Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Identification of the First “Two Digit Nano-molar” Inhibitors of the Human Glyoxalase-I Enzyme as Potential Anticancer Agents

Author(s): Qosay A. Al‑Balas*, Mahmoud A. Al-Sha'er, Mohammad A. Hassan and Esra’a Al Zou’bi

Volume 18, Issue 4, 2022

Page: [473 - 483] Pages: 11

DOI: 10.2174/1573406417666210714170403

Price: $65

Abstract

Background: Glyoxalase-I (Glo-I) enzyme is recognized as an indispensable druggable target in cancer treatment. Its inhibition will lead to the accumulation of toxic aldehyde metabolites and cell death. Paramount efforts were spent to discover potential competitive inhibitors with the aim to eradicate cancer.

Objective: Based on our previous work on this target for discovering potent inhibitors of this enzyme, herein, we address the discovery of the most potent Glo-I inhibitors reported in the literature with two digits nano-molar activity.

Methods: Molecular docking and in vitro assay were performed to discover these inhibitors and explore the binding pattern within the active site. A detailed SAR scheme was generated, which identifies the major functionalities responsible for the observed activity.

Results: Compound 1 with an IC50 of 16.5 nM exhibited the highest activity, which possess catechol moiety as an essential zinc chelating functionality. It has been shown by using molecular modeling techniques that the catechol moiety is responsible for chelation zinc atom at the active site; an essential feature for enzyme inhibition.

Conclusion: Catechol derivatives are successful zinc chelators in Glo-I enzyme while showing exceptional activity against the enzyme to nanomolar level.

Keywords: Glyoxalase-I, anticancer, catechol derivatives, two digit nanomolar inhibitor, NCI database, aldehyde metabolites.

Graphical Abstract

[1]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[2]
Prendergast, G.C.; Jaffee, E.M. Cancer immunologists and cancer biologists: why we didn’t talk then but need to now. Cancer Res., 2007, 67(8), 3500-3504.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4626] [PMID: 17413003]
[3]
Vince, R.; Wadd, W.B. Glyoxalase inhibitors as potential anticancer agents. Biochem. Biophys. Res. Commun., 1969, 35(5), 593-598.
[http://dx.doi.org/10.1016/0006-291X(69)90445-8] [PMID: 5794079]
[4]
Vince, R.; Daluge, S. Glyoxalase inhibitors. A possible approach to anticancer agents. J. Med. Chem., 1971, 14(1), 35-37.
[http://dx.doi.org/10.1021/jm00283a009] [PMID: 5099673]
[5]
Geng, X.; Ma, J.; Zhang, F.; Xu, C. Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy. Oncol. Res. Treat., 2014, 37(10), 570-574.
[http://dx.doi.org/10.1159/000367800] [PMID: 25342507]
[6]
Racker, E. The mechanism of action of glyoxalase. J. Biol. Chem., 1951, 190(2), 685-696.
[http://dx.doi.org/10.1016/S0021-9258(18)56017-8] [PMID: 14841219]
[7]
Chasseaud, L. Functions of glutathione: Biochemical, physiological, toxicological and clinical aspects, 1st ed; Raven Press, 1983.
[8]
Carrington, S. The glyoxalase enigma. The biological consequences of a ubiquitous enzyme. IRCS Med. Sci., 1986, 14, 763-768.
[9]
Rulli, A.; Carli, L.; Romani, R.; Baroni, T.; Giovannini, E.; Rosi, G.; Talesa, V. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res. Treat., 2001, 66(1), 67-72.
[http://dx.doi.org/10.1023/A:1010632919129] [PMID: 11368412]
[10]
Antognelli, C.; Baldracchini, F.; Talesa, V.N.; Costantini, E.; Zucchi, A.; Mearini, E. Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J., 2006, 12(3), 222-228.
[http://dx.doi.org/10.1097/00130404-200605000-00011] [PMID: 16803681]
[11]
Mearini, E.; Romani, R.; Mearini, L.; Antognelli, C.; Zucchi, A.; Baroni, T.; Porena, M.; Talesa, V.N. Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur. J. Cancer, 2002, 38(14), 1946-1950.
[http://dx.doi.org/10.1016/S0959-8049(02)00236-8] [PMID: 12204678]
[12]
Sakamoto, H.; Mashima, T.; Kizaki, A.; Dan, S.; Hashimoto, Y.; Naito, M.; Tsuruo, T. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood, 2000, 95(10), 3214-3218.
[http://dx.doi.org/10.1182/blood.V95.10.3214] [PMID: 10807791]
[13]
Lo, T.W.; Thornalley, P.J. Inhibition of proliferation of human leukaemia 60 cells by diethyl esters of glyoxalase inhibitors in vitro. Biochem. Pharmacol., 1992, 44(12), 2357-2363.
[http://dx.doi.org/10.1016/0006-2952(92)90680-H] [PMID: 1472100]
[14]
Al-Balas, Q.; Hassan, M.; Al-Oudat, B.; Alzoubi, H.; Mhaidat, N.; Almaaytah, A. Generation of the first structure-based pharmacophore model containing a selective “zinc binding group” feature to identify potential glyoxalase-1 inhibitors. Molecules, 2012, 17(12), 13740-13758.
[http://dx.doi.org/10.3390/molecules171213740] [PMID: 23174893]
[15]
Al-Balas, Q.A.; Hassan, M.A.; Al-Shar’i, N.A.; Al Jabal, G.A.; Almaaytah, A.M. Al-Shar’I, N.A.; Al Jabal, G.A.; Almaaytah, A.M. Recent advances in glyoxalase-I inhibition. Mini Rev. Med. Chem., 2019, 19(4), 281-291.
[http://dx.doi.org/10.2174/1389557518666181009141231] [PMID: 30306863]
[16]
He, Y.; Zhou, C.; Huang, M.; Tang, C.; Liu, X.; Yue, Y.; Diao, Q.; Zheng, Z.; Liu, D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed. Pharmacother., 2020, 131110663
[http://dx.doi.org/10.1016/j.biopha.2020.110663] [PMID: 32858501]
[17]
Takasawa, R.; Shimada, N.; Uchiro, H.; Takahashi, S.; Yoshimori, A.; Tanuma, S. TLSC702, a novel inhibitor of human glyoxalase I, induces apoptosis in tumor cells. Biol. Pharm. Bull., 2016, 39(5), 869-873.
[http://dx.doi.org/10.1248/bpb.b15-00710] [PMID: 27150153]
[18]
Al-Balas, Q.A.; Hassan, M.A.; Al-Shar’i, N.A.; Mhaidat, N.M.; Almaaytah, A.M.; Al-Mahasneh, F.M.; Isawi, I.H. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents. Drug Des. Devel. Ther., 2016, 10, 2623-2629.
[http://dx.doi.org/10.2147/DDDT.S110997] [PMID: 27574401]
[19]
Al-Sha’er, M.A.; Al-Balas, Q.A.; Hassan, M.A.; Al Jabal, G.A.; Almaaytah, A.M. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents. Comput. Biol. Chem., 2019, 80, 102-110.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.03.011] [PMID: 30947068]
[20]
Al-Shari, N.A.; Al-Rousan, E.K.; Fakhouri, L.I.; Al-Balas, Q.A.; Hassan, M.A. Discovery of a nanomolar glyoxalase-I inhibitor using integrated ligand-based pharmacophore modeling and molecular docking. Med. Chem. Res., 2019, 29(3), 356-376.
[http://dx.doi.org/10.1007/s00044-019-02486-3]
[21]
Al-Balasa, A.Q.; Hassana, A.M.; Al Jabala, A.G. Novel thiazole carboxylic acid derivatives possessing a “zinc binding feature” as potential human glyoxalase-i inhibitors. Lett. Drug Des. Discov., 2017, 14(11), 1324-1334.
[http://dx.doi.org/10.2174/1570180814666170306120954]
[22]
Al-Oudat, B.A.; Jaradat, H.M.; Al-Balas, Q.A.; Al-Shar’i, N.A.; Bryant-Friedrich, A.; Bedi, M.F. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents. Bioorg. Med. Chem., 2020, 28(16), 115608-115625.
[http://dx.doi.org/10.1016/j.bmc.2020.115608] [PMID: 32690268]
[23]
Al-Sha’er, M.A.; Al-Balas, Q.A.; Hassan, M.A. Combined high throughput screening with QSAR analysis unravelling potential glyoxalase-I inhibitors. Curr. Comput. Aided. Drug Des., 2020, 16(6), 814-832.
[http://dx.doi.org/10.2174/1573409916666200117100326] [PMID: 31957614]
[24]
Al-Shar’i, N.A.; Al-Balas, Q.A.; Hassan, M.A.; El-Elimat, T.M.; Aljabal, G.A.; Almaaytah, A.M. Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold. Acta Pharm., 2021, 71(1), 115-130.
[http://dx.doi.org/10.2478/acph-2021-0005] [PMID: 32697740]
[25]
Al-Balas, Q.A.; Hassan, M.A.; Al-Shar’i, N.A.; El-Elimat, T.; Almaaytah, A.M. Computational and experimental exploration of the structure-activity relationships of flavonoids as potent glyoxalase-I inhibitors. Drug Dev. Res., 2018, 79(2), 58-69.
[http://dx.doi.org/10.1002/ddr.21421] [PMID: 29285772]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy