Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Recent Patents and Potential Applications of Homogenisation Techniques in Drug Delivery Systems

Author(s): Harpreet Kaur Khanuja and Harish Dureja*

Volume 17, Issue 1, 2023

Published on: 04 January, 2022

Page: [33 - 50] Pages: 18

DOI: 10.2174/1872210515666210719120203

Price: $65

conference banner
Abstract

Background: The term homogenise means "to force or provide coalesce". Homogenisation is a process to attain homogenous particle size. The objective of the homogenisation process is to use fluid force to split the fragments or tiny particles contained in the fluids into very small dimensions and form a sustainable dispersion suitable for further production.

Methods: The databases were collected through Scopus, google patent, science web, google scholar, PubMed on the concept of homogenisation. The data obtained were systematically investigated.

Results: The present study focus on the use of the homogenisation in drug delivery system. The aim of homogenisation process is to achieve the particle size in micro-and nano- range as it affects the different parameters in the formulation and biopharmaceutical profile of the drug. The particle size reduction plays a key role in influencing drug dissolution and absorption. The reduced particle size enhances the stability and therapeutic efficacy of the drug. Homogenization technology ensures to achieve effective, clinically efficient and targeted drug delivery with the minimal side effect.

Conclusion: Homogenization technology has been shown to be an efficient and easy method of size reduction to increase solubility and bioavailability, stability of drug carriers. This article gives an overview of the process attributes affecting the homogenization process, the patenting of homogeniser types, design, the geometry of valves and nozzles and its role in drug delivery.

Keywords: Homogeniser, shear force, acoustic, cavitation, ultra turrax, amplitude, drug loading, formulation.

[1]
Gall V, Runde M, Schuchmann HP. Extending applications of high-pressure homogenization by using Simultaneous Emulsification and Mixing (SEM)- An overview. Processes (Basel) 2016; 4(4): 1-46.
[http://dx.doi.org/10.3390/pr4040046]
[2]
Gaulin A. Process of treating milk or similar liquids. US Patent 753792, 1904.
[3]
Jasmina H, Dzana O, Alisa E, Edina V, Ognjenka R. Preparation of nanoemulsions by high-energy and low energy emulsification methods. CMBEBIH 2017; 62: 317-22.
[http://dx.doi.org/10.1007/978-981-10-4166-2_48]
[4]
Soni G, Kale K, Shetty S, Gupta MK, Yadav KS. Quality by Design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020; 6(4): e03846.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03846] [PMID: 32373744]
[5]
Diels AMJ, Michiels CW. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 2006; 32(4): 201-16.
[http://dx.doi.org/10.1080/10408410601023516] [PMID: 17123905]
[6]
McClements DJ. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 2011; 7(6): 2297-316.
[http://dx.doi.org/10.1039/C0SM00549E]
[7]
Maresca PF, Donsi FG, Ferrari G. Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. J Food Eng 2011; 104(3): 364-72.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.12.030]
[8]
Karimi-Maleh H, Shojaei AF, Tabatabaeian K, Karimi F, Shakeri S, Moradi R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens Bioelectron 2016; 86: 879-84.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[9]
Alavi-Tabari SA, Khalilzadeh MA, Karimi-Maleh H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem (Lausanne Switz) 2018; 811: 84-8.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[10]
Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 2018; 176: 208-13.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[11]
Miraki M, Karimi-Maleh H, Taher MA, et al. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J Mol Liq 2019; 278: 672-6.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[12]
Karimi-Maleh H, Sheikhshoaie M, Sheikhshoaie I, et al. A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J Chem 2019; 43(5): 2362-7.
[http://dx.doi.org/10.1039/C8NJ05581E]
[13]
Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H, Abbaspourrad A, Agarwal S, Gupta VK. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations. Sens Actuators B Chem 2019; 284: 568-74.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[14]
Karimi-Maleh H, Karimi F, Orooji Y, et al. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; A highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep 2020; 10(1): 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[15]
Karimi-Maleh H, Arotiba OA. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 2020; 560: 208-12.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[16]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[17]
Tarara T, Weers J. Pharmaceutical formulation with an insoluble active agent. US Patent 20040156792A1, 2004.
[18]
Mckillop AA, Dunkley WL, Brockmeyer RL, Perry RL. The cavitation theory of homogenization. J Dairy Sci 1955; 38(3): 273-83.
[http://dx.doi.org/10.3168/jds.S0022-0302(55)94971-7]
[19]
Moffatt HK. GK batchelor and the homogenization of turbulence. Annu Rev Fluid Mech 2002; 34: 19-35.
[http://dx.doi.org/10.1146/annurev.fluid.34.081701.134821]
[20]
Lai F, Sinico C, Ennas G, Marongiu F, Marongiu G, Fadda AM. Diclofenac nanosuspensions: Influence of preparation procedure and crystal form on drug dissolution behaviour. Int J Pharm 2009; 373(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.024] [PMID: 19429297]
[21]
Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll 2011; 25(5): 1000-8.
[http://dx.doi.org/10.1016/j.foodhyd.2010.09.017]
[22]
Yadav KS, Sawant KK. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv 2010; 7(1): 51-64.
[http://dx.doi.org/10.2174/156720110790396517] [PMID: 20044908]
[23]
Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016; 128-129: 99-112.
[http://dx.doi.org/10.1016/j.biochi.2016.07.008] [PMID: 27436182]
[24]
Yadav KS, Kale K. High pressure homogenizer in pharmaceuticals: Understanding its critical processing parameters and applications. J Pharm Inn 2019; 1-12.
[25]
Qadir A, Faiyazuddin MD, Hussain MT, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq 2016; 214: 7-18.
[http://dx.doi.org/10.1016/j.molliq.2015.11.050]
[26]
Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self Nanoemulsifying Drug Delivery System (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J Mol Liq 2016; 218: 219-32.
[http://dx.doi.org/10.1016/j.molliq.2016.02.081]
[27]
Gundloori RV, Singam A, Killi N. Nanobased intravenous and transdermal drug delivery systems Applications of targeted nano drugs and delivery systems. Elsevier 2019; pp. 551-94.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00019-3]
[28]
Oktay AN, Ilbasmis-Tamer S, Celebi N. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol 2019; 24(10): 1278-86.
[http://dx.doi.org/10.1080/10837450.2019.1667384] [PMID: 31535942]
[29]
Varia JK, Dodiya SS, Sawant KK. Cyclosporine a loaded solid lipid nanoparticles: Optimization of formulation, process variable and characterization. Curr Drug Deliv 2008; 5(1): 64-9.
[http://dx.doi.org/10.2174/156720108783331069] [PMID: 18220553]
[30]
Harun SN, Nordin SA, Gani SSA, Shamsuddin AF, Basri M, Basri HB. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. Int J Nanomedicine 2018; 13: 2571-84.
[http://dx.doi.org/10.2147/IJN.S151788] [PMID: 29731632]
[31]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014; 9(6): 304-16.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[32]
Kluge J, Muhrer G, Mazzotti M. High pressure homogenization of pharmaceutical solids. J Supercrit Fluids 2012; 66: 380-8.
[http://dx.doi.org/10.1016/j.supflu.2012.01.009]
[33]
Robinson RK, Tamime AY. Processing plant and equipment. Tamime and Robinson's yoghurt: Science and technology. 3rd ed. Woodhead publishing series in food science, technology and nutrition 2007; pp. 162-283.
[http://dx.doi.org/10.1201/NOE1420044539.ch3]
[34]
Driscoll AO. Choosing a homogenizer technology for your application. 2018. Available from: https://homogenizers.net/blogs/blog/choosing-a-homogenizer-technology [Accessed on 27/6/2020]
[35]
Dhankhar P. Homogenization fundamentals. Int Org Sci Res J Eng 2014; 4(5): 1-8.
[36]
Thomson LM, Polizzotti BD, McGowan FX, Kheir JN. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration. J Vis Exp 2014; 87(87): e51467.
[http://dx.doi.org/10.3791/51467] [PMID: 24894333]
[37]
Hakansson A. Rotor-stator mixers: From batch to continuous mode of operation- A review. Processes (Basel) 2018; 6(32): 1-17.
[http://dx.doi.org/10.3390/pr6040032]
[38]
Feng H, Yang W, Hielscher T. Power ultrasound. Food Sci Technol Int 2008; 14(5): 433-6.
[http://dx.doi.org/10.1177/1082013208098814]
[39]
Jafari SM, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization- A comparison. Int J Food Prop 2006; 9(3): 475-85.
[http://dx.doi.org/10.1080/10942910600596464]
[40]
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev Nutr Food Sci 2019; 24(3): 225-34.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[41]
Al-hilphy AR, Verma DK, Niamah AK, Billoria SU, Srivastar P. Principles of ultrasonic technology for treatment of milk and milk products. Food process engineering: Emerging trends in research and their applications. CRC press apple academic press 2016; pp. 178-202.
[42]
Benjakul S, Ali AMM, Singh A. Innovative technologies in sea food processing Application of ultrasonication in food processing. New York: CRC press 2020; pp. 131-49.
[43]
Bosiljkov T, Tripalo B. Brnčić M, Jezek D, Karlovic S, Jagust I. Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. Afr J Biotechnol 2011; 10(1): 34-41.
[44]
Brzeczko AW, El Saleh F, Yang J. Granulation of poorly water soluble drugs. Handbook of pharmaceutical granulation technology. Taylor & Francis group LLC 2016; pp. 381-6.
[45]
Myung H, Jang H, Myung JK, et al. A method for the activation of platelet-rich plasma via bead mill homogenizer for mesenchymal stem cell culture. Tissue Eng Part C Methods 2017; 23(8): 465-73.
[http://dx.doi.org/10.1089/ten.tec.2017.0178] [PMID: 28602130]
[46]
Alex TC, Kumar R, Roy SK, Mehrotra SP. Stirred bead mill grinding of gibbsite: Surface and morphological changes. Adv Powder Technol 2008; 19(5): 483-91.
[http://dx.doi.org/10.1016/S0921-8831(08)60914-0]
[47]
Heilenz SJ, Heile SJG. Mortar and pestle for grinding and mixing. US Patent 3524599A, 1970.
[48]
Stang M, Schuchmann H, Schubert H. Emulsification in high-pressure homogenizers. Eng Life Sci 2001; 1(4): 151-7.
[http://dx.doi.org/10.1002/1618-2863(200110)1:4<151:AID-ELSC151>3.0.CO;2-D]
[49]
Floury J, Bellettre J, Legrand J, Desrumaux A. Analysis of a new type of high pressure homogenizer: A study of the flow pattern. Chem Eng Sci 2004; 59: 843-53.
[http://dx.doi.org/10.1016/j.ces.2003.11.017]
[50]
Kumar R. Lipid-based nanoparticles for drug-delivery systems Nanocarriers for drug delivery. Elsevier 2019; pp. 249-84.
[51]
Comuzzo P, Calligaris S. Potential applications of high pressure homogenization in winemaking: A review. Beverages 2019; 5(56): 1-14.
[http://dx.doi.org/10.3390/beverages5030056]
[52]
Sharpe AN, Jackson AK. Stomaching: A new concept in bacteriological sample preparation. Appl Microbiol 1972; 24(2): 175-8.
[http://dx.doi.org/10.1128/AM.24.2.175-178.1972] [PMID: 16349927]
[53]
Andrews WH, Wilson CR, Poelma PL, et al. Usefulness of the stomacher in a microbiological regulatory laboratory. Appl Environ Microbiol 1978; 35(1): 89-93.
[http://dx.doi.org/10.1128/AEM.35.1.89-93.1978] [PMID: 623476]
[54]
Hopkins TR. Physical and chemical cell disruption for the recovery of intracellular proteins. Bioprocess Technol 1991; 12: 57-83.
[PMID: 1367090]
[55]
Middelberg AP. Process-scale disruption of microorganisms. Biotechnol Adv 1995; 13(3): 491-551.
[http://dx.doi.org/10.1016/0734-9750(95)02007-P] [PMID: 14536098]
[56]
Kleinig AR, Middelberg APJ. On the mechanism of microbial cell disruption in high pressure homogenization. Chem Eng Sci 1998; 53: 891-8.
[http://dx.doi.org/10.1016/S0009-2509(97)00414-4]
[57]
Feliu JX, Cubarsi R, Villaverde A. Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol Bioeng 1998; 58(5): 536-40.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980605)58:5<536:AID-BIT10>3.0.CO;2-9] [PMID: 10099290]
[58]
Haider SI, Ashok A. Biotechnology: A comprehensive training guide for the biotechnology industry. New york: CRC Press 2009; pp. 281-7.
[http://dx.doi.org/10.1201/9781420084498]
[59]
Burden DW. Guide to the homogenization of biological samples. Random Primers 2008; 7: 1-14.
[60]
Peternel S, Komel R. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact 2010; 9(66): 66.
[http://dx.doi.org/10.1186/1475-2859-9-66] [PMID: 20831775]
[61]
Santos JA, Otero A, Lapez MLG. Molecular detection of foodborne pathogens. Plesiomonas. Taylor and Francis group LLC 2010; pp. 405-16.
[62]
Yusaf T, Al Juboori RA. Alternative method of microorganism disruption for agriculture application. Appl Energy 2014; 114: 909-23.
[http://dx.doi.org/10.1016/j.apenergy.2013.08.085]
[63]
Pieracci JP, Armando JW, Westoby M, Thommes J. Industry review of cell separation and product harvesting methods. Elsevier 2018; pp. 165-206.
[http://dx.doi.org/10.1016/B978-0-08-100623-8.00009-8]
[64]
Beg S, Hasnain S, Rahman M, Swain S. Pharmaceutical quality by design: Principles and applications Introduction to Quality by Design (QbD): Fundamentals, principles and applications. Academic press 2019; pp. 1-16.
[65]
Pramod K, Tahir MA, Charoo NA, Ansari SH, Ali J. Pharmaceutical product development: A quality by design approach. Int J Pharm Investig 2016; 6(3): 129-38.
[http://dx.doi.org/10.4103/2230-973X.187350] [PMID: 27606256]
[66]
Patwardhan DM, Amrutkar SS, Kotwal TS, Wagh MP. Application of quality by design to different aspects of pharmaceutical technologies. Int J Pharm Sci Res 2017; 1(8): 3649-62.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(9).3649-62]
[67]
Yong AP, Islam MA, Hasan NA. Review: Effect of pressure on homogenization. Sigma J Eng Nat Sci 2017; 35(1): 1-22.
[68]
Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials (Basel) 2016; 6(6): 1-17.
[http://dx.doi.org/10.3390/nano6060116] [PMID: 28335244]
[69]
Peng J, Dong WJ, Li L, et al. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. J Food Drug Anal 2015; 23(4): 828-35.
[http://dx.doi.org/10.1016/j.jfda.2015.04.004] [PMID: 28911501]
[70]
Schuchmann HP, Schuchmann H. Lebensmittelverfahrenstechnik. Weinheim: Wiley VCH 2005.
[http://dx.doi.org/10.1002/9783527623549]
[71]
Keck C. Nanocrystals and amorphous nanoparticles and method for production of the same by a low energy process. EP Patent 2583672A1, 2013.
[72]
Bogala M, Srinivas MS, Srinivas G, Jain SK. Ultrasonic technology and its applications in quality control, processing and preservation of food: A review. Curr J Appl Sci Technol 2019; 32(5): 1-11.
[http://dx.doi.org/10.9734/CJAST/2019/46909]
[73]
Müller RH, Mäder K, Gohla S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[74]
Retamal Marín RR, Babick F, Lindner GG, Wiemann M, Stintz M. Effects of sample preparation on particle size distributions of different types of silica in suspensions. Nanomaterials (Basel) 2018; 8(7): 1-18.
[http://dx.doi.org/10.3390/nano8070454] [PMID: 29933581]
[75]
Panyam J, Chavanpatil MD. Lipid-derived nanoparticles for braintargeted drug delivery. US Patent 20100076092A1, 2010.
[76]
Lima E, Barbosa F, Krug FJ, Silva MM. Comparison of ultrasound-assisted extraction, slurry sampling and microwave-assisted digestion for cadmium, copper and lead determination in biological and sediment samples by electrothermal atomic absorption spectrometry. J Anal At Spectrom 2000; 15(8): 995-1000.
[http://dx.doi.org/10.1039/b002199g]
[77]
Hielscher T. Ultrasonics production of nano-size dispersions and emulsion. ENS’ 05 2005; 138-43. Available from: https://hal.archives-ouvertes.fr/hal-00166996
[78]
Capelo JL, Galesio MM, Felisberto GM, Vaz C, Pessoa JC. Micro-Focused Ultrasonic Solid-Liquid Extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: Optimization and linking with the analytical minimalism concept. Talanta 2005; 66(5): 1272-80.
[http://dx.doi.org/10.1016/j.talanta.2005.01.046] [PMID: 18970118]
[79]
Saiwal N, Dahiya M, Dureja H. Recent patents and formulation of nanopharmaceuticals using ultrasonication technique. Recent Pat Nanotechnol 2018; 12(2): 86-100.
[http://dx.doi.org/10.2174/1872210511666171120100649] [PMID: 29165099]
[80]
Gonglun C, Daniel T. An experimental study of stability of oil-water emulsion. Fuel Process Technol 2005; 86(5): 499-508.
[http://dx.doi.org/10.1016/j.fuproc.2004.03.010]
[81]
Rosdi MRH, Ariffin A, Ishak ZAM. Optimizing homogenization parameters for improving ethylene vinyl acetate emulsion stability in pour point depressant application. J King Saud Univ Eng Sci 2018; 30(2): 105-15.
[http://dx.doi.org/10.1016/j.jksues.2016.01.006]
[82]
Mohsin ME, Shrivastava NK, Basar N, Arsad A, Hassan A. The effect of sonication time on the properties of electrically conductive PANI/Sago starch blend prepared by the one-pot synthesis method. Front Mater. 2019; pp. 1-13.
[83]
Thakur G, Mitra A, Basak A, Rousseau D, Pal K. Characterization of oil-in-water gelatin emulsion gels: Effect of homogenization time. Int Conf Systems Med Biol 2010; pp. 305-8.
[84]
Joshi HC, Pandey IP, Kumar A, Gar N. A study of various factors determing the stability of molecules. Adv Pure Appl Chem 2012; 1(1): 7-11.
[85]
Santos HM, Lodeiro C, Capelo-MartRnez JL. The power of ultrasound. Ultrasound in chemistry: Analytical applications. Weinheim, Germany: Wiley-Vch Verlag GmbH & Co. KGaA 2009; pp. 1-16.
[86]
Taurozzi JS, Hackley VA, Wiesner MR. Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. Natl Inst Stand Technol Spec Pub 2012; 2-14.
[http://dx.doi.org/10.6028/NIST.SP.1200-2]
[87]
Samiun WS, Ashari SE, Salim N, Ahmad S. Optimization of processing parameters of nanoemulsion containing aripiprazole using response surface methodology. Int J Nanomedicine 2020; 15: 1585-94.
[http://dx.doi.org/10.2147/IJN.S198914] [PMID: 32210553]
[88]
Moreira JB, Goularte PG, Morais MGD, Costa JAV. Preparation of beta-carotene n anoemulsion and evaluation of stability at a long storage period. Food Sci Technol 2019; 39(3): 599-604.
[http://dx.doi.org/10.1590/fst.31317]
[89]
Patil S, Patil S, Kavathekar G. Influence of process parameters on compressibility, solubility and release characteristics of melt sonocrystallized fenofibrate. J Pharm Res Int 2016; 1-12.
[90]
Doucha J, Lívanský K. Influence of processing parameters on disintegration of chlorella cells in various types of homogenizers. Appl Microbiol microbiology Biotechnol 2008; 81(3): 431-40.
[http://dx.doi.org/10.1007/s00253-008-1660-6]
[91]
Tuttlebee JW. The stomacher- its use for homogenization in food microbiology. Int J Food Sci Technol 2007; 10(2): 113-22.
[http://dx.doi.org/10.1111/j.1365-2621.1975.tb00013.x]
[92]
Sud S, Kamath A. Methods of size reduction and factors affecting size reduction in pharmaceutics. Int Res J Pharm 2013; 4(8): 57-64.
[http://dx.doi.org/10.7897/2230-8407.04810]
[93]
Namjoshi S, Dabbaghi M, Roberts MS, Grice JE, Mohammed Y. Quality by Design: Development of the Quality Target Product Profile (QTPP) for semisolid topical products. Pharmaceutics 2020; 12(3): 1-12.
[http://dx.doi.org/10.3390/pharmaceutics12030287] [PMID: 32210126]
[94]
Cunha S, Costa CP, Moreira JN, Lobo JS, Silva AC. Using the Quality by Design (QbD) approach to optimize formulations of lipid nanopar-ticles and nanoemulsions: A review. Nanomed: Nanotechnol 2020; 1-17.
[95]
Romanskim FS, Jayjock E, Muzzio FJ, Tomassone MS. Important factors in the size reduction of polymer-stabilized drug particle suspensions using high-pressure homogenization. J Pharm Innov 2011; 6(2): 97-106.
[http://dx.doi.org/10.1007/s12247-011-9107-5]
[96]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[97]
Juttulapa M, Piriyaprasarth S, Takeuchi H, Sriamornsak P. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian J Pharm Sci 2017; 12(1): 21-7.
[http://dx.doi.org/10.1016/j.ajps.2016.09.004] [PMID: 32104310]
[98]
Ding Z, Jiang Y, Li X. Nanoemulsions-based drug delivery for brain tumors Nanotechnology-based targeted drug delivery systems for brain tumors. Academic Press 2018; pp. 327-58.
[99]
Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther Deliv 2012; 3(2): 181-94.
[http://dx.doi.org/10.4155/tde.11.156] [PMID: 22834196]
[100]
Wang Z, Wu Z, Liu J, Zhang W. Particle morphology: An important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opin Drug Deliv 2017; 15(4): 1-60.
[http://dx.doi.org/10.1080/17425247.2018.1420051] [PMID: 29264946]
[101]
Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006; 27(30): 5307-14.
[http://dx.doi.org/10.1016/j.biomaterials.2006.05.024] [PMID: 16797691]
[102]
Williford JM, Santos JL, Shyam R, Mao HQ. Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater Sci 2015; 3(7): 894-907.
[http://dx.doi.org/10.1039/C5BM00006H] [PMID: 26146550]
[103]
Vyas SP, Goswami R. Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells. Nanomedicine (Lond) 2019; 14(3): 229-53.
[http://dx.doi.org/10.2217/nnm-2018-0266] [PMID: 30657415]
[104]
Wu M, Guo H, Liu L, Liu Y, Xie L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine 2019; 14: 4247-59.
[http://dx.doi.org/10.2147/IJN.S201107] [PMID: 31239678]
[105]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipid nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[106]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (part 1). Trop J Pharm Res 2013; 12(2): 255-64.
[http://dx.doi.org/10.4314/tjpr.v12i2.19]
[107]
Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomedicine 2017; 12: 4085-109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[108]
Sharma G, Parchur AK, Jagtap JM, Hansen CP, Joshi A. Hybrid nanostructures in targeted drug delivery Hybrid nanostructures for cancer theranostics. Amsterdam: Elsevier 2019; pp. 139-58.
[http://dx.doi.org/10.1016/B978-0-12-813906-6.00008-1]
[109]
Zhang R, Xing R, Jiao T, et al. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl Mater Interfaces 2016; 8(21): 13262-9.
[http://dx.doi.org/10.1021/acsami.6b02416] [PMID: 27176934]
[110]
Dong Y, Feng SS. Poly(D,L-Lactide-co-Glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm 2007; 342(1-2): 208-14.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.031] [PMID: 17560058]
[111]
Zidan AS, Rahman Z, Khan MA. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur J Pharm Sci 2011; 44(1-2): 93-102.
[http://dx.doi.org/10.1016/j.ejps.2011.06.012] [PMID: 21726640]
[112]
Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: Stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci 2011; 100(8): 3365-73.
[http://dx.doi.org/10.1002/jps.22587] [PMID: 21520089]
[113]
Raju A, Reddy AJ, Satheesh J, Jithan AV. Preparation and characterisation of nevirapine oral nanosuspensions. Indian J Pharm Sci 2014; 76(1): 62-71.
[http://dx.doi.org/10.2147/IJN.S91631] [PMID: 24799740]
[114]
Parvin S, Rafshanjani AS, Kader A. Formulation and evaluation of dexamethasone loaded stearic acid nanoparticles by hot homogenization method. Int Curr Pharm J 2014; 3(12): 331-5.
[http://dx.doi.org/10.3329/icpj.v3i12.20829]
[115]
Anarjan N, Jafarizadeh-Malmiri H, Nehdi IA, Sbihi HM, Al-Resayes SI, Tan CP. Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique. Int J Nanomedicine 2015; 10: 1109-18.
[http://dx.doi.org/10.2147/IJN.S72835] [PMID: 25709435]
[116]
Booka HA, Rao PB, Hamuli CP. Rajanrajan. Design, development and optimization of topotecan hydrochloride solid lipid nanoparticles for oral chemotherapy. J Nanomed Res 2016; 3(1): 1-12.
[http://dx.doi.org/10.15406/jnmr.2016.03.00044]
[117]
Sharma M, Mehta I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci Rep 2019; 9(1): 16105.
[http://dx.doi.org/10.1038/s41598-019-52645-0] [PMID: 31695118]
[118]
Mulia K, Safiera A, Pane IF, Krisanti EA. Effect of high speed homogenizer on particle size of polylactic acid. J Phys Conf Ser 2019; 1198: 1-5.
[http://dx.doi.org/10.1088/1742-6596/1198/6/062006]
[119]
Eppenbach EG. Combination grinder and homogenizer. US Patent 2357640A, 1944.
[120]
Kinney RR, Pandolfe WD, Ferguson RD. Homogenization valve. US Patent 5749650, 1998.
[121]
Destefano MS, Cynamon MH, Ziemendorf DW. Sealed grinding and homogenizing apparatus. US Patent 5829696A, 1998.
[122]
Destefano GA, Mc Namara DP, Jager PD, Jachowicz J. Method and apparatus for homogenizing aerosol formulations. US Patent 6135628A, 2000.
[123]
Klinksiek B, Mahiout S, Nothelle RC, Hamann J, Sdebik J. Method and device for producing a parenteral medicament. US Patent 6331314B1, 2001.
[124]
Jarchau M. Homogenization valve with outside high pressure volume. US Patent 6238080B1, 2001.
[125]
Vergnault G, Grenier P, Nhamias A, Belaredj S, Desset S. Method for the preparation of pharmaceutical nanosuspensions using supersonic fluid flow. WO Patent 2003045353A1, 2003.
[126]
Mullar RH, Penkler LJ, Ravelli V, Runge SA. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. EP Patent 1073426B1, 2004.
[127]
Teller J, Westphal F, Gruttner C. Magnetic nanoparticles having improved magnetic properties. WO Patent 2005006356A1, 2005.
[128]
Werling J, Chaubal M, Kipp J, Rainbow B. Nanosuspensions of anti-retroviral agents for increased central nervous system delivery US Patent 20050202094A1, 2005.
[129]
De Castelle RV. Method for the delivery of a biologically active agent. US Patent 6861066B2, 2005.
[130]
Daiziel S, Gommeren EH, Calabrese R, Friedmann T. Rotor-stator apparatus and process for the formation of particles. US Patent 20050202095A1, 2005.
[131]
Uesugi M, Tsunofuri M, Nagano J, Mizobudi S. Rotor/stator type homogenizer. US Patent 6869212B2, 2005.
[132]
Mishra AK, Pace GW, Vachon MG. Injectable aqueous dispersions of propofol. US Patent 7041705B2, 2006.
[133]
Jiang S, Xianjua W, Liqiang W. Blumea oil liquid capsule and preparation method thereof. CN Patent 101543520A, 2006.
[134]
Jahn K, Williams T. Combination low-shear mixer and high-shear homogenizer. US Patent 7052172B2, 2006.
[135]
Gelperina S, Khalanskiy A, Kreuter J, Mksimenko O. Drug delivery system, useful for supplying active substance to central nervous system of a mammal over the blood-brain barrier, comprises: Nanoparticles of poly(DL-lactide-co-glycolide) and pharmaceutical substance e.g. cytostatic agent. DE Patent 102006013531A1, 2007.
[136]
De Casteele RV, Gerike M. Nanofluidized b-12 composition and process for treating pernicious anemia. WO Patent 2007103931A2, 2007.
[137]
Bachelier HJ, Boss FR. Homogenising device. EP Patent 1125625B1, 2007.
[138]
Vanderbist F, Baudier P, Pilcer G, Amighi K. Improved pharmaceutical dry powder compositions for inhalation. WO Patent 2009050217A2, 2009.
[139]
Gill L, Gadzic R, Roytbalt I. Magnetic homogenizer apparatus. US Patent 20100282099A1, 2010.
[140]
Ray SJ, Gibbins GR. Devices for blending materials and bags and for use in such devices. US Patent 7789551B2, 2010.
[141]
Gandini M, Grandi S. Homogeniser for the continuous treatment of fluids at very high pressure. US Patent 7661873B2, 2010.
[142]
Chen MJ, Hui HW, Lee T, Kurtuilk P, Surapaneni S. Nanosuspension of a oorly soluble drug via microfluidization process. US Patent 20110124702A1, 2011.
[143]
Nakach M. High-pressure homogenization with a silicon nitride valve. US Patent 20120127823A1, 2012.
[144]
Tang X, Yu Q. Lyophilized formulation of pectin-adriamycin conjugate and preparation method thereof. US Patent 20130172283A1, 2013.
[145]
Chandavarkar NM, Jindal KC, Malayandi R. Nanodispersion of poorly water soluble drug(s). WO Patent 2013098841A1, 2013.
[146]
Panagiotou T, Mesite SV, Fisher RJ. Apparatus and methods for nanoparticle generation and process intensification of transport and reaction systems. US Patent 8367004B2, 2013.
[147]
Hassan A, Anthony RG, Hassan A. High shear application in drug delivery. US Patent 8609115B, 2013.
[148]
Wei G, Lee BTK, Zhang W, Lu W, Lau JYN, Lam SCD. Ophthalmic composition, method for preparing the same, and use of the same. WO Patent 2014153733A1, 2014.
[149]
Huang J. Stable pharmaceutical composition of clopidogrel free base for oral and parenteral de-livery. WO Patent 2014124132A1, 2014.
[150]
Edelson J, Nicolosi R. Botulinum nanoemulsions. US Patent 20140099342A1, 2014.
[151]
Yepes HC, Gonzalez LPH. Continuous method for producing nanoparticles and nanoparticles obtained by means of said method. US Patent 20140099377A, 2014.
[152]
Benassi M, Bottioni M. High-pressure homogenizer. CA Patent 2894474A1, 2014.
[153]
Yongqiang C. Homogenizing valve with multi-passage nozzle. CN Patent 203710932U, 2014.
[154]
Vidakovic V, Smith S. Sample-tube cassette and mounting plate for use with homogenizing device. US Patent 20140293735A1, 2014.
[155]
Botas JP, Goncalves D, Martins D, Neves F, Melo J, Almeida N. Dynamic Suspension Drying (DSD) to control ostwald ripening. WO Patent 2014108687A1, 2014.
[156]
Repka MA, Patil HG, Majumdar S, Park JB, Kulkarni VI. Systems and methods for preparing solid lipid nanoparticles. WO Patent 2015148483A1, 2015.
[157]
Pramanick S, Mukund KG, Sumit SM. Pharmaceutical composition of propofol. EP Patent 2884964A2, 2015.
[158]
Peterson R. Nanocrystals for use in topical cosmetic formulations and method of production thereof. US Patent 9114077B2, 2015.
[159]
Bahl D, Crowley KJ, Yu D. Oral solid dosage form containing nanoparticles and process of formulating the same using fish gelatin. US Patent 9775819B2, 2017.
[160]
Vettorato LF, Assis URS, Cortez LD. Injectable formulation of a macrocyclic lactone and levamisole. WO Patent 2017108954A1, 2017.
[161]
Unger EC, Martinelli E. Adjusting particle size in fluorocarbon nanoemulsions. WO Patent 2017031051A1, 2017.
[162]
Dahiya S. Drug nanonization: An overview of industrially feasible top-down technologies for nanocrystal production. Bull Pharm Res Inst 2017; 7(2): 136-44.
[http://dx.doi.org/10.21276/bpr.2017.7.2.2]
[163]
Kenzaoui BH, Ceridono M, Urban P, et al. The agglomeration state of nanoparticles can infuence the mechanism of their cellular internalization. J Nanobiotechnology 2017; 15(48): 1-15.
[http://dx.doi.org/10.1186/s12951-017-0281-6]
[164]
Patil JS, Dhadde SB, Chandakavathe BN. Characterization and biology of nanomaterials for drug delivery Nanostructure drug delivery system is an option to solve antimicrobial drug resistance: Perspective review. Elsevier 2019; pp. 165-97.
[165]
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of Efavirenz-loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) dispersions. Pharmaceutics 2019; 11(8): 397.
[http://dx.doi.org/10.3390/pharmaceutics11080397] [PMID: 31398820]
[166]
AlHaj NA, Abdullah R, Ibrahim S, Bustamam A. Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques. Am J Pharmacol Toxicol 2008; 3(3): 219-24.
[http://dx.doi.org/10.3844/ajptsp.2008.219.224]
[167]
Nomani MS, Samy JG. Nanoliposome: An alternative approach for drug delivery system. Int J Adv Pharm Med Bioallied Sci 2016; 4(2): 37-46.
[168]
Akbari A, Akbarzadeh A, Rafiee Tehrani M, Ahangari Cohan R, Chiani M, Mehrabi MR. Development and characterization of nanoliposomal hydroxyurea against BT-474 breast cancer cells. Adv Pharm Bull 2020; 10(1): 39-45.
[http://dx.doi.org/10.15171/apb.2020.005] [PMID: 32002360]
[169]
Shah DP, Patel B, Shah C. Nanosuspension technology: A innovative slant for drug delivery system and permeability enhancer for poorly water soluble drugs. J Drug Deliv Ther 2015; 5(1): 10-23.
[http://dx.doi.org/10.22270/jddt.v5i1.995]
[170]
Gora S, Mustafa G, Sahni JK, Ali J, Baboota S. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: Pharmacokinetics and pharmacodyanamic study. Drug Deliv 2016; 23(3): 940-50.
[http://dx.doi.org/10.3109/10717544.2014.923066] [PMID: 24937379]
[171]
Li Y, Zhao X, Zu Y, Zhang Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int J Pharm 2015; 490(1-2): 324-33.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.070] [PMID: 26027492]
[172]
Kola Srinivas NS, Verma R, Pai Kulyadi G, Kumar L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int J Nanomedicine 2016; 12: 15-28.
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[173]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[174]
Sharma S, Sahni JK, Ali J, Baboota S. Effect of high-pressure homogenization on formulation of TPGS loaded nanoemulsion of rutin - pharmacodynamic and antioxidant studies. Drug Deliv 2015; 22(4): 541-51.
[http://dx.doi.org/10.3109/10717544.2014.893382] [PMID: 24625264]
[175]
Yukuyama MN, Kato ETM, Araujo GLBD, et al. Olive oil nanoemulsion preparation using high-pressure homogenization and D-phase emulsification – A design space approach. J Drug Deliv Sci Technol 2019; 49: 622-31.
[http://dx.doi.org/10.1016/j.jddst.2018.12.029]
[176]
Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles- A review. Asian J Pharm Clin Res 2013; 5(3): 16-23.
[177]
Ding Y, Kan J. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles. J Food Sci Technol 2017; 54(13): 4501-9.
[http://dx.doi.org/10.1007/s13197-017-2934-8] [PMID: 29184257]
[178]
Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci 2016; 11: 404-16.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[179]
Dahiya M, Dureja H. Central composite designed imatinib-loaded magnetic nanopart icles. Curr Nanomed 2016; 6(2): 146-55.
[http://dx.doi.org/10.2174/2468187306666160802125718]
[180]
Kumar HK, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: A review. Biomed J Sci & Tech Res 2018; 4(2): 3765-75.
[http://dx.doi.org/10.26717/BJSTR.2018.04.001011]
[181]
Zhao H, Gagnon J, Häfeli UO. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. Biomagn Res Technol 2007; 5(2): 2.
[http://dx.doi.org/10.1186/1477-044X-5-2] [PMID: 17407608]
[182]
Grillone A, Riva ER, Mondini A, et al. Active targeting of sorafenib: Preparation, characterization, and in vitro testing of drugloaded magnetic solid lipid nanoparticles. Adv Healthc Mater 2015; 4(11): 1681-90.
[http://dx.doi.org/10.1002/adhm.201500235] [PMID: 26039933]
[183]
Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019; 9(1): 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy