Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

The Use of Nanoparticles to Enhance Performance in the Textile Industry - A Concise Review

Author(s): Shamara Perera, Dilendra Wijesekara, Gobika Thiripuranathar* and Farid Menaa

Volume 18, Issue 3, 2022

Published on: 15 July, 2021

Page: [319 - 335] Pages: 17

DOI: 10.2174/1573413717666210715121307

Price: $65

conference banner
Abstract

Nanotechnology in the textile industry has gained popularity in the commercial market over the years. It is based on utilizing the characteristic properties of nanomaterials to improve the functionality of the textile. The present article focuses on different types of nano moieties, their properties, such as water repellence, self-cleaning, UV-protection, anti-microbial and flame retardancy, and their applications in various sectors. We also discuss smart textiles, operating mechanisms, and their economic importance. We conclude that the successful application of nanotechnology in the textile industry lies in producing sustainable and multifunctional fabrics to meet the increasing customer demand.

Keywords: Nanoparticles, smart textiles, nanotechnology, sustainability, multifunctional fabrics, textile industry.

Graphical Abstract

[1]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.Z.A. ALOthman, G.T. Mola. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. -. Sci., 2019, 31(2), 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]]
[2]
Batool, A.; Menaa, F.; Uzair, B.; Khan, B.A.; Menaa, B. Progress and prospects in translating nanobiotechnology in medical theranostics. Curr. Nanosci., 2020, 16, 685-707.
[http://dx.doi.org/10.2174/1573413715666191126093258]
[3]
Brabazon, D. Nanostructured materials, reference module in materials science and materials engineering; Elsevier, 2016, pp. 1-2.
[4]
Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008, 17(5), 326-343.
[http://dx.doi.org/10.1007/s10646-008-0213-1] [PMID: 18459043]
[5]
Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; Ziolo, R.F. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep., 2017, 72, 1-58.
[http://dx.doi.org/10.1016/j.surfrep.2017.02.001]
[6]
Ealia, S.A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng., 2017, 263(3), 032019.https://iopscience.iop.org/article/10.1088/1757-899X/263/3/032019
[7]
Canfarotta, F.; Whitcombe, M.J.; Piletsky, S.A. Polymeric nanoparticles for optical sensing. Biotechnol. Adv., 2013, 31(8), 1585-1599.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.010] [PMID: 23968893]
[8]
Uzair, B.; Liaqat, A.; Iqbal, H.; Menaa, B.; Razzaq, A.; Thiripuranathar, G.; Fatima Rana, N.; Menaa, F. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering (Basel), 2020, 7(4), 129.
[http://dx.doi.org/10.3390/bioengineering7040129] [PMID: 33081248]
[9]
Horikoshi, S.; Serpone, N. Introduction to nanoparticles In: Microwaves in Nanoparticle Synthesis: Fundamentals and Applications; Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany.,, 2013.
[http://dx.doi.org/10.1002/9783527648122.ch1]
[10]
Zhang, Y.X.; Wang, Y.H. Nonlinear optical properties of metal nanoparticles: A review. RSC Advances, 2017, 7, 45129-45144.
[http://dx.doi.org/10.1039/C7RA07551K]
[11]
Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14(11), 21266-21305.
[http://dx.doi.org/10.3390/ijms141121266] [PMID: 24232575]
[12]
Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys., 2014, 47, 013001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[13]
Yurkov, G.Y.; Fionov, A.S.; Koksharov, Y.A.; Koleso, V.V.; Gubin, S.P. Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles. Inorg. Mater., 2007, 43, 834-844.
[http://dx.doi.org/10.1134/S0020168507080055]
[14]
Minea, A.A. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials (Basel), 2019, 9(11), 15929.
[http://dx.doi.org/10.3390/nano9111592] [PMID: 31717593]
[15]
Patra, J.K.; Gouda, S. Application of nanotechnology in textile engineering: An overview. J. Eng. Technol. Res., 2014, 5(5), 104-111. Available at: https://academicjournals.org/journal/JETR/article-full-text-pdf/04977A52454
[16]
Gries, T.; Veit, D.; Wulfhorst, B.; Saeger, N.; Hörr, M. Textile finishing. Text. Technol; Text; Technol., Carl Hanser Verlag GmbH & Co. KG: München, 2015, pp. 253-281.
[17]
Harane, R.S.; Adivarekar, R.V. Sustainable processes for pre-treatment of cotton fabric. Text. Cloth. Sustain., 2017, 2, 1-9.
[http://dx.doi.org/10.1186/s40689-016-0012-7]
[18]
Shang, S.M. Process control in dyeing of textiles. Process Control Text. Manuf; Elsevier, 2013, pp. 300-338.
[http://dx.doi.org/10.1533/9780857095633.3.300]
[19]
Bibiana, C.; Aharanwa, K.O.; Chike, U.L.; Ezeamaku, O.O. Advancements in textile finishing. IOSR J. Polym. Text. Eng., 2019, 6, 23-31.
[20]
Ismail, W.N.W. Sol-gel technology for innovative fabric finishing-A Review. J. Sol-Gel Sci. Technol., 2016, 78, 698-707.
[http://dx.doi.org/10.1007/s10971-016-4027-y]
[21]
Kaounides, L.; Yu, H.; Harper, T. Nanotechnology innovation and applications in textiles industry: Current markets and future growth trends. Mater. Technol., 2007, 22, 209-237.
[http://dx.doi.org/10.1179/175355507X250014]
[22]
Keerawelle, B.I.; Chamara, A.M.R.; Thiripuranathar, G. A review on plant mediated synthesis of silver nanoparticles and their antimicrobial activity against various pathogenic bacteria. J. Chem. Biol. Phys. Sci., 2019, 9, 561-583.
[23]
Keerawelle, B.I.; Chamara, A.M.R.; Thiripuranathar, G. Green synthesis of silver nanoparticles in via medicinal plant extracts and their antibacterial activities, world. J. Pharm. Res., 2019, 8, 100-111.
[24]
Kuruppu, K.A.S.S.; Perera, K.M.K.G.; Chamara, A.M.R.; Thiripuranathar, G. Flower shaped ZnO—NPs; phytofabrication, photocatalytic, fluorescence quenching, and photoluminescence activities. Nano Express., 2020, 1, 1-18.
[http://dx.doi.org/10.1088/2632-959X/aba862]
[25]
Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem. Sci. (Camb.), 2017, 8(1), 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[26]
Sinha Ray, S. Foam Processing. Clay-Containing Polym. Nanocomposites; Elsevier, 2013, pp. 351-367.
[http://dx.doi.org/10.1016/B978-0-444-59437-2.00011-9]
[27]
Qien, L.; Hinestroza, J.P. Application of Nanotechnology for high performance textiles. J. Text. Apparel. Technol. Manag., 2004, 4, 1-7.
[28]
Mishra, R.; Militky, J.; Baheti, V.; Huang, J.; Kale, B.; Venkataraman, M.; Bele, V.; Arumugam, V.; Zhu, G.; Wang, Y. The production, characterization and applications of nanoparticles in the textile industry. Text. Prog., 2014, 46, 133-226.
[http://dx.doi.org/10.1080/00405167.2014.964474]
[29]
Iqbal, H.; Khan, B.A.; Khan, Z.U.; Razzaq, A.; Khan, N.U.; Menaa, B.; Menaa, F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol., 2020, 144, 921-931.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.169] [PMID: 31704336]
[30]
Thostenson, E.T.; Ren, Z.; Chou, T. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol., 2001, 61, 1899-1912.
[http://dx.doi.org/10.1016/S0266-3538(01)00094-X]
[31]
Menaa, F.; Abdelghani, A.; Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: Impact for tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med., 2015, 9(12), 1321-1338.
[http://dx.doi.org/10.1002/term.1910] [PMID: 24917559]
[32]
Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for carbon nanotubes synthesis-review. J. Mater. Chem., 2011, 21, 15872.
[http://dx.doi.org/10.1039/c1jm12254a]
[33]
Chinglenthoiba, C.; Ramkumar, K.; Shanmugaraja, T.; Sharma, S. Study on nanotechnology, nanocoating and nanomaterial. Int. J. Comput. Aided Manuf., 2017, 3, 17-25. Available at: https://www.researchgate.net/publication/319537064_Study_on_Nanotechnology_Nanocoating_and_Nanomaterial
[34]
Abdelrahman, M.S.; Nassar, S.H.; Mashaly, H.; Mahmoud, S.; Maamoun, D.; El-Sakhawy, M.; Khattab, T.A.; Kamel, S. Studies of polylactic acid and metal oxide nanoparticles-based composites for multifunctional textile prints. Coatings, 2020, 10(1), 58.
[http://dx.doi.org/10.3390/coatings10010058]]
[35]
Wang, Y.; Huang, Z.; Gurney, R.S.; Liu, D. Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloids Surf. A Physicochem. Eng. Asp., 2019, 561, 101-108.
[http://dx.doi.org/10.1016/j.colsurfa.2018.10.054]
[36]
Xu, Q.F.; Liu, Y.; Lin, F.J.; Mondal, B.; Lyons, A.M. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl. Mater. Interfaces, 2013, 5(18), 8915-8924.
[http://dx.doi.org/10.1021/am401668y] [PMID: 23889192]
[37]
Shaban, M.; Mohamed, F.; Abdallah, S. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing zno nanocatalyst. Sci. Rep., 2018, 8(1), 3925.
[http://dx.doi.org/10.1038/s41598-018-22324-7] [PMID: 29500470]
[38]
Yin, Y.; Wang, C. Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers. Colloids Surf. A Physicochem. Eng. Asp., 2013, 417, 120-125.
[http://dx.doi.org/10.1016/j.colsurfa.2012.10.027]
[39]
Tadanaga, K.; Kitamuro, K.; Morinaga, J.; Kotani, Y.; Matsuda, A.; Minami, T. Preparation of super-water-repellent alumina coating film with high transparency on poly(ethylene terephthalate) by the Sol–Gel Method. Chem. Lett., 2000, 29, 864-865.
[http://dx.doi.org/10.1246/cl.2000.864]
[40]
Yuen, C.W.M.; Ku, S.K.A.; Li, Y.; Cheng, Y.F.; Kan, C.W.; Choi, P.S.R. Improvement of wrinkle-resistant treatment by nanotechnology. J. Textil. Inst., 2009, 100, 173-180.
[http://dx.doi.org/10.1080/00405000701661028]
[41]
Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem., 2016, 19, 211-216.
[http://dx.doi.org/10.1016/j.proche.2016.03.095]
[42]
Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 2010, 79(1), 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[43]
Oskam, G. Metal oxide nanoparticles: Synthesis, characterization and application. J. Sol-Gel Sci. Technol., 2006, 37, 161-164.
[http://dx.doi.org/10.1007/s10971-005-6621-2]
[44]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[45]
Alshameri, A.; Wei, X.; Wang, H.; Fuguo, Y.; Chen, X.; He, H.; Yan, C.; Xu, F. A Review of the role of natural clay minerals as effective adsorbents and an alternative source of minerals. Minerals; IntechOpen, 2019, pp. 49-63.
[http://dx.doi.org/10.5772/intechopen.87260]
[46]
Gouda, S. Application of nanotechnology in textile engineering: An overview, 2017. Available at: https://www.researchgate.net/publication/291214220_Application_of_nano_technology_in_textile_engineering_An_overview
[47]
Cavallaro, G.; Lazzara, G.; Parisi, F.; Riela, S.; Milioto, S. Nanoclays for Conservation. Nanotechnologies Nanomater. Diagnostic, Conserv. Restor. Cult. Herit; Elsevier, 2019, pp. 149-170.
[48]
Wong, Y.W.H.; Yuen, C.W.M.; Leung, M.Y.S.; Ku, S.K.A.; Lam, H.L.I. Selected applications of nanotecnology in textiles - Water repellence. AUTEX Res. J., 2006, 6, 1-8. Available at: http://www.autexrj.com/cms/zalaczone_pliki/1-06-1.pdf
[49]
Zhang, Z.; Lv, X.; Chen, Q.; An, J. Complex coloration and antibacterial functionalization of silk fabrics based on noble metal nanoparticles. J. Eng. Fibers Fabrics, 2019, 14, 155892501986694.
[http://dx.doi.org/10.1177/1558925019866948]
[50]
Vigneshwaran, N.; Varadarajan, P.V.; Balasubramanya, R.H. Application of metallic nanoparticles in Textiles, 2010.
[http://dx.doi.org/10.1002/9783527610419.ntls0136]
[51]
Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.T.; Rehman, A.; Javid, A.; Iqbal, K.; Basit, A.; Aziz, H. Functional finishing and coloration of textiles with nanomaterials. Color. Technol., 2018, 134, 327-346.
[http://dx.doi.org/10.1111/cote.12344]
[52]
Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane : Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym., 2012, 87, 839-845.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.079]
[53]
Eddy Jai Poinern, G. Gold Nanoparticle treated textile-based materials for potential use as wearable sensors. Int. J. Sci., 2016, 2, 82-89.
[http://dx.doi.org/10.18483/ijSci.1018]
[54]
Esen, M.; İlhan, İ.; Karaaslan, M.; Esen, R. Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces. Appl. Nanosci., 2020, 10, 551-561.
[http://dx.doi.org/10.1007/s13204-019-01122-1]
[55]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[56]
Mijatovic, D.; Eijkel, J.C.T.; van den Berg, A. Technologies for nanofluidic systems: top-down vs. bottom-up--a review. Lab Chip, 2005, 5(5), 492-500.
[http://dx.doi.org/10.1039/b416951d] [PMID: 15856084]
[57]
Iqbal, P.; Preece, J.A.; Mendes, P.M. Nanotechnology: The “top-down” and “bottom-up” approaches. Supramol. Chem; John Wiley & Sons, Ltd: Chichester, UK, 2012.
[http://dx.doi.org/10.1002/9780470661345.smc195]
[58]
Harifi, T.; Montazer, M. Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. J. Ind. Text., 2017, 46, 1147-1169.
[http://dx.doi.org/10.1177/1528083715601512]
[59]
Marques, A.C. Sol - gel process : An overview Sol - gel process. definition., 2007.
[60]
Menaa, B.; Miyagawa, Y.; Takahashi, M.; Herrero, M.; Rives, V.; Menaa, F.; Eggers, D.K. Bioencapsulation of apomyoglobin in nanoporous organosilica sol-gel glasses: Influence of the siloxane network on the conformation and stability of a model protein. Biopolymers, 2009, 91(11), 895-906.
[http://dx.doi.org/10.1002/bip.21274] [PMID: 19585561]
[61]
Nayak, R.; Padhye, R. Nano fibres by electro spinning: Properties and applications. J. Text. Eng. Fash. Technol., 2017, 2, 486-497.
[http://dx.doi.org/10.15406/jteft.2017.02.00074]
[62]
Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum, 2000, 56, 159-172.
[http://dx.doi.org/10.1016/S0042-207X(99)00189-X]
[63]
Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci., 2003, 48, 57-170.
[http://dx.doi.org/10.1016/S0079-6425(01)00009-3]
[64]
Ahmed, H.B.; Emam, H.E. Layer by layer assembly of nanosilver for high performance cotton fabrics. Fibers Polym., 2016, 17, 418-426.
[http://dx.doi.org/10.1007/s12221-016-5814-3]
[65]
M., Ghasemlou; F., Daver; E.P., Ivanova; B., Adhikari Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J. Mater. Chem. A., 2019, 7(28), 16643-16670.
[http://dx.doi.org/10.1039/C9TA05185F]
[66]
Li, S.; Meng Lin, M. ; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev., 2010, 1, 5214.
[http://dx.doi.org/10.3402/nano.v1i0.5214] [PMID: 22110855]
[67]
Dastjerdi, R.; Montazer, M.; Shahsavan, S. A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf. B Biointerfaces, 2010, 81(1), 32-41.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.023] [PMID: 20675103]
[68]
Dastjerdi, R.; Montazer, M.; Shahsavan, S. A new method to stabilize nanoparticles on textile surfaces. Colloids Surf. A Physicochem. Eng. Asp., 2009, 345, 202-210.
[http://dx.doi.org/10.1016/j.colsurfa.2009.05.007]
[69]
Alimohammadi, F.; Parvinzadeh Gashti, M.; Shamei, A. Functional cellulose fibers in via polycarboxylic acid/carbon nanotube composite coating. J. Coat. Technol. Res., 2013, 10, 123-132.
[http://dx.doi.org/10.1007/s11998-012-9429-3]
[70]
Gashti, M.P.; Alimohammadi, F.; Shamei, A. Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf. Coat. Tech., 2012, 206, 3208-3215.
[http://dx.doi.org/10.1016/j.surfcoat.2012.01.006]
[71]
El-Shishtawy, R.M.; Asiri, A.M.; Abdelwahed, N.A.M.; Al-Otaibi, M.M. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose, 2011, 18, 75-82.
[http://dx.doi.org/10.1007/s10570-010-9455-1]
[72]
Shahid-Ul-Islam. Butola, B.S.; Kumar, A. Green chemistry based in situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate. Int. J. Biol. Macromol., 2020, 152, 1135-1145.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.202] [PMID: 31783071]
[73]
Montazer, M.; Harifi, T. Nanoencapsulation techniques for textile finishing. Nanofinishing Text. Mater; Elsevier, 2018, pp. 295-310.
[http://dx.doi.org/10.1016/B978-0-08-101214-7.00019-4]
[74]
Yoda, M. Encyclopedia of Nanotechnology; Springer Netherlands: Dordrecht, 2012. Available at: https://link.springer.com/referencework/10.1007/978-90-481-9751-4
[75]
Grajeck, E.J.; Petersen, W.H. Oil and Water Repellent Fluorochemical Finishes for Cotton. Text. Res. J., 1962, 32, 320-331.
[http://dx.doi.org/10.1177/004051756203200408]
[76]
Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res., 2008, 10, 679-689.
[http://dx.doi.org/10.1007/s11051-007-9318-3]
[77]
Horrocks, A.R.; Kandola, B.K.; Davies, P.J.; Zhang, S.; Padbury, S.A. Developments in flame retardant textiles - A review. Polym. Degrad. Stabil., 2005, 88, 3-12.
[http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.024]
[78]
Parthasarathi, V.; Thilagavathi, G. Department of Fashion Technology, J. Text. Apparel. Technol. Manag., 2009, 6, 1-8.
[79]
Zhang, F.; Yang, J. Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric. Mod. Appl. Sci., 2008, 3, 89-94.
[http://dx.doi.org/10.5539/mas.v3n1p89]
[80]
Singh, B.P. Carbon nanotubes in protective fabrics: A short review. Trends Text. Eng. Fash. Technol., 2018, 3, 320-322.
[http://dx.doi.org/10.31031/TTEFT.2018.03.000562]
[81]
Liu, Y.; Wang, X.; Qi, K.; Xin, J.H. Functionalization of cotton with carbon nanotubes. J. Mater. Chem., 2008, 18, 3454.
[http://dx.doi.org/10.1039/b801849a]
[82]
Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater., 2016, 2, 95-105.
[http://dx.doi.org/10.1016/j.moem.2017.02.002]
[83]
Janas, D.; Rdest, M.; Koziol, K.K.K. Flame-retardant carbon nanotube films. Appl. Surf. Sci., 2017, 411, 177-181.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.144]
[84]
Chowdhury, Z.Z.; Pal, K.; Sagadevan, S.; Yehye, W.A.; Johan, R.B.; Shah, S.T.; Adebesi, A.; Ali, M.E.; Islam, M.S.; Rafique, R.F. Electrochemically active carbon nanotube (CNT) membrane filter for desalination and water purification.Emerg. Technol. Sustain. Desalin. Handb; Elsevier, 2018, pp. 333-363.
[http://dx.doi.org/10.1016/B978-0-12-815818-0.00010-2]
[85]
Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-nanotube-based electrical conductors: fabrication, optimization, and applications. Adv. Electron. Mater., 2019, 5, 1-36.
[http://dx.doi.org/10.1002/aelm.201800811]
[86]
Jawaad, R.S.; Sultan, K.F.; Al-Hamadani, A.H. Synthesis of silver nanoparticles. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.), 2014, 9(4), 586-592.
[87]
Gokarneshan, N.; Velumani, K. Application of nano silver particles on textile materials for improvement of antibacterial finishes. Glob. J. Nanomedicine., 2017, 2, 42-45.
[88]
Hiragond, C.B.; Kshirsagar, A.S.; Dhapte, V.V.; Khanna, T.; Joshi, P.; More, P.V. Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. Vacuum, 2018, 156, 475-482.
[http://dx.doi.org/10.1016/j.vacuum.2018.08.007]
[89]
Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain Aspects of silver and silver nanoparticles in wound Care: A Minireview. J. Nanomater., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/7614753]
[90]
Das, M.; Shim, K.H.; An, S.S.A.; Yi, D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci., 2011, 3, 193-205.
[http://dx.doi.org/10.1007/s13530-011-0109-y]
[91]
Silva, Ladchumananandasivam. Nascimento, Silva.; Oliveira, Souto.; Felgueiras, Zille. Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials (Basel), 2019, 9, 1064.
[http://dx.doi.org/10.3390/nano9081064]
[92]
Radetić, M. Functionalization of textile materials with TiO2 nanoparticles, J. Photochem. Photobiol. C Photochem. Rev., 2013, 16, 62-76.
[93]
Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic methods for titanium dioxide nanoparticles: A Review, Titan. Dioxide - Mater. a Sustain; Environ, 2018.
[http://dx.doi.org/10.5772/intechopen.75425]
[94]
Yadav, A.; Prasad, V.; Kathe, A.A.; Raj, S.; Yadav, D.; Sundaramoorthy, C.; Vigneshwaran, N. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci., 2006, 29, 641-645.
[http://dx.doi.org/10.1007/s12034-006-0017-y]
[95]
Czyżowska, A.; Barbasz, A. A review: zinc oxide nanoparticles - friends or enemies? Int. J. Environ. Health Res., 2020, 1-17.
[http://dx.doi.org/10.1080/09603123.2020.1805415] [PMID: 32772735]
[96]
Ghosh, A. Nano-Clay Particle as Textile Coating, Int. J. Eng. Technol., 2011, 11, 34-36.
[97]
Kausar, A. Flame retardant potential of clay nanoparticles.Clay Nanoparticles; Elsevier, 2020, pp. 169-184.
[http://dx.doi.org/10.1016/B978-0-12-816783-0.00007-4]
[98]
Landry, V.; Riedl, B.; Blanchet, P. Nanoclay dispersion effects on UV coatings curing. Prog. Org. Coat., 2008, 62, 400-408.
[http://dx.doi.org/10.1016/j.porgcoat.2008.02.010]
[99]
Rowen, J.W.; Gagliardi, D. Properties of water-repellent fabrics. J. Res. Natl. Bur. Stand., 1947, 38(103)
[100]
Ismail, A.F.; Khulbe, K.C.; Matsuura, T. RO Membrane Characterization. 2019.
[http://dx.doi.org/10.1016/B978-0-12-811468-1.00003-7]
[101]
Simpson, J.T.; Hunter, S.R.; Aytug, T. Superhydrophobic materials and coatings: a review. Rep. Prog. Phys., 2015, 78(8), 1-15.
[http://dx.doi.org/10.1088/0034-4885/78/8/086501] [PMID: 26181655]
[102]
Schellenberger, F.; Encinas, N.; Vollmer, D.; Butt, H-J. How water advances on superhydrophobic surfaces. Phys. Rev. Lett., 2016, 116(9), 1-6.
[http://dx.doi.org/10.1103/PhysRevLett.116.096101] [PMID: 26991185]
[103]
Jonas, A.M.; Cai, R.; Vermeyen, R.; Nysten, B.; Vanneste, M.; De Smet, D.; Glinel, K. How roughness controls the water repellency of woven fabrics. Mater. Des., 2020, 187, 1-2.
[http://dx.doi.org/10.1016/j.matdes.2019.108389]
[104]
Yamamoto, M.; Nishikawa, N.; Mayama, H.; Nonomura, Y.; Yokojima, S.; Nakamura, S.; Uchida, K. Theoretical explanation of the lotus effect: Superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir, 2015, 31(26), 7355-7363.
[http://dx.doi.org/10.1021/acs.langmuir.5b00670] [PMID: 26075949]
[105]
Chinta, S.K.; Landage, S.M.; Swapnal, J. Water repellency of textiles through nanotechnology. Int. J. Adv. Res. IT Eng., 2013, 2, 36-57.
[106]
Heale, F.L.; Page, K.; Wixey, J.S.; Taylor, P.; Parkin, I.P.; Carmalt, C.J. Inexpensive and non-toxic water repellent coatings comprising SiO2 nanoparticles and long chain fatty acids. RSC Advances, 2018, 8, 27064-27072.
[http://dx.doi.org/10.1039/C8RA04707C]
[107]
Ramaratnam, K.; Tsyalkovsky, V.; Klep, V.; Luzinov, I. Ultrahydrophobic textile surface in via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem. Commun. (Camb.), 2007, (43), 4510-4512.
[http://dx.doi.org/10.1039/b709429a] [PMID: 17971972]
[108]
Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano, 2016, 10(3), 3042-3068.
[http://dx.doi.org/10.1021/acsnano.5b08176] [PMID: 26918485]
[109]
Bormashenko, E.; Gendelman, O.; Whyman, G. Superhydrophobicity of lotus leaves versus birds wings: Different physical mechanisms leading to similar phenomena. Langmuir, 2012, 28(42), 14992-14997.
[http://dx.doi.org/10.1021/la303340x] [PMID: 22992036]
[110]
Liu, Y.; Chen, X.; Xin, J.H. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir. Biomim., 2008, 3(4), 1-8.
[http://dx.doi.org/10.1088/1748-3182/3/4/046007] [PMID: 18997276]
[111]
Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos., Part B Eng., 2016, 92, 94-132.
[http://dx.doi.org/10.1016/j.compositesb.2016.02.002]
[112]
Jin, C.; Jiang, Y.; Niu, T.; Huang, J. Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J. Mater. Chem., 2012, 22, 12562-12567.
[http://dx.doi.org/10.1039/c2jm31750h]
[113]
Namligoz, E.S.; Bahtiyari, M.I.; Hosaf, E.; Coban, S. Performance comparison of new (Dendrimer, Nanoproduct) and conventional water, oil and stain repellents. Fibres Text. East. Eur., 2009, 76, 76-81.
[114]
Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem., 2011, 21, 16304-16322.
[http://dx.doi.org/10.1039/c1jm12523k]
[115]
Nundy, S.; Ghosh, A.; Mallick, T.K. Hydrophilic and superhydrophilic self-cleaning coatings by morphologically varying zno microstructures for photovoltaic and glazing applications. ACS Omega, 2020, 5(2), 1033-1039.
[http://dx.doi.org/10.1021/acsomega.9b02758] [PMID: 31984259]
[116]
Bhushan, B.; Jung, Y.C.; Koch, K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir, 2009, 25(5), 3240-3248.
[http://dx.doi.org/10.1021/la803860d] [PMID: 19239196]
[117]
Ahmad, D.; van den Boogaert, I.; Miller, J.; Presswell, R.; Jouhara, H. Hydrophilic and hydrophobic materials and their applications, Energy Sources, Part A Recover. Util. Environ. Eff., 2018, 40, 2686-2725.
[118]
Ragesh, P.; Anand Ganesh, V.; Nair, S.V.; Nair, A.S. A review on “self-cleaning and multifunctional materials,”. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 14773-14797.
[http://dx.doi.org/10.1039/C4TA02542C]
[119]
Mahanta, H.T. Journal of textile science & engineering durable Self cleaning property on cotton fabric by synthesised TiO2 nanoparticles at room temperature. J. Text. Sci. Eng., 2019, 9, 1-5.
[120]
Perera, K.M.K.G.; Kuruppu, K.A.S.S.; Chamara, A.M.R.; Thiripuranathar, G. Characterization of spherical Ag nanoparticles synthesized from the agricultural wastes of Garcinia mangostana and Nephelium lappaceum and their applications as a photo catalyzer and fluorescence quencher. SN Appl. Sci., 2020, 2, 1-24.
[http://dx.doi.org/10.1007/s42452-020-03640-y]
[121]
Saad, S.R.; Mahmed, N.; Abdullah, M.M.A.B.; Sandu, A.V. Self-cleaning technology in fabric: A review. IOP Conf. Series Mater. Sci. Eng., 2016, 133(1), 012028.
[122]
N.B., McGuinness; H., John; M.K., Kavitha; S., Banerjee; D.D., Dionysiou; S.C., Pillai CHAPTER 8. Self-cleaning photocatalytic activity: materials and applications, in: In: Appl. Catal. B Environ; Elsevier B.V, 2015; pp. 204-235.
[123]
Thiruvenkatachari, R.; Vigneswaran, S.; Moon, I.S. A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J. Chem. Eng., 2008, 25, 64-72.
[http://dx.doi.org/10.1007/s11814-008-0011-8]
[124]
Nor, N.A.M.; Jaafar, J.; Othman, M.H.D.; Rahman, M.A. A Review study of nanofibers in photocatalytic process for wastewater treatment. J. Teknol., 2013, 65, 83-88.
[http://dx.doi.org/10.11113/jt.v65.2335]
[125]
Gambichler, T.; Laperre, J.; Hoffmann, K. The European standard for sun-protective clothing: EN 13758. J. Eur. Acad. Dermatol. Venereol., 2006, 20(2), 125-130.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01401.x] [PMID: 16441617]
[126]
Gowri, S.; Almeida, L.; Amorim, T.; Carneiro, N.; Pedro Souto, A.; Fátima Esteves, M. Polymer nanocomposites for multifunctional finishing of textiles - a review. Text. Res. J., 2010, 80, 1290-1306.
[http://dx.doi.org/10.1177/0040517509357652]
[127]
Manaia, E.B.; Kaminski, R.C.K.; Corrêa, M.A.; Chiavacci, L.A. Inorganic UV filters. Braz. J. Pharm. Sci., 2013, 49, 201-209.
[http://dx.doi.org/10.1590/S1984-82502013000200002]
[128]
Kocić, A.; Bizjak, M.; Popović, D.; Poparić, G.B.; Stanković, S.B. UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. J. Clean. Prod., 2019, 228, 1229-1237.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.355]
[129]
Tsuzuki, T.; Wang, X. Nanoparticle Coatings for UV Protective Textiles. Res. J. Text. Appar., 2010, 14, 9-20.
[http://dx.doi.org/10.1108/RJTA-14-02-2010-B002]
[130]
Gorenšek, M.; Recelj, P. Nanosilver Functionalized Cotton Fabric. Text. Res. J., 2007, 77, 138-141.
[http://dx.doi.org/10.1177/0040517507076329]
[131]
Shateri-Khalilabad, M.; Yazdanshenas, M.E.; Etemadifar, A. Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab. J. Chem., 2017, 10, S2355-S2362.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.013]
[132]
Norouzi, M.; Zare, Y.; Kiany, P. Nanoparticles as effective flame retardants for natural and synthetic textile polymers: Application, mechanism, and optimization. Polym. Rev. (Phila. Pa.), 2015, 55, 531-560.
[http://dx.doi.org/10.1080/15583724.2014.980427]
[133]
Bourbigot, S. Flame retardancy of textiles: New approaches. Adv. Fire Retard. Mater., 2008, 2002, 9-40.
[http://dx.doi.org/10.1533/9781845694701.1.9]
[134]
Bei, P.; Liwei, C.; Chang, L. An Experimental Study on the Burning Behavior of Fabric used Indoor. Procedia Eng., 2012, 43, 257-261.
[http://dx.doi.org/10.1016/j.proeng.2012.08.044]
[135]
Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A Review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol., 2019, 55, 1-49.
[http://dx.doi.org/10.1007/s10694-018-0787-y]
[136]
Almeida, L.; Ramos, D. Health and safety concerns of textiles with nanomaterials IOP Conf. Ser. Mater. Sci. Eng., 2017, 254, pp. 1-6.
[137]
Wang, Q. Polymer Nanocomposite : A Promising Flame Retardant. J. Mater. Sci. Nanotechnol., 2013, 1, 1-3.
[138]
Yusuf, M. A Review on flame retardant textile finishing: Current and future trends. Curr. Smart Mater., 2018, 3, 99-108.
[http://dx.doi.org/10.2174/2405465803666180703110858]
[139]
Application of Functional Nanoparticle Finishes on Cotton Textiles. Trends Text. Eng. Fash. Technol., 2018, 3, 1-5.
[140]
Hobbs, C.E. Recent advances in bio-based flame Retardant additives for synthetic polymeric materials. Polymers (Basel), 2019, 11(2), 224.
[http://dx.doi.org/10.3390/polym11020224] [PMID: 30960208]
[141]
Samanta, A.K.; Bhattacharyya, R.; Jose, S.; Basu, G.; Chowdhury, R. Fire retardant finish of jute fabric with nano zinc oxide. Cellulose, 2017, 24, 1143-1157.
[http://dx.doi.org/10.1007/s10570-016-1171-z]
[142]
Vahidi, G.; Bajwa, D.S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in traditional and nanosized flame retardants for polymers-A review. J. Appl. Polym. Sci., 2021, 138, 1-13.
[http://dx.doi.org/10.1002/app.50050]
[143]
Agarwal, P.N.; Puvathingal, J.M. Microbiological Deterioration of Woolen Materials. Text. Res. J., 1969, 39, 38-42.
[http://dx.doi.org/10.1177/004051756903900107]
[144]
Szostak-Kotowa, J. Biodeterioration of textiles. Int. Biodeterior. Biodegradation, 2004, 53, 165-170.
[http://dx.doi.org/10.1016/S0964-8305(03)00090-8]
[145]
Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J., 2008, 78, 60-72.
[http://dx.doi.org/10.1177/0040517507082332]
[146]
Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles - A Review. Text. Res. J., 2010, 80, 1721-1737.
[http://dx.doi.org/10.1177/0040517510363193]
[147]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[148]
Uzair, B.; Menaa, F.; Khan, B.A.; Mohammad, F.V.; Ahmad, V.U.; Djeribi, R.; Menaa, B. Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetia canaliculata. Microbiol. Res., 2018, 206, 186-197.
[http://dx.doi.org/10.1016/j.micres.2017.10.007] [PMID: 29146256]
[149]
Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C, 2019, 97, 954-965.
[http://dx.doi.org/10.1016/j.msec.2018.12.102] [PMID: 30678983]
[150]
Tan, L.Y.; Sin, L.T.; Bee, S.T.; Ratnam, C.T.; Woo, K.K.; Tee, T.T.; Rahmat, A.R. A review of antimicrobial fabric containing nanostructures metal-based compound. J. Vinyl Addit. Technol., 2017, 25, E3-E27.
[http://dx.doi.org/10.1002/vnl.21606]
[151]
Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol., 2005, 71(11), 7589-7593.
[http://dx.doi.org/10.1128/AEM.71.11.7589-7593.2005] [PMID: 16269810]
[152]
Doganay, D.; Kanicioglu, A.; Coskun, S.; Akca, G.; Unalan, H.E. Silver-nanowire-modified fabrics for wide-spectrum antimicrobial applications. J. Mater. Res., 2019, 34, 500-509.
[http://dx.doi.org/10.1557/jmr.2018.467]
[153]
Saleem, H.; Zaidi, S.J. Sustainable use of nanomaterials in textiles and their environmental impact. Materials (Basel), 2020, 13(22), 1-28.
[http://dx.doi.org/10.3390/ma13225134] [PMID: 33203051]
[154]
Van Langenhove, L.; Hertleer, C.; Westbroek, P.; Priniotakis, J. Textile sensors for healthcare. Smart Text. Med. Healthc; Elsevier, 2007, pp. 106-122.
[http://dx.doi.org/10.1533/9781845692933.1.106]
[155]
ten Bhömer, M.; Tomico, O.; Wensveen, S. Designing ultra-personalised embodied smart textile services for well-being.Adv. Smart Med. Text; Elsevier, 2016, pp. 155-175.
[http://dx.doi.org/10.1016/B978-1-78242-379-9.00007-4]
[156]
Nanotextiles- A Broader Perspective. J. Nanomed. Nanotechnol., 2011, 02, 1-5.
[157]
Joshi, M.; Bhattacharyya, A. Nanotechnology - A new route to high-performance functional textiles. Text. Prog., 2011, 43, 155-233.
[http://dx.doi.org/10.1080/00405167.2011.570027]
[158]
Coyle, S.; Wu, Y.; Lau, K.L.; De Rossi, D.; Wallace, G.; Diamond, D. Smart nanotextiles: A review of materials and applications. MRS Bull., 2007, 32, 434-442.
[http://dx.doi.org/10.1557/mrs2007.67]
[159]
Sarif Ullah Patwary, M.S. Smart Textiles and Nano-Technology: A General Overview. J. Text. Sci. Eng., 2015, 05, 1-7.
[http://dx.doi.org/10.4172/2165-8064.1000181]
[160]
Van Langenhove, L.; Hertleer, C. Smart clothing: a new life. Int. J. Cloth. Sci. Technol., 2004, 16, 63-72.
[http://dx.doi.org/10.1108/09556220410520360]
[161]
De Rossi, D.; Coyle, S.; Wallace, G.; Wu, Y.; Diamond, D.; Lau, K-T. Smart Nanotextiles: A review of materials and applications. MRS Bull., 2011, 32, 434-442.
[162]
Zhang, T.; Li, K.; Li, C.; Ma, S.; Hng, H.H.; Wei, L. Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 Nanocomposites. Adv. Electron. Mater., 2017, 3, 1-9.
[163]
Zhang, T.; Li, K.; Zhang, J.; Chen, M.; Wang, Z.; Ma, S.; Zhang, N.; Wei, L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.
[http://dx.doi.org/10.1016/j.nanoen.2017.09.019]
[164]
Sawhney, A.P.S.; Condon, B.; Singh, K.V.; Pang, S.S. Modern applications of nanotechnology in textiles. Text. Res. J., 2008, 78, 731-739.
[http://dx.doi.org/10.1177/0040517508091066]
[165]
Pandey, A.C. Nanotechnology in the driver’s seat of sportswear industry: A Review of current trends and future applications. Latest Trends Text. Fash. Des., 2018, 2, 206-211.
[http://dx.doi.org/10.32474/LTTFD.2018.02.000143]
[166]
Mahmud, R.; Nabi, F. Application of nanotechnology in the field of textile. IOSR J. Polym. Text. Eng., 2017, 04, 01-06.
[167]
Song, Z.Q.; Cai, Y.T. Application of nano-materials in sports engineering. Adv. Mat. Res., 2012, 602–604, 281-284.
[168]
Balakumaran, M.D.; Ramachandran, R.; Jagadeeswari, S.; Kalaichelvan, P.T. In vitro biological properties and characterization of nanosilver coated cotton fabrics - an application for antimicrobial textile finishing. Int. Biodeterior. Biodegradation, 2016, 107, 48-55.
[http://dx.doi.org/10.1016/j.ibiod.2015.11.011]
[169]
Mondal, S. Phase change materials for smart textiles – An overview. Appl. Therm. Eng., 2008, 28, 1536-1550.
[http://dx.doi.org/10.1016/j.applthermaleng.2007.08.009]
[170]
Thilagavathi, G.; Raja, A.S.; Kannaian, T. Nanotechnology and protective clothing for defence personnel. Def. Sci. J., 2008, 58(4), 451-459.
[http://dx.doi.org/10.14429/dsj.58.1667]
[171]
Wagner, N.J.; Lee, Y.S. The ballistic impact characteristics of kevlar woven fabrics impregnated with a colloidal shear thickening fluid the ballistic impact characteristics of kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci., 2015, 8, 2825-2833.
[172]
Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.; Kharchenko, S.; Douglas, J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer (Guildf.), 2004, 45, 4227-4239.
[http://dx.doi.org/10.1016/j.polymer.2004.03.088]
[173]
Jeong, S-M.; Ahn, J.; Choi, Y.K.; Lim, T.; Seo, K.; Hong, T.; Choi, G.H.; Kim, H.; Lee, B.W.; Park, S.Y.; Ju, S. Development of a wearable infrared shield based on a polyurethane–antimony tin oxide composite fiber. NPG Asia Mater., 2020, 12, 32.
[http://dx.doi.org/10.1038/s41427-020-0213-z]
[174]
Jia, L.; Fu, B.; Lu, M.L.; Liang, H.; Wang, L. High-performance aramid fabric in infrared shielding by magnetron sputtering me- thod. Mater. Res. Express, 2020, 7, 1-8.
[http://dx.doi.org/10.1088/2053-1591/ab8b1c]
[175]
Mao, Z.; Yu, X.; Zhang, L.; Zhong, Y.; Xu, H. Novel infrared stealth property of cotton fabrics coated with nano ZnO: (Al, La) particles. Vacuum, 2014, 104, 111-115.
[http://dx.doi.org/10.1016/j.vacuum.2014.01.011]
[176]
Mostafavi, A.; Muhammad Afifi, Z.; Izadiyan, H. Jahangirian. wound dressings functionalized with silver nanoparticles: Promises and pitfalls. Nanoscale, 2020, 12, 2268-2291.
[http://dx.doi.org/10.1039/C9NR08234D]
[177]
Artain, F.S.; Reader, A.; Fisher, M.; Park, B.; Kemp, M.; Johnstone, J. Nanotechnology and its application to medical hygiene textiles. Text. Hyg. Infect. Control, 2011, 14-26.
[178]
Pal, S.; Nisi, R.; Stoppa, M.; Licciulli, A. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2017, 2(7), 3632-3639.
[http://dx.doi.org/10.1021/acsomega.7b00442] [PMID: 30023700]
[179]
Fong, J.; Wood, F.; Fowler, B. A silver coated dressing reduces the incidence of early burn wound cellulitis and associated costs of inpatient treatment: Comparative patient care audits. Burns, 2005, 31(5), 562-567.
[http://dx.doi.org/10.1016/j.burns.2004.12.009] [PMID: 15993301]
[180]
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 2017, 18(3), 18.
[http://dx.doi.org/10.3390/ijms18030569] [PMID: 28272303]
[181]
Arafa, M.G.; El-Kased, R.F.; Elmazar, M.M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci. Rep., 2018, 8(1), 1-16.
[http://dx.doi.org/10.1038/s41598-018-31895-4] [PMID: 30209256]
[182]
Ghayempour, S.; Montazer, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J. Microencapsul., 2016, 33(6), 497-510.
[http://dx.doi.org/10.1080/02652048.2016.1216187] [PMID: 27701985]
[183]
Ghayempour, S.; Mortazavi, S.M. Preparation and investigation of sodium alginate nanocapsules by different microemulsification devices. J. Appl. Polym. Sci., 2015, 132, 1-8.
[http://dx.doi.org/10.1002/app.41904]
[184]
Golra, O.A.; Luqman, A.; Butt, N.M. Strategy for introducing nanotechnology in textile industry of Pakistan. Int. J. Chem. Environ. Eng., 2011, 2, 276-283.
[185]
Board, N. National sciences, division council, a matter of size. Triennial review of the national nanotechnology initiative., 2006.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy