Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Photo Cross-linkable Biopolymers for Cornea Tissue Healing

Author(s): Negar Nozari, Esmaeil Biazar*, Mahshad Kamalvand, Saeed Heidari Keshel and Shervin Shirinbakhsh

Volume 17, Issue 1, 2022

Published on: 15 July, 2021

Page: [58 - 70] Pages: 13

DOI: 10.2174/1574888X16666210715112738

Price: $65

Abstract

Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about crosslinked biomaterials with different radiation sources such as Laser or ultraviolet (UV) that can be applied as scaffolds, controlled release systems,and tissue adhesives for cornea healing and tissue regeneration.

Keywords: Cornea, photo-crosslinking, tissue adhesives, control release, tissue engineering, biomaterials.

Graphical Abstract

[1]
Colby K, Dana R. Foundations of corneal disease. In: Pineda R, Ed. World corneal blindness. Germany: Springer international publishing 2020; p. 299.
[http://dx.doi.org/10.1007/978-3-030-25335-6]
[2]
Yazdanpanah G, Jabbehdari S, Djalilian AR. Emerging approaches for ocular surface regeneration. Curr Ophthalmol Rep 2019; 7(1): 1-10.
[http://dx.doi.org/10.1007/s40135-019-00193-1] [PMID: 31275736]
[3]
Ahearne M, Fernández-Pérez J, Masterton S, Madden PW, Bhattacharjee P. Designing scaffolds for corneal regeneration. Adv Funct Mater 2020; 30(44): 1908996.
[http://dx.doi.org/10.1002/adfm.201908996]
[4]
Tsai IL, Hsu CC, Hung KH, Chang CW, Cheng YH. Applications of biomaterials in corneal wound healing. J Chin Med Assoc 2015; 78(4): 212-7.
[http://dx.doi.org/10.1016/j.jcma.2014.09.011] [PMID: 25455161]
[5]
Palchesko RN, Carrasquilla SD, Feinberg AW. Natural biomaterials for corneal tissue engineering, repair, and regeneration. Adv Healthc Mater 2018; 7(16): e1701434.
[http://dx.doi.org/10.1002/adhm.201701434] [PMID: 29845780]
[6]
Biazar E. Application of polymeric nanofibers in medical designs, part I: Skin and eye. Int J Polym Mater 2017; 66(10): 521-31.
[http://dx.doi.org/10.1080/00914037.2016.1276062]
[7]
Biazar E. Application of polymeric nanofibers in soft tissues regeneration. Polym Adv Technol 2016; 27(11): 1404-12.
[http://dx.doi.org/10.1002/pat.3820]
[8]
Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019; 7(3): 843-55.
[http://dx.doi.org/10.1039/C8BM01246F] [PMID: 30648168]
[9]
Akhshabi S, Biazar E, Singh V, Keshel SH, Geetha N. The effect of the carbodiimide cross-linker on the structural and biocompatibility properties of collagen-chondroitin sulfate electrospun mat. Int J Nanomedicine 2018; 13: 4405-16.
[http://dx.doi.org/10.2147/IJN.S165739] [PMID: 30104874]
[10]
Ahn JI, Kuffova L, Merrett K, et al. Crosslinked collagen hydrogels as corneal implants: Effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater 2013; 9(8): 7796-805.
[http://dx.doi.org/10.1016/j.actbio.2013.04.014] [PMID: 23619290]
[11]
Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 2019; 126: 620-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.125] [PMID: 30562517]
[12]
Koh LB, Islam MM, Mitra D, et al. Epoxy cross-linked collagen and collagen-laminin Peptide hydrogels as corneal substitutes. J Funct Biomater 2013; 4(3): 162-77.
[http://dx.doi.org/10.3390/jfb4030162] [PMID: 24956085]
[13]
Gharaibeh AM, Saez V, Garcia N, Bataille L, Alió JL. Optimizing genipin concentration for corneal collagen cross-linking: An ex vivo study. Ophthalmic Res 2018; 60(2): 100-8.
[http://dx.doi.org/10.1159/000487950] [PMID: 29804113]
[14]
van Bochove B, Grijpma DW. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. J Biomater Sci Polym Ed 2019; 30(2): 77-106.
[http://dx.doi.org/10.1080/09205063.2018.1553105] [PMID: 30497347]
[15]
Ferreira P, Coelho JF, Almeida JF, Gil MH. Photocrosslinkable polymers for biomedical applications. In: Fazel-Rezai R, Ed. Biomedical engineering-Frontiers and challenges. London: InTech publisher 2011; pp. 55-74.
[16]
Chen Z, You J, Liu X, et al. Biomaterials for corneal bioengineering. Biomed Mater 2018; 13(3): 032002.
[http://dx.doi.org/10.1088/1748-605X/aa92d2] [PMID: 29021411]
[17]
Trujillo-de Santiago G, Sharifi R, Yue K, et al. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019; 197: 345-67.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.011] [PMID: 30690421]
[18]
Vyas S, Kamdar S, Vyas P. Tissue adhesives in ophthalmology. J. clin. ophthalmol. Res 2013; 1(2): 107.
[http://dx.doi.org/10.4103/2320-3897.112179]
[19]
Bhagat V, Becker ML. Degradable adhesives for surgery and tissue engineering. Biomacromolecules 2017; 18(10): 3009-39.
[http://dx.doi.org/10.1021/acs.biomac.7b00969] [PMID: 28862846]
[20]
Rossi F, Pini R, Menabuoni L, et al. Experimental study on the healing process following laser welding of the cornea. J Biomed Opt 2005; 10(2): 024004.
[http://dx.doi.org/10.1117/1.1900703] [PMID: 15910078]
[21]
Pini R, Rossi F, Menabuoni L, et al. Diode laser welding for cornea suturing: Anexperimental study for the repair process. Proc SPIE Biomed Optics Imag. 5314: 245-52.
[http://dx.doi.org/10.1117/12.529067]
[22]
Abdellah MM, Ammar HG, Anbar M, et al. Corneal endothelial cell density and morphology in healthy egyptian eyes. J Ophthalmol 2019; 2019: 6370241.
[http://dx.doi.org/10.1155/2019/6370241] [PMID: 30918718]
[23]
Subasinghe SK, Ogbuehi KC, Dias GJ. Current perspectives on corneal collagen crosslinking (CXL). Graefes Arch Clin Exp Ophthalmol 2018; 256(8): 1363-84.
[http://dx.doi.org/10.1007/s00417-018-3966-0] [PMID: 29623463]
[24]
Deshmukh R, Hafezi F, Kymionis GD, et al. Current concepts in crosslinking thin corneas. Indian J Ophthalmol 2019; 67(1): 8-15.
[http://dx.doi.org/10.4103/ijo.IJO_1403_18] [PMID: 30574883]
[25]
Hiebl B, Ascher L, Luetzow K, et al. Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro. Clin Hemorheol Microcirc 2018; 69(1-2): 317-26.
[http://dx.doi.org/10.3233/CH-189108] [PMID: 29630534]
[26]
Libutti SK, Oz MC, Chuck RS, Treat MR, Nowygrod R. Dye-enhanced tissue welding using fibrinogen and continuous-wave argon lasers. Vasc Surg 1990; 24(9): 671-6.
[http://dx.doi.org/10.1177/153857449002400908]
[27]
Urie R, Quraishi S, Jaffe M, Rege K. Gold nanorod-collagen nanocomposites as photothermal nanosolders for laser welding of ruptured porcine intestines. ACS Biomater Sci Eng 2015; 1(9): 805-15.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00174] [PMID: 33445258]
[28]
Ratto F, Matteini P, Rossi F, et al. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 2009; 5(2): 143-51.
[http://dx.doi.org/10.1016/j.nano.2008.10.002] [PMID: 19223241]
[29]
Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R. Laser welding of chitosan-GNRs films for the closure of a capsulorhexis. Proc SPIE 2011; 7885: 78851O-1.
[http://dx.doi.org/10.1117/12.876476]
[30]
Gerasimenko AY, Gubar’kov OV, Ichkitidze LP, Podgaetskii VM, Selishchev SV, Ponomareva OV. Nanocomposite solder for laser welding of biological tissues. Semiconductors 2011; 45(13): 1713-8.
[http://dx.doi.org/10.1134/S1063782611130112]
[31]
Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 2011; 6: 1117-27.
[PMID: 21698080]
[32]
Menabuoni L, Lenzetti I, Cortesini L, Rossi F, Ratto F, Pini R. Laser activated gold nanoparticles for the welding of ocular tissues. Invest Ophthalmol Vis Sci 2010; 51(13): 4219.
[33]
Khadem J, Martino M, Anatelli F, Dana MR, Hamblin MR. Healing of perforating rat corneal incisions closed with photodynamic laser-activated tissue glue. Lasers Surg Med 2004; 35(4): 304-11.
[http://dx.doi.org/10.1002/lsm.20099] [PMID: 15493025]
[34]
Tal K, Strassmann E, Loya N, et al. Corneal cut closure using temperature-controlled CO2 laser soldering system. Lasers Med Sci 2015; 30(4): 1367-71.
[http://dx.doi.org/10.1007/s10103-015-1737-2] [PMID: 25796630]
[35]
Strassmann E, Livny E, Loya N, et al. CO2 laser welding of corneal cuts with albumin solder using radiometric temperature control. Ophthalmic Res 2013; 50(3): 174-9.
[http://dx.doi.org/10.1159/000353436] [PMID: 24009005]
[36]
Basov S, Varssano D, Platkov M, et al. Strong bonding of corneal incisions using a noncontact fiber-optic laser soldering method. J Biomed Opt 2019; 24(12): 1-9.
[http://dx.doi.org/10.1117/1.JBO.24.12.128002] [PMID: 31884746]
[37]
Bloom JN, Duffy MT, Davis JB, McNally-Heintzelman KM. A light-activated surgical adhesive technique for sutureless ophthalmic surgery. Arch Ophthalmol 2003; 121(11): 1591-5.
[http://dx.doi.org/10.1001/archopht.121.11.1591] [PMID: 14609917]
[38]
Noguera G, Lee WS, Castro-Combs J, et al. Novel laser-activated solder for sealing corneal wounds. Invest Ophthalmol Vis Sci 2007; 48(3): 1038-42.
[http://dx.doi.org/10.1167/iovs.06-0488] [PMID: 17325144]
[39]
Verter EE, Gisel TE, Yang P, Johnson AJ, Redmond RW, Kochevar IE. Light-initiated bonding of amniotic membrane to cornea. Invest Ophthalmol Vis Sci 2011; 52(13): 9470-7.
[http://dx.doi.org/10.1167/iovs.11-7248] [PMID: 22058339]
[40]
Soeken TA, Zhu H, DeMartelaere S, et al. Sealing of corneal lacerations using photoactivated rose Bengal dye and amniotic membrane. Cornea 2018; 37(2): 211-7.
[http://dx.doi.org/10.1097/ICO.0000000000001389] [PMID: 29140861]
[41]
Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed 2015; 26(16): 1139-51.
[http://dx.doi.org/10.1080/09205063.2015.1078930] [PMID: 26324020]
[42]
Ebrahimi M, Ai J, Biazar E, FardiMajidi R, Hajati A, EbrahimiBarough S. Investigation of properties of chemically cross-linked silk nanofibrous mat as a nerve guide. Mater Technol 2017; 32(9): 551-9.
[http://dx.doi.org/10.1080/10667857.2017.1317065]
[43]
Ebrahimi M, Ai J, Biazar E, et al. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 394-401.
[http://dx.doi.org/10.1080/21691401.2018.1426593] [PMID: 29336177]
[44]
Tran SH, Wilson CG, Seib FP. A review of the emerging role of silk for the treatment of the eye. Pharm Res 2018; 35(12): 248.
[http://dx.doi.org/10.1007/s11095-018-2534-y] [PMID: 30397820]
[45]
Applegate MB, Partlow BP, Coburn J, et al. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv Mater 2016; 28(12): 2417-20.
[http://dx.doi.org/10.1002/adma.201504527] [PMID: 26821561]
[46]
Degoricija L, Johnson CS, Wathier M, Kim T, Grinstaff MW. Photo cross-linkable biodendrimers as ophthalmic adhesives for central lacerations and penetrating keratoplasties. Invest Ophthalmol Vis Sci 2007; 48(5): 2037-42.
[http://dx.doi.org/10.1167/iovs.06-0957] [PMID: 17460258]
[47]
Grinstaff MW. Designing hydrogel adhesives for corneal wound repair. Biomaterials 2007; 28(35): 5205-14.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.041] [PMID: 17889330]
[48]
Berdahl JP, Johnson CS, Proia AD, Grinstaff MW, Kim T. Comparison of sutures and dendritic polymer adhesives for corneal laceration repair in an in vivo chicken model. Arch Ophthalmol 2009; 127(4): 442-7.
[http://dx.doi.org/10.1001/archophthalmol.2008.582] [PMID: 19365021]
[49]
Li L, Lu C, Wang L, et al. Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl Mater Interfaces 2018; 10(16): 13283-92.
[http://dx.doi.org/10.1021/acsami.7b17054] [PMID: 29620862]
[50]
Miki D, Dastgheib K, Kim T, et al. A photopolymerized sealant for corneal lacerations. Cornea 2002; 21(4): 393-9.
[http://dx.doi.org/10.1097/00003226-200205000-00012] [PMID: 11973389]
[51]
Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015; 73: 254-71.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.045] [PMID: 26414409]
[52]
Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 2016; 5(1): 108-18.
[http://dx.doi.org/10.1002/adhm.201500005] [PMID: 25880725]
[53]
Chen YC, Lin RZ, Qi H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 2012; 22(10): 2027-39.
[http://dx.doi.org/10.1002/adfm.201101662] [PMID: 22907987]
[54]
Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010; 31(21): 5536-44.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.064] [PMID: 20417964]
[55]
Shirzaei Sani E, Kheirkhah A, Rana D, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci Adv 2019; 5(3): eaav1281.
[http://dx.doi.org/10.1126/sciadv.aav1281] [PMID: 30906864]
[56]
Kilic Bektas C, Hasirci V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J Tissue Eng Regen Med 2018; 12(4): e1899-910.
[http://dx.doi.org/10.1002/term.2621] [PMID: 29193831]
[57]
Roshandel D, Eslani M, Baradaran-Rafii A, et al. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16(4): 398-414.
[http://dx.doi.org/10.1016/j.jtos.2018.06.004] [PMID: 29908870]
[58]
Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ. How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation 2006; 81(6): 896-901.
[http://dx.doi.org/10.1097/01.tp.0000185197.37824.35] [PMID: 16570014]
[59]
Lai CM, Spilsbury K, Brankov M, Zaknich T, Rakoczy PE. Inhibition of corneal neovascularization by recombinant adenovirus mediated antisense VEGF RNA. Exp Eye Res 2002; 75(6): 625-34.
[http://dx.doi.org/10.1006/exer.2002.2075] [PMID: 12470964]
[60]
Brooks BJ, Ambati BK, Marcus DM, Ratanasit A. Photodynamic therapy for corneal neovascularisation and lipid degeneration. Br J Ophthalmol 2004; 88(6): 840.
[http://dx.doi.org/10.1136/bjo.2003.035071] [PMID: 15148229]
[61]
Sugisaki K, Usui T, Nishiyama N, et al. Photodynamic therapy for corneal neovascularization using polymeric micelles encapsulating dendrimer porphyrins. Invest Ophthalmol Vis Sci 2008; 49(3): 894-9.
[http://dx.doi.org/10.1167/iovs.07-0389] [PMID: 18326709]
[62]
Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 2013; 10(8): 2858-67.
[http://dx.doi.org/10.1021/mp300716t] [PMID: 23734705]
[63]
Vieira AP, Ferreira P, Coelho JF, Gil MH. Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. Int J Biol Macromol 2008; 43(4): 325-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.06.002]
[64]
Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine (Lond) 2012; 8(5): 776-83.
[http://dx.doi.org/10.1016/j.nano.2011.08.018] [PMID: 21930109]
[65]
Choi WI, Yoon KC, Im SK, Kim YH, Yuk SH, Tae G. Remarkably enhanced stability and function of core/shell nanoparticles composed of a lecithin core and a pluronic shell layer by photo-crosslinking the shell layer: In vitro and in vivo study. Acta Biomater 2010; 6(7): 2666-73.
[http://dx.doi.org/10.1016/j.actbio.2010.01.029] [PMID: 20102749]
[66]
Ameri Bafghi R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int J Polym Mater 2016; 65(2): 91-5.
[http://dx.doi.org/10.1080/00914037.2015.1074907]
[67]
Kamalvand M, Biazar E, Daliri-Joupari M, Montazer F, Rezaei-Tavirani M, Heidari-Keshel S. Design of a decellularized fish skin as a biological scaffold for skin tissue regeneration. Tissue Cell 2021; 71: 101509.
[http://dx.doi.org/10.1016/j.tice.2021.101509] [PMID: 33621947]
[68]
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int J Polym Mater 2015; 64(17): 879-87.
[http://dx.doi.org/10.1080/00914037.2015.1030658]
[69]
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering. ASAIO J 2015; 61(5): 605-12.
[http://dx.doi.org/10.1097/MAT.0000000000000242] [PMID: 26317152]
[70]
Baradaran-Rafii A, Biazar E, Heidari-keshel S. Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocular epithelial regeneration. Curr Eye Res 2016; 41(3): 326-33.
[PMID: 25897888]
[71]
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of limbal stem cells on poly (hydroxybuthyrate-co-hydroxyvalerate) porous scaffolds for ocular surface bioengineering. Int J Polym Mater 2015; 64(15): 815-21.
[http://dx.doi.org/10.1080/00914037.2015.1030651]
[72]
Heidari Keshel S, Rostampour M, Khosropour G, Bandbon BA, Baradaran-Rafii A, Biazar E. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel. J Biomater Sci Polym Ed 2016; 27(4): 339-50.
[http://dx.doi.org/10.1080/09205063.2015.1130406] [PMID: 26675143]
[73]
Rizwan M, Peh GSL, Ang HP, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials 2017; 120: 139-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.026] [PMID: 28061402]
[74]
Wang L, Lu C, Liu H, et al. A double network strategy to improve epithelization of a poly (2-hydroxyethyl methacrylate) hydrogel for corneal repair application. RSC Advances 2016; 6(2): 1194-202.
[http://dx.doi.org/10.1039/C5RA17726J]
[75]
Bhattacharjee P, Fernández-Pérez J, Ahearne M. Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering. Mater Sci Eng C 2019; 105: 110093.
[http://dx.doi.org/10.1016/j.msec.2019.110093] [PMID: 31546364]
[76]
Fernandes-Cunha GM, Lee HJ, Kumar A, Kreymerman A, Heilshorn S, Myung D. Immobilization of growth factors to collagen surfaces using pulsed visible light. Biomacromolecules 2017; 18(10): 3185-96.
[http://dx.doi.org/10.1021/acs.biomac.7b00838] [PMID: 28799757]
[77]
Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea: Challenges and perspectives. Med Eng Phys 2019; 71: 68-78.
[http://dx.doi.org/10.1016/j.medengphy.2019.05.002] [PMID: 31201014]
[78]
Tamay DG, Dursun UT, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 2019; 7: 164.
[http://dx.doi.org/10.3389/fbioe.2019.00164] [PMID: 31338366]
[79]
Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 2018; 9: 2041731418769863.
[http://dx.doi.org/10.1177/2041731418769863] [PMID: 29686829]
[80]
Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 2018; 171: 57-71.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.034] [PMID: 29684677]
[81]
Kilic Bektas C, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater Sci 2019; 8(1): 438-49.
[http://dx.doi.org/10.1039/C9BM01236B] [PMID: 31746842]
[82]
Deckelbaum LI, Isner JM, Donaldson RF, Laliberte SM, Clarke RH, Salem DN. Use of pulsed energy delivery to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular tissues. J Am Coll Cardiol 1986; 7(4): 898-908.
[http://dx.doi.org/10.1016/S0735-1097(86)80355-2] [PMID: 3082956]
[83]
Allain JC, Le Lous M, Cohen-Solal L, Bazin S, Maroteaux P. Isometric tensions developed during the hydrothermal swelling of rat skin. Connect Tissue Res 1980; 7(3): 127-33.
[http://dx.doi.org/10.3109/03008208009152104] [PMID: 6447046]
[84]
Hayashi K, Thabit G III, Bogdanske JJ, Mascio LN, Markel MD. The effect of nonablative laser energy on the ultrastructure of joint capsular collagen. Arthroscopy 1996; 12(4): 474-81.
[http://dx.doi.org/10.1016/S0749-8063(96)90043-2] [PMID: 8864007]
[85]
Wang J, Chung JL, Schuele G, et al. Safety of cornea and iris in ocular surgery with 355-nm lasers. J Biomed Opt 2015; 20(9): 095005.
[http://dx.doi.org/10.1117/1.JBO.20.9.095005] [PMID: 26359809]
[86]
Jiao L, Wang J, Jing X, Chen H, Yang Z. Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model. Biomed Opt Express 2017; 8(5): 2745-55.
[http://dx.doi.org/10.1364/BOE.8.002745] [PMID: 28663903]
[87]
Crotti C, Deloison F, Alahyane F, et al. Wavelength optimization in femtosecond laser corneal surgery. Invest Ophthalmol Vis Sci 2013; 54(5): 3340-9.
[http://dx.doi.org/10.1167/iovs.12-10694] [PMID: 23538062]
[88]
Wang J, Jiao L, Chen H, Yang Z, Hu X. Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm. J Biomed Opt 2016; 21(1): 15011.
[http://dx.doi.org/10.1117/1.JBO.21.1.015011] [PMID: 26811075]
[89]
Park HC, Champakalakshmi R, Panengad PP, Raghunath M, Mehta JS. Tissue adhesives in ocular surgery. Expert Rev Ophthalmol 2011; 6(6): 631-55.
[http://dx.doi.org/10.1586/eop.11.64]
[90]
Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. J Ophthalmol 2011; 2011: 869015.
[http://dx.doi.org/10.1155/2011/869015] [PMID: 22254130]
[91]
Hathaway JA, Sliney DH. Visible light and infrared radiation. In: Gregg M, Stave MD, Peter H, Eds. Physical and biological hazards of the workplace. New York, NY: John Wiley and Sons 2017. pp. 203
[92]
Ramasamy K, Shanmugam M, Balupillai A, et al. Ultraviolet radiation-induced carcinogenesis: Mechanisms and experimental models. J Cancer Res Ther 2017; 8(1): 4-19.
[93]
Wollensak G, Spörl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res 2003; 35(6): 324-8.
[http://dx.doi.org/10.1159/000074071] [PMID: 14688422]
[94]
Chan CC, Sharma M, Wachler BS. Effect of inferior-segment Intacs with and without C3-R on keratoconus. J Cataract Refract Surg 2007; 33(1): 75-80.
[http://dx.doi.org/10.1016/j.jcrs.2006.09.012] [PMID: 17189797]
[95]
Lorenzo-Martín E, Gallego-Muñoz P, Ibares-Frías L, et al. Rose bengal and green light versus riboflavin-uva cross-linking: Corneal wound repair response. Invest Ophthalmol Vis Sci 2018; 59(12): 4821-30.
[http://dx.doi.org/10.1167/iovs.18-24881] [PMID: 30347076]
[96]
Nizamoglu S, Gather MC, Humar M, et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Commun 2016; 7: 10374.
[http://dx.doi.org/10.1038/ncomms10374]
[97]
Delori FC, Webb RH, Sliney DH. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 2007; 24(5): 1250-65.
[http://dx.doi.org/10.1364/JOSAA.24.001250] [PMID: 17429471]
[98]
Mattson MS. Understanding and treating eye diseases: Mechanical characterization and photochemical modification of the cornea and sclera. Doctoral dissertation. Pasadena, California: California Institute of Technology, 2008.
[99]
Lee HS, Cui L, Li Y, et al. Correction: Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 2016; 11(11): e0167671.
[http://dx.doi.org/10.1371/journal.pone.0167671] [PMID: 27902781]
[100]
Joshi A, Bennett DB, Stafsudd OM. Monitoring corneal hydration with a mid-infrared (IR) laser. Ocul Surf 2015; 13(1): 43-6.
[http://dx.doi.org/10.1016/j.jtos.2014.08.003] [PMID: 25557345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy