnol 2018; 284: 52-6.
[http://dx.doi.org/10.1016/j.jbiotec.2018.08.004] [PMID: 30107199]
[20]
Chakraborty J, Mallick S, Raj R, Das S. Functionalization of extracellular polymers of Pseudomonas aeruginosa N6P6 for synthesis of CdS nanoparticles and cadmium bioadsorption. J Polym Environ 2018; 26: 3097-108.
[http://dx.doi.org/10.1007/s10924-018-1195-6]
[21]
Wu R, Wang C, Shen J, Zhao F. A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochem 2015; 50: 2061-5.
[http://dx.doi.org/10.1016/j.procbio.2015.10.005]
[22]
Ulloa G, Quezada CP, Araneda M, et al. Phosphate favors the biosynthesis of cds quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by ımproving metal uptake and tolerance. Front Microbiol 2018; 9: 234.
[http://dx.doi.org/10.3389/fmicb.2018.00234] [PMID: 29515535]
[23]
El-Shanshoury A, Elsilk ES, Ebeid EM. Rapid biosynthesis of Cadmium Sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T. Afr J Biotechnol 2012; 11: 7957-65.
[http://dx.doi.org/10.5897/AJB11.3708]
[24]
Bai HJ, Zhang ZM, Guo Y, Yang GE. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 2009; 70(1): 142-6.
[http://dx.doi.org/10.1016/j.colsurfb.2008.12.025] [PMID: 19167198]
[25]
Yan ZY, Du QQ, Qian J, Wan DY, Wu SM. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli’s antibiotic resistance. Enzyme Microb Technol 2017; 96: 96-102.
[http://dx.doi.org/10.1016/j.enzmictec.2016.09.017] [PMID: 27871390]
[26]
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010; 156(1-2): 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[27]
Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR. Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology (Reading) 1997; 143(Pt 8): 2521-30.
[http://dx.doi.org/10.1099/00221287-143-8-2521] [PMID: 9274006]
[28]
Bai HJ, Zhang ZM. Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 2009; 63: 764-6.
[http://dx.doi.org/10.1016/j.matlet.2008.12.050]
[29]
Dameron C, Reese R, Mehra R, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989; 338: 596-7.
[http://dx.doi.org/10.1038/338596a0]
[30]
Sweeney RY, Mao C, Gao X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 2004; 11(11): 1553-9.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.022] [PMID: 15556006]
[31]
Sandana Mala JG, Rose C. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 2014; 170: 73-8.
[http://dx.doi.org/10.1016/j.jbiotec.2013.11.017] [PMID: 24316439]
[32]
Mousavi RA, Sepahy AA, Fazeli MR. Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application. Proceedings of the International Conference Nanomaterials: Applications and Properties 2012; 1: 5.
[33]
Prasad K, Jha AK. Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. J Colloid Interface Sci 2010; 342(1): 68-72.
[http://dx.doi.org/10.1016/j.jcis.2009.10.003] [PMID: 19880131]
[34]
Sanghi R, Verma P. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 2009; 155: 886-91.
[http://dx.doi.org/10.1016/j.cej.2009.08.006]
[35]
Singh BR, Dwivedi S, Al-Khedhairy AA, Musarrat J. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf B Biointerfaces 2011; 85(2): 207-13.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.030] [PMID: 21435848]
[36]
Venegas FA, Saona LA, Monrás JP, et al. Biological phosphorylated molecules participate in the biomimetic and biological synthesis of cadmium sulphide quantum dots by promoting H2S release from cellular thiols. RSC Advances 2017; 7: 40270-8.
[http://dx.doi.org/10.1039/C7RA03578K]
[37]
Mi C, Wang Y, Zhang J, et al. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 2011; 153(3-4): 125-32.
[http://dx.doi.org/10.1016/j.jbiotec.2011.03.014] [PMID: 21458508]
[38]
Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 2013; 405: 322-30.
[http://dx.doi.org/10.1016/j.jcis.2013.02.030] [PMID: 23759321]
[39]
Souza TGF, Ciminelli VST, Mohallem NDS. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J Phys Conf Ser 2016; 733: 012039.
[http://dx.doi.org/10.1088/1742-6596/733/1/012039]
[40]
Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014; 2014: 347167.
[http://dx.doi.org/10.1155/2014/347167] [PMID: 24860280]
[41]
Chen G, Yi B, Zeng G, et al. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B Biointerfaces 2014; 117: 199-205.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.027] [PMID: 24632392]
[42]
Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution - a perspective on light scattering and comparative technologies. Sci Technol Adv Mater 2018; 19(1): 732-45.
[http://dx.doi.org/10.1080/14686996.2018.1517587] [PMID: 30369998]
[43]
Rajendiran K, Zhao Z, Pei DS, Fu A. Antimicrobial activity and mechanism of functionalized quantum dots. Polymers (Basel) 2019; 11(10): 1670.
[http://dx.doi.org/10.3390/polym11101670] [PMID: 31614993]
[44]
Neelgund GM, Oki A, Luo Z. Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloids Surf B Biointerfaces 2012; 100: 215-21.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.012] [PMID: 22766300]
[45]
Banerjee A, Pons T, Lequeux N, Dubertret B. Quantum dots-DNA bioconjugates: Synthesis to applications. Interface Focus 2016; 6(6): 20160064.
[http://dx.doi.org/10.1098/rsfs.2016.0064] [PMID: 27920898]
[46]
Keypour H, Shayesteh M, Rezaeivala M, et al. Mononuclear Ni(II) complexes of Schiff base ligands formed from unsymmetrical tripodal amines of differing arm lengths: Spectral, X-ray crystal structural, antimicrobial and DNA cleavage activity. J Mol Struct 2017; 1148: 568-76.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.058]
[47]
Wang C, Wu C, Zhou X, et al. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep 2013; 3: 2852.
[http://dx.doi.org/10.1038/srep02852] [PMID: 24092333]
[48]
Liu F, Zhang F, Liu H, Zhang J, Guo S. Graphene quantum dots with Zn2+ and Ni2+ conjugates can cleave supercoiled DNA. J Coord Chem 2016; 22: 3395-402.
[http://dx.doi.org/10.1080/00958972.2016.1230203]
[49]
Jacob JM, Lens PNL, Balakrishnan RM. Microbial synthesis of chalcogenide semiconductor nanoparticles: A review. Microb Biotechnol 2016; 9(1): 11-21.
[http://dx.doi.org/10.1111/1751-7915.12297] [PMID: 26110980]
[50]
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes- A review. Colloids Surf B Biointerfaces 2014; 121: 474-83.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027] [PMID: 25001188]
[51]
Ramesh A, Sundari MT, Thirugnanam PE. Microbial molecular mechanisms in biosynthesis of nanoparticles. In: Singh OV, Ed. Bio-nanoparticles bionanoparticles: Biosynthesis and sustainable biotechnological implications. (1st ed.). 2015; pp. 53-81.
[52]
Han G, Ghosh P, Rotello VM. Multi-functional gold nanoparticles for drug delivery. In: Chan WCW, Ed Bio-applications of nanoparticles advances in experimental medicine and biology. Springer 2007; 620: pp. 48-56.
[http://dx.doi.org/10.1007/978-0-387-76713-0_4]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy