Review Article

PCSK9 在传染病中的作用

卷 29, 期 6, 2022

发表于: 14 July, 2021

页: [1000 - 1015] 页: 16

弟呕挨: 10.2174/0929867328666210714160343

价格: $65

摘要

背景:近年来,PCSK9 的生理作用的许多方面已被阐明,特别是关于其在脂质代谢、心血管风险中的作用以及其在先天免疫中的作用。越来越多的证据表明 PCSK9 参与病毒感染(主要是 HCV)的发病机制,以及调节宿主对细菌感染(主要是败血症和感染性休克)的反应。此外,PCSK9 的作用已被研究为疟疾感染发病机制和疾病严重程度的关键步骤。目的:本文的目的是回顾现有已发表的关于 PCSK9 在多种传染病中的作用的文献。结论:除了正在进行的关于在 HIV 感染患者中抑制 PCSK9 以治疗 HIV 和 ART 相关的高脂血症的研究外,临床前研究表明 PCSK9 如何参与减少 HCV 的复制。此外,还提出了 PCSK9 抑制对登革热和 SARS-CoV-2 病毒感染的保护作用。有趣的是,已在脓毒症患者中描述了高血浆 PCSK9 水平。最后,据报道 PCSK9 编码基因的功能丧失可能会降低疟疾感染的死亡率。

关键词: HCV、HIV、败血症、原虫感染、病毒感染、细菌感染、免疫。

Next »
[1]
Urban, D.; Pöss, J.; Böhm, M.; Laufs, U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J. Am. Coll. Cardiol., 2013, 62(16), 1401-1408.
[http://dx.doi.org/10.1016/j.jacc.2013.07.056] [PMID: 23973703]
[2]
Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Peña Genao, E.; Echavarria Uceta, R.; Guzman, E. Safety and tolerability of PCSK9 inhibitors: current insights. Clin. Pharmacol., 2020, 12, 191-202.
[http://dx.doi.org/10.2147/CPAA.S288831] [PMID: 33335431]
[3]
Page, M.M.; Watts, G.F. PCSK9 inhibitors - mechanisms of action. Aust. Prescr., 2016, 39(5), 164-167.
[http://dx.doi.org/10.18773/austprescr.2016.060] [PMID: 27789927]
[4]
Moşteoru, S.; Gaiţă, D.; Banach, M. An update on PCSK9 inhibitors- pharmacokinetics, drug interactions, and toxicity. Expert Opin. Drug Metab. Toxicol., 2020, 16(12), 1199-1205.
[http://dx.doi.org/10.1080/17425255.2020.1828343] [PMID: 32966148]
[5]
Koskinas, K.C.; Gencer, B.; Nanchen, D.; Branca, M.; Carballo, D.; Klingenberg, R.; Blum, M.R.; Carballo, S.; Muller, O.; Matter, C.M.; Lüscher, T.F.; Rodondi, N.; Heg, D.; Wilhelm, M.; Räber, L.; Mach, F.; Windecker, S. Eligibility for PCSK9 Inhibitors Based on the 2019 ESC/EAS and 2018 ACC/AHA Guidelines. Eur. J. Prev. Cardiol., 2020., 2047487320940102.
[http://dx.doi.org/10.1177/2047487320940102] [PMID: 33755142]
[6]
Ploss, A.; Evans, M.J.; Hepatitis, C. Hepatitis C virus host cell entry. Curr. Opin. Virol., 2012, 2(1), 14-19.
[http://dx.doi.org/10.1016/j.coviro.2011.12.007] [PMID: 22440961]
[7]
Labonté, P.; Begley, S.; Guévin, C.; Asselin, M-C.; Nassoury, N.; Mayer, G.; Prat, A.; Seidah, N.G. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology, 2009, 50(1), 17-24.
[http://dx.doi.org/10.1002/hep.22911] [PMID: 19489072]
[8]
Momtazi, A.A.; Banach, M.; Sahebkar, A. PCSK9 inhibitors in sepsis: a new potential indication? Expert Opin. Investig. Drugs, 2017, 26(2), 137-139.
[http://dx.doi.org/10.1080/13543784.2017.1272570] [PMID: 27967260]
[9]
Paciullo, F.; Fallarino, F.; Bianconi, V.; Mannarino, M.R.; Sahebkar, A.; Pirro, M. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J. Cell. Physiol., 2017, 232(9), 2330-2338.
[http://dx.doi.org/10.1002/jcp.25767] [PMID: 28063230]
[10]
Topchiy, E.; Cirstea, M.; Kong, H.J.; Boyd, J.H.; Wang, Y.; Russell, J.A.; Walley, K.R. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLoS One, 2016, 11(5), e0155030.
[http://dx.doi.org/10.1371/journal.pone.0155030] [PMID: 27171436]
[11]
Walley, K.R.; Thain, K.R.; Russell, J.A.; Reilly, M.P.; Meyer, N.J.; Ferguson, J.F.; Christie, J.D.; Nakada, T.A.; Fjell, C.D.; Thair, S.A.; Cirstea, M.S.; Boyd, J.H. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med., 2014, 6(258), 258ra143.
[http://dx.doi.org/10.1126/scitranslmed.3008782] [PMID: 25320235]
[12]
Boyd, J.H.; Fjell, C.D.; Russell, J.A.; Sirounis, D.; Cirstea, M.S.; Walley, K.R. Increased plasma pcsk9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J. Innate Immun., 2016, 8(2), 211-220.
[http://dx.doi.org/10.1159/000442976] [PMID: 26756586]
[13]
Dwivedi, D.J.; Grin, P.M.; Khan, M.; Prat, A.; Zhou, J.; Fox-Robichaud, A.E.; Seidah, N.G.; Liaw, P.C. Differential expression of pcsk9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock, 2016, 46(6), 672-680.
[http://dx.doi.org/10.1097/SHK.0000000000000682] [PMID: 27405064]
[14]
Samuel, B.U.; Mohandas, N.; Harrison, T.; McManus, H.; Rosse, W.; Reid, M.; Haldar, K. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem., 2001, 276(31), 29319-29329.
[http://dx.doi.org/10.1074/jbc.M101268200] [PMID: 11352913]
[15]
Mbikay, M.; Mayne, J.; Seidah, N.G.; Chrétien, M. Of PCSK9, cholesterol homeostasis and parasitic infections: possible survival benefits of loss-of-function PCSK9 genetic polymorphisms. Med. Hypotheses, 2007, 69(5), 1010-1017.
[http://dx.doi.org/10.1016/j.mehy.2007.03.018] [PMID: 17502126]
[16]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[17]
Cheng, J.M.; Oemrawsingh, R.M.; Garcia-Garcia, H.M.; Boersma, E.; van Geuns, R-J.; Serruys, P.W.; Kardys, I.; Akkerhuis, K.M. PCSK9 in relation to coronary plaque inflammation: Results of the atheroremo-ivus study. Atherosclerosis, 2016, 248, 117-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.010] [PMID: 27015246]
[18]
Ding, Z.; Wang, X.; Liu, S.; Shahanawaz, J.; Theus, S.; Fan, Y.; Deng, X.; Zhou, S.; Mehta, J.L. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc. Res., 2018, 114(13), 1738-1751.
[http://dx.doi.org/10.1093/cvr/cvy128] [PMID: 29800228]
[19]
Norata, G.D.; Tavori, H.; Pirillo, A.; Fazio, S.; Catapano, A.L. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc. Res., 2016, 112(1), 429-442.
[http://dx.doi.org/10.1093/cvr/cvw194] [PMID: 27496869]
[20]
Ricci, C.; Ruscica, M.; Camera, M.; Rossetti, L.; Macchi, C.; Colciago, A.; Zanotti, I.; Lupo, M.G.; Adorni, M.P.; Cicero, A.F.G.; Fogacci, F.; Corsini, A.; Ferri, N. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep., 2018, 8(1), 2267.
[http://dx.doi.org/10.1038/s41598-018-20425-x] [PMID: 29396513]
[21]
Tang, Z-H.; Peng, J.; Ren, Z.; Yang, J.; Li, T-T.; Li, T-H.; Wang, Z.; Wei, D-H.; Liu, L-S.; Zheng, X-L.; Jiang, Z-S. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis, 2017, 262, 113-122.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.04.023] [PMID: 28535426]
[22]
Ding, Z.; Liu, S.; Wang, X.; Deng, X.; Fan, Y.; Shahanawaz, J.; Shmookler Reis, R.J.; Varughese, K.I.; Sawamura, T.; Mehta, J.L. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res., 2015, 107(4), 556-567.
[http://dx.doi.org/10.1093/cvr/cvv178] [PMID: 26092101]
[23]
Ding, Z.; Pothineni, N.V.K.; Goel, A.; Lüscher, T.F.; Mehta, J.L. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc. Res., 2020, 116(5), 908-915.
[http://dx.doi.org/10.1093/cvr/cvz313] [PMID: 31746997]
[24]
Feingold, K.R.; Moser, A.H.; Shigenaga, J.K.; Patzek, S.M.; Grunfeld, C. Inflammation stimulates the expression of PCSK9. Biochem. Biophys. Res. Commun., 2008, 374(2), 341-344.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.023] [PMID: 18638454]
[25]
Grin, P.M.; Dwivedi, D.J.; Chathely, K.M.; Trigatti, B.L.; Prat, A.; Seidah, N.G.; Liaw, P.C.; Fox-Robichaud, A.E. Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor. Sci. Rep., 2018, 8(1), 10496.
[http://dx.doi.org/10.1038/s41598-018-28777-0] [PMID: 30002483]
[26]
Wendel, M.; Paul, R.; Heller, A.R. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med., 2007, 33(1), 25-35.
[http://dx.doi.org/10.1007/s00134-006-0433-x] [PMID: 17093984]
[27]
Berger, J-M.; Loza Valdes, A.; Gromada, J.; Anderson, N.; Horton, J.D. Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. J. Lipid Res., 2017, 58(8), 1661-1669.
[http://dx.doi.org/10.1194/jlr.M076844] [PMID: 28600283]
[28]
Atreya, M.R.; Whitacre, B.E.; Cvijanovich, N.Z.; Bigham, M.T.; Thomas, N.J.; Schwarz, A.J.; Weiss, S.L.; Fitzgerald, J.C.; Allen, G.L.; Lutfi, R.; Nowak, J.E.; Quasney, M.W.; Shah, A.S.; Wong, H.R. Proprotein convertase subtilisin/kexin type 9 loss-of-function is detrimental to the juvenile host with septic shock. Crit. Care Med., 2020, 48(10), 1513-1520.
[http://dx.doi.org/10.1097/CCM.0000000000004487] [PMID: 32769621]
[29]
Ferraz-Amaro, I.; Winchester, R.; Gregersen, P.K.; Reynolds, R.J.; Wasko, M.C.; Oeser, A.; Chung, C.P.; Stein, C.M.; Giles, J.T.; Bathon, J.M. Coronary artery calcification and rheumatoid arthritis: lack of relationship to risk alleles for coronary artery disease in the general population. Arthritis Rheumatol., 2017, 69(3), 529-541.
[http://dx.doi.org/10.1002/art.39862] [PMID: 27696788]
[30]
Brown, M.; Ahmed, S. Emerging role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol. Appl. Pharmacol., 2019, 370, 170-177.
[http://dx.doi.org/10.1016/j.taap.2019.03.018] [PMID: 30914377]
[31]
Effects of immunization against PCSK9 in an experimental model of breast cancer - PubMed Available from: https://pubmed.ncbi.nlm.nih.gov/31110521/ [Accessed Jan 3, 2021]
[32]
X, L.; X, B.; M, H.; H, C.; M, J.; J, C.; L, X.; Q, H.; F, L.; Cy, L.. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Available from: https://pubmed.ncbi.nlm.nih.gov/33177715/ [Accessed Jan 3, 2021]
[33]
Marcus, J.L.; Leyden, W.A.; Alexeeff, S.E.; Anderson, A.N.; Hechter, R.C.; Hu, H.; Lam, J.O.; Towner, W.J.; Yuan, Q.; Horberg, M.A.; Silverberg, M.J. Comparison of overall and comorbidity-free life expectancy between insured adults with and without hiv infection, 2000-2016. JAMA Netw. Open, 2020, 3(6), e207954.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.7954] [PMID: 32539152]
[34]
Cui, H.L.; Ditiatkovski, M.; Kesani, R.; Bobryshev, Y.V.; Liu, Y.; Geyer, M.; Mukhamedova, N.; Bukrinsky, M.; Sviridov, D. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB J., 2014, 28(7), 2828-2839.
[http://dx.doi.org/10.1096/fj.13-246876] [PMID: 24642731]
[35]
Brown, T.T.; Glesby, M.J. Management of the metabolic effects of HIV and HIV drugs. Nat. Rev. Endocrinol., 2011, 8(1), 11-21.
[http://dx.doi.org/10.1038/nrendo.2011.151] [PMID: 21931374]
[36]
Feingold, K.R.; Krauss, R.M.; Pang, M.; Doerrler, W.; Jensen, P.; Grunfeld, C. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J. Clin. Endocrinol. Metab., 1993, 76(6), 1423-1427.
[http://dx.doi.org/10.1210/jcem.76.6.8501146] [PMID: 8501146]
[37]
Gori, E.; Mduluza, T.; Nyagura, M.; Stray-Pedersen, B.; Gomo, Z.A. Inflammation-modulating cytokine profile and lipid interaction in HIV-related risk factors for cardiovascular diseases. Ther. Clin. Risk Manag., 2016, 12, 1659-1666.
[http://dx.doi.org/10.2147/TCRM.S117980] [PMID: 27956833]
[38]
Flint, O.P.; Noor, M.A.; Hruz, P.W.; Hylemon, P.B.; Yarasheski, K.; Kotler, D.P.; Parker, R.A.; Bellamine, A. The role of protease inhibitors in the pathogenesis of HIV-associated lipodystrophy: cellular mechanisms and clinical implications. Toxicol. Pathol., 2009, 37(1), 65-77.
[http://dx.doi.org/10.1177/0192623308327119] [PMID: 19171928]
[39]
Gorwood, J.; Bourgeois, C.; Pourcher, V.; Pourcher, G.; Charlotte, F.; Mantecon, M.; Rose, C.; Morichon, R.; Atlan, M.; Le Grand, R.; Desjardins, D.; Katlama, C.; Fève, B.; Lambotte, O.; Capeau, J.; Béréziat, V.; Lagathu, C. The integrase inhibitors dolutegravir and raltegravir exert proadipogenic and profibrotic effects and induce insulin resistance in human/simian adipose tissue and human adipocytes. Clin. Infect. Dis., 2020, 71(10), e549-e560.
[http://dx.doi.org/10.1093/cid/ciaa259] [PMID: 32166319]
[40]
Kauppinen, K.J.; Kivelä, P.; Sutinen, J. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide significantly worsens the lipid profile in a real-world setting. AIDS Patient Care STDS, 2019, 33(12), 500-506.
[http://dx.doi.org/10.1089/apc.2019.0236] [PMID: 31742421]
[41]
Sosner, P.; Wangermez, M.; Chagneau-Derrode, C.; Le Moal, G.; Silvain, C. Atherosclerosis risk in HIV-infected patients: The influence of hepatitis C virus co-infection. Atherosclerosis, 2012, 222(1), 274-277.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.02.027] [PMID: 22417840]
[42]
Feinstein, M.J.; Hsue, P.Y.; Benjamin, L.A.; Bloomfield, G.S.; Currier, J.S.; Freiberg, M.S.; Grinspoon, S.K.; Levin, J.; Longenecker, C.T.; Post, W.S. Characteristics, prevention, and management of cardiovascular disease in people living with hiv: A scientific statement from the american heart association. Circulation, 2019, 140(2), e98-e124.
[http://dx.doi.org/10.1161/CIR.0000000000000695] [PMID: 31154814]
[43]
2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis, 2019, 290, 140-205.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.08.014] [PMID: 31591002]
[44]
Kohli, P.; Ganz, P.; Ma, Y.; Scherzer, R.; Hur, S.; Weigel, B.; Grunfeld, C.; Deeks, S.; Wasserman, S.; Scott, R.; Hsue, P.Y. HIV and hepatitis c-coinfected patients have lower low-density lipoprotein cholesterol despite higher proprotein convertase subtilisin kexin 9 (pcsk9): An apparent “pcsk9-lipid paradox”. J. Am. Heart Assoc., 2016, 5(5), e002683.
[http://dx.doi.org/10.1161/JAHA.115.002683] [PMID: 27130349]
[45]
Zanni, M.V.; Stone, L.A.; Toribio, M.; Rimmelin, D.E.; Robinson, J.; Burdo, T.H.; Williams, K.; Fitch, K.V.; Lo, J.; Grinspoon, S.K. Proprotein convertase subtilisin/kexin 9 levels in relation to systemic immune activation and subclinical coronary plaque in hiv. Open Forum Infect. Dis., 2017, 4(4), ofx227.
[http://dx.doi.org/10.1093/ofid/ofx227] [PMID: 29226174]
[46]
Leucker, T.M.; Weiss, R.G.; Schär, M.; Bonanno, G.; Mathews, L.; Jones, S.R.; Brown, T.T.; Moore, R.; Afework, Y.; Gerstenblith, G.; Hays, A.G. Coronary endothelial dysfunction is associated with elevated serum pcsk9 levels in people with hiv independent of low-density lipoprotein cholesterol. J. Am. Heart Assoc., 2018, 7(19), e009996.
[http://dx.doi.org/10.1161/JAHA.118.009996] [PMID: 30371326]
[47]
Boccara, F.; Kumar, P.N.; Caramelli, B.; Calmy, A.; López, J.A.G.; Bray, S.; Cyrille, M.; Rosenson, R.S. Evolocumab in hiv-infected patients with dyslipidemia: Primary results of the randomized, double-blind beijerinck study. J. Am. Coll. Cardiol., 2020, 75(20), 2570-2584.
[http://dx.doi.org/10.1016/j.jacc.2020.03.025] [PMID: 32234462]
[48]
MD, P. H. Effect of pcsk9 inhibition on cardiovascular risk in treated hiv infection (EPIC-HIV Study), 2020. Clinical trial registration NCT03207945; clinicaltrials.gov
[49]
Johns Hopkins University Effect of evolocumab on coronary endothelial function, NCT03500302, July 24,. 2020.https://clinicaltrials.gov/ct2/show/record/NCT03500302
[50]
World Health Organization. Effect of evolocumab on coronary endothelial function., 2017. Clinical trial registration NCT03500302; clinicaltrials.gov.
[51]
Ryerson, A.B.; Eheman, C.R.; Altekruse, S.F.; Ward, J.W.; Jemal, A.; Sherman, R.L.; Henley, S.J.; Holtzman, D.; Lake, A.; Noone, A.M.; Anderson, R.N.; Ma, J.; Ly, K.N.; Cronin, K.A.; Penberthy, L.; Kohler, B.A. Annual report to the nation on the status of cancer, 1975-2012, featuring the increasing incidence of liver cancer.Cancer; John Wiley and Sons Inc., 2016, pp. 1312-1337.
[52]
Di Bisceglie, A.M. Hepatitis c and hepatocellular carcinoma. Hepatology; John Wiley and Sons Inc., 1997, p. 26.
[53]
Zeisel, M.B.; Felmlee, D.J.; Baumert, T.F. Hepatitis, C. Virus entry. Curr. Top. Microbiol. Immunol., 2013, 369, 87-112.
[http://dx.doi.org/10.1007/978-3-642-27340-7_4] [PMID: 23463198]
[54]
Popescu, C.I.; Riva, L.; Vlaicu, O.; Farhat, R.; Rouillé, Y.; Dubuisson, J. Hepatitis c virus life cycle and lipid metabolism.Biology; MDPI AG, 2014, pp. 892-921.
[55]
Younossi, Z.M.; Otgonsuren, M.; Henry, L.; Venkatesan, C.; Mishra, A.; Erario, M.; Hunt, S. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 2015, 62(6), 1723-1730.
[http://dx.doi.org/10.1002/hep.28123] [PMID: 26274335]
[56]
André, P.; Komurian-Pradel, F.; Deforges, S.; Perret, M.; Berland, J.L.; Sodoyer, M.; Pol, S.; Bréchot, C.; Paranhos-Baccalà, G.; Lotteau, V. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J. Virol., 2002, 76(14), 6919-6928.
[http://dx.doi.org/10.1128/JVI.76.14.6919-6928.2002] [PMID: 12072493]
[57]
Boyer, A.; Dumans, A.; Beaumont, E.; Etienne, L.; Roingeard, P.; Meunier, J.C. The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J. Biol. Chem., 2014, 289(27), 18904-18913.
[http://dx.doi.org/10.1074/jbc.M113.538256] [PMID: 24838241]
[58]
Merz, A.; Long, G.; Hiet, M.S.; Brügger, B.; Chlanda, P.; Andre, P.; Wieland, F.; Krijnse-Locker, J.; Bartenschlager, R. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J. Biol. Chem., 2011, 286(4), 3018-3032.
[http://dx.doi.org/10.1074/jbc.M110.175018] [PMID: 21056986]
[59]
Corey, K.E.; Kane, E.; Munroe, C.; Barlow, L.L.; Zheng, H.; Chung, R.T.; Hepatitis, C. Hepatitis C virus infection and its clearance alter circulating lipids: implications for long-term follow-up. Hepatology, 2009, 50(4), 1030-1037.
[http://dx.doi.org/10.1002/hep.23219] [PMID: 19787818]
[60]
Ferri, N.; Corsini, A.; Macchi, C.; Magni, P.; Ruscica, M. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: Experimental animal models and clinical evidence.Translational Research; Mosby Inc., 2016, pp. 19-29.
[61]
Ferri, N.; Ruscica, M. Proprotein convertase subtilisin/kexin type 9 (pcsk9) and metabolic syndrome: Insights on insulin resistance, inflammation, and atherogenic dyslipidemia.Endocrine; Humana Press Inc., 2016, pp. 588-601.
[62]
Pirro, M.; Bianconi, V.; Francisci, D.; Schiaroli, E.; Bagaglia, F.; Sahebkar, A.; Baldelli, F.; Hepatitis, C. Hepatitis C virus and proprotein convertase subtilisin/kexin type 9: a detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J. Cell. Mol. Med., 2017, 21(12), 3150-3161.
[http://dx.doi.org/10.1111/jcmm.13273] [PMID: 28722331]
[63]
Ramanathan, A.; Gusarova, V.; Stahl, N.; Gurnett-Bander, A.; Kyratsous, C.A. Alirocumab, a therapeutic human antibody to pcsk9, does not affect cd81 levels or hepatitis C virus entry and replication into hepatocytes. PLoS One, 2016, 11(4), e0154498.
[http://dx.doi.org/10.1371/journal.pone.0154498] [PMID: 27115873]
[64]
Adorni, M.P.; Cipollari, E.; Favari, E.; Zanotti, I.; Zimetti, F.; Corsini, A.; Ricci, C.; Bernini, F.; Ferri, N. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis, 2017, 256, 1-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.11.019] [PMID: 27940374]
[65]
Li, Z.; Liu, Q. Proprotein convertase subtilisin/kexin type 9 inhibits hepatitis C virus replication through interacting with NS5A. J. Gen. Virol., 2018, 99(1), 44-61.
[http://dx.doi.org/10.1099/jgv.0.000987] [PMID: 29235977]
[66]
Li, Z.; Liu, Q.; Hepatitis, C. Hepatitis C virus regulates proprotein convertase subtilisin/kexin type 9 promoter activity. Biochem. Biophys. Res. Commun., 2018, 496(4), 1229-1235.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.176] [PMID: 29397939]
[67]
Fasolato, S.; Pigozzo, S.; Pontisso, P.; Angeli, P.; Ruscica, M.; Savarino, E.; De Martin, S.; Lupo, M.G.; Ferri, N. PCSK9 Levels Are Raised in Chronic HCV Patients with Hepatocellular Carcinoma. J. Clin. Med., 2020, 9(10), 3134.
[http://dx.doi.org/10.3390/jcm9103134] [PMID: 32998342]
[68]
Andriulli, A.; Mangia, A.; Iacobellis, A.; Ippolito, A.; Leandro, G.; Zeuzem, S. Meta-analysis: the outcome of anti-viral therapy in HCV genotype 2 and genotype 3 infected patients with chronic hepatitis. Aliment. Pharmacol. Ther., 2008, 28(4), 397-404.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03763.x] [PMID: 18549461]
[69]
Hyrina, A.; Olmstead, A.D.; Steven, P.; Krajden, M.; Tam, E.; Jean, F. Treatment-induced viral cure of hepatitis c virus-infected patients involves a dynamic interplay among three important molecular players in lipid homeostasis: Circulating microrna (mir)-24, mir-223, and proprotein convertase subtilisin/kexin type 9. EBioMedicine, 2017, 23, 68-78.
[http://dx.doi.org/10.1016/j.ebiom.2017.08.020] [PMID: 28864162]
[70]
Ichikawa, T.; Miyaaki, H.; Miuma, S.; Taura, N.; Motoyoshi, Y.; Akahoshi, H.; Nakamura, J.; Takahashi, Y.; Honda, T.; Yajima, H.; Uehara, R.; Hino, N.; Narita, S.; Tanaka, H.; Sasaki, S.; Nakao, K. Changes in serum LDL, PCSK9 and microRNA-122 in patients with chronic HCV infection receiving Daclatasvir/Asunaprevir. Biomed. Rep., 2019, 10(3), 156-164.
[http://dx.doi.org/10.3892/br.2019.1189] [PMID: 30906544]
[71]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[72]
Janssen, H.L.A.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[73]
Blanchet, M.; Le, Q.T.; Seidah, N.G.; Labonté, P. Statins can exert dual, concentration dependent effects on HCV entry in vitro. Antiviral Res., 2016, 128, 43-48.
[http://dx.doi.org/10.1016/j.antiviral.2016.02.006] [PMID: 26868875]
[74]
Yang, Y.H.; Chen, W.C.; Tsan, Y.T.; Chen, M.J.; Shih, W.T.; Tsai, Y.H.; Chen, P.C. Statin use and the risk of cirrhosis development in patients with hepatitis C virus infection. J. Hepatol., 2015, 63(5), 1111-1117.
[http://dx.doi.org/10.1016/j.jhep.2015.07.006] [PMID: 26196278]
[75]
Tsan, Y.T.; Lee, C.H.; Ho, W.C.; Lin, M.H.; Wang, J.D.; Chen, P.C. Statins and the risk of hepatocellular carcinoma in patients with hepatitis C virus infection. J. Clin. Oncol., 2013, 31(12), 1514-1521.
[http://dx.doi.org/10.1200/JCO.2012.44.6831] [PMID: 23509319]
[76]
Seidah, N.G.; Prat, A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J. Mol. Med. (Berl.), 2007, 85(7), 685-696.
[http://dx.doi.org/10.1007/s00109-007-0172-7] [PMID: 17351764]
[77]
Blanchet, M.; Seidah, N.G.; Labonté, P. SKI-1/S1P inhibition: a promising surrogate to statins to block hepatitis C virus replication. Antiviral Res., 2012, 95(2), 159-166.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.006] [PMID: 22626636]
[78]
Blanchet, M.; Sureau, C.; Guévin, C.; Seidah, N.G.; Labonté, P. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection. Antiviral Res., 2015, 115, 94-104.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.017] [PMID: 25573299]
[79]
Gan, E.S.; Tan, H.C.; Le, D.H.T.; Huynh, T.T.; Wills, B.; Seidah, N.G.; Ooi, E.E.; Yacoub, S. Dengue virus induces PCSK9 expression to alter antiviral responses and disease outcomes. J. Clin. Invest., 2020, 130(10), 5223-5234.
[http://dx.doi.org/10.1172/JCI137536] [PMID: 32644974]
[80]
Osuna-Ramos, J.F.; Reyes-Ruiz, J.M.; Del Ángel, R.M. The Role of Host Cholesterol During Flavivirus Infection. Front. Cell. Infect. Microbiol., 2018, 8, 388.
[http://dx.doi.org/10.3389/fcimb.2018.00388] [PMID: 30450339]
[81]
Welsch, S.; Miller, S.; Romero-Brey, I.; Merz, A.; Bleck, C.K.E.; Walther, P.; Fuller, S.D.; Antony, C.; Krijnse-Locker, J.; Bartenschlager, R. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe, 2009, 5(4), 365-375.
[http://dx.doi.org/10.1016/j.chom.2009.03.007] [PMID: 19380115]
[82]
Biswas, H.H.; Gordon, A.; Nuñez, A.; Perez, M.A.; Balmaseda, A.; Harris, E. Lower low-density lipoprotein cholesterol levels are associated with severe dengue outcome. PLoS Negl. Trop. Dis., 2015, 9(9), e0003904.
[http://dx.doi.org/10.1371/journal.pntd.0003904] [PMID: 26334914]
[83]
Whitehorn, J.; Nguyen, C.V.V.; Khanh, L.P.; Kien, D.T.H.; Quyen, N.T.H.; Tran, N.T.T.; Hang, N.T.; Truong, N.T.; Hue Tai, L.T.; Cam Huong, N.T.; Nhon, V.T.; Van Tram, T.; Farrar, J.; Wolbers, M.; Simmons, C.P.; Wills, B. Lovastatin for the treatment of adult patients with dengue: A randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis., 2016, 62(4), 468-476.
[http://dx.doi.org/10.1093/cid/civ949] [PMID: 26565005]
[84]
Zhang, Y.; Gao, F.; Li, L.; Zhao, K.; Jiang, S.; Jiang, Y.; Yu, L.; Zhou, Y.; Liu, C.; Tong, G. Porcine reproductive and respiratory syndrome virus antagonizes pcsk9's antiviral effect via nsp11 endoribonuclease activity. Viruses, 2020, 12(6), E655.
[http://dx.doi.org/10.3390/v12060655] [PMID: 32560445]
[85]
Yan, B.; Chu, H.; Yang, D.; Sze, K-H.; Lai, P-M.; Yuan, S.; Shuai, H.; Wang, Y.; Kao, R.Y-T.; Chan, J.F-W.; Yuen, K-Y. Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication. Viruses, 2019, 11(1), E73.
[http://dx.doi.org/10.3390/v11010073] [PMID: 30654597]
[86]
Neufeldt, C.J.; Cortese, M.; Acosta, E.G.; Bartenschlager, R. Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol., 2018, 16(3), 125-142.
[http://dx.doi.org/10.1038/nrmicro.2017.170] [PMID: 29430005]
[87]
Vuorio, A.; Watts, G.F.; Kovanen, P.T. Familial hypercholesterolaemia and COVID-19: triggering of increased sustained cardiovascular risk. J. Intern. Med., 2020, 287(6), 746-747.
[http://dx.doi.org/10.1111/joim.13070] [PMID: 32242993]
[88]
Vuorio, A.; Kovanen, P.T. Prevention of endothelial dysfunction and thrombotic events in COVID-19 patients with familial hypercholesterolemia. J. Clin. Lipidol., 2020, 14(5), 617-618.
[http://dx.doi.org/10.1016/j.jacl.2020.06.006] [PMID: 32653497]
[89]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J-D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J-L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[90]
Levels, J.H.M.; Abraham, P.R.; van Barreveld, E.P.; Meijers, J.C.M.; van Deventer, S.J.H. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect. Immun., 2003, 71(6), 3280-3284.
[http://dx.doi.org/10.1128/IAI.71.6.3280-3284.2003] [PMID: 12761109]
[91]
Trinel, P.A.; Plancke, Y.; Gerold, P.; Jouault, T.; Delplace, F.; Schwarz, R.T.; Strecker, G.; Poulain, D. The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J. Biol. Chem., 1999, 274(43), 30520-30526.
[http://dx.doi.org/10.1074/jbc.274.43.30520] [PMID: 10521433]
[92]
Levels, J.H.M.; Marquart, J.A.; Abraham, P.R.; van den Ende, A.E.; Molhuizen, H.O.F.; van Deventer, S.J.H.; Meijers, J.C.M. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect. Immun., 2005, 73(4), 2321-2326.
[http://dx.doi.org/10.1128/IAI.73.4.2321-2326.2005] [PMID: 15784577]
[93]
Gautier, T.; Lagrost, L. Plasma PLTP (phospholipid-transfer protein): an emerging role in ‘reverse lipopolysaccharide transport’ and innate immunity. Biochem. Soc. Trans., 2011, 39(4), 984-988.
[http://dx.doi.org/10.1042/BST0390984] [PMID: 21787334]
[94]
Walley, K.R. Role of lipoproteins and proprotein convertase subtilisin/kexin type 9 in endotoxin clearance in sepsis. Curr. Opin. Crit. Care, 2016, 22(5), 464-469.
[http://dx.doi.org/10.1097/MCC.0000000000000351] [PMID: 27552305]
[95]
Khademi, F.; Momtazi-Borojeni, A.A.; Reiner, Ž.; Banach, M.; Al-Rasadi, K.A.; Sahebkar, A. PCSK9 and infection: A potentially useful or dangerous association? J. Cell. Physiol., 2018, 233(4), 2920-2927.
[http://dx.doi.org/10.1002/jcp.26040] [PMID: 28574577]
[96]
Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; Cook, D.J.; Presneill, J.J.; Ayers, D. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med., 2008, 358(9), 877-887.
[http://dx.doi.org/10.1056/NEJMoa067373] [PMID: 18305265]
[97]
Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjærg-Hansen, A.; Vogt, T.F.; Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet., 2014, 46(4), 352-356.
[http://dx.doi.org/10.1038/ng.2901] [PMID: 24531328]
[98]
Rannikko, J.; Jacome Sanz, D.; Ortutay, Z.; Seiskari, T.; Aittoniemi, J.; Huttunen, R.; Syrjänen, J.; Pesu, M. Reduced plasma PCSK9 response in patients with bacteraemia is associated with mortality. J. Intern. Med., 2019, 286(5), 553-561.
[http://dx.doi.org/10.1111/joim.12946] [PMID: 31166632]
[99]
Walley, K.R.; Boyd, J.H.; Kong, H.J.; Russell, J.A. Low low-density lipoprotein levels are associated with, but do not causally contribute to, increased mortality in sepsis. Crit. Care Med., 2019, 47(3), 463-466.
[http://dx.doi.org/10.1097/CCM.0000000000003551] [PMID: 30394916]
[100]
Genga, K.R.; Lo, C.; Cirstea, M.S.; Leitao Filho, F.S.; Walley, K.R.; Russell, J.A.; Linder, A.; Francis, G.A.; Boyd, J.H. Impact of PCSK9 loss-of-function genotype on 1-year mortality and recurrent infection in sepsis survivors. EBioMedicine, 2018, 38, 257-264.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.032] [PMID: 30473376]
[101]
Leung, A.K.K.; Genga, K.R.; Topchiy, E.; Cirstea, M.; Shimada, T.; Fjell, C.; Russell, J.A.; Boyd, J.H.; Walley, K.R. Reduced proprotein convertase subtilisin/kexin 9 (pcsk9) function increases lipoteichoic acid clearance and improves outcomes in gram positive septic shock patients. Sci. Rep., 2019, 9(1), 10588.
[http://dx.doi.org/10.1038/s41598-019-46745-0] [PMID: 31332258]
[102]
Le Bras, M.; Roquilly, A.; Deckert, V.; Langhi, C.; Feuillet, F.; Sébille, V.; Mahé, P-J.; Bach, K.; Masson, D.; Lagrost, L.; Costet, P.; Asehnoune, K.; Cariou, B. Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury. J. Clin. Endocrinol. Metab., 2013, 98(4), E732-E736.
[http://dx.doi.org/10.1210/jc.2012-4236] [PMID: 23450051]
[103]
Jamialahmadi, T.; Panahi, Y.; Safarpour, M.A.; Ganjali, S.; Chahabi, M.; Reiner, Z.; Solgi, S.; Vahedian-Azimi, A.; Kianpour, P.; Banach, M.; Sahebkar, A. Association of serum pcsk9 levels with antibiotic resistance and severity of disease in patients with bacterial infections admitted to intensive care units. J. Clin. Med., 2019, 8(10), E1742.
[http://dx.doi.org/10.3390/jcm8101742] [PMID: 31635200]
[104]
Bahekar, A.A.; Singh, S.; Saha, S.; Molnar, J.; Arora, R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am. Heart J., 2007, 154(5), 830-837.
[http://dx.doi.org/10.1016/j.ahj.2007.06.037] [PMID: 17967586]
[105]
Miyazawa, H.; Honda, T.; Miyauchi, S.; Domon, H.; Okui, T.; Nakajima, T.; Tabeta, K.; Yamazaki, K. Increased serum PCSK9 concentrations are associated with periodontal infection but do not correlate with LDL cholesterol concentration. Clin. Chim. Acta, 2012, 413(1-2), 154-159.
[http://dx.doi.org/10.1016/j.cca.2011.09.023] [PMID: 22001517]
[106]
Tabeta, K.; Hosojima, M.; Nakajima, M.; Miyauchi, S.; Miyazawa, H.; Takahashi, N.; Matsuda, Y.; Sugita, N.; Komatsu, Y.; Sato, K.; Ishikawa, T.; Akiishi, K.; Yamazaki, K.; Kato, K.; Saito, A.; Yoshie, H. Increased serum PCSK9, a potential biomarker to screen for periodontitis, and decreased total bilirubin associated with probing depth in a Japanese community survey. J. Periodontal Res., 2018, 53(3), 446-456.
[http://dx.doi.org/10.1111/jre.12533] [PMID: 29516504]
[107]
Yokoji-Takeuchi, M.; Tabeta, K.; Takahashi, N.; Arimatsu, K.; Miyazawa, H.; Matsuda-Matsukawa, Y.; Sato, K.; Yamada, M.; Yamazaki, K. Indirect regulation of PCSK9 gene in inflammatory response by Porphyromonas gingivalis infection. Heliyon, 2019, 5(1), e01111.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01111] [PMID: 30671557]
[108]
Sun, H.L.; Wu, Y.R.; Song, F.F.; Gan, J.; Huang, L.Y.; Zhang, L.; Huang, C. Role of pcsk9 in the development of mouse periodontitis before and after treatment: A double-edged sword. J. Infect. Dis., 2018, 217(4), 667-680.
[http://dx.doi.org/10.1093/infdis/jix574] [PMID: 29294034]
[109]
Lauer, S.; VanWye, J.; Harrison, T.; McManus, H.; Samuel, B.U.; Hiller, N.L.; Mohandas, N.; Haldar, K. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J., 2000, 19(14), 3556-3564.
[http://dx.doi.org/10.1093/emboj/19.14.3556] [PMID: 10899110]
[110]
Coppens, I.; Joiner, K.A. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell, 2003, 14(9), 3804-3820.
[http://dx.doi.org/10.1091/mbc.e02-12-0830] [PMID: 12972565]
[111]
Sein, K.K.; Aikawa, M. The prime role of plasma membrane cholesterol in the pathogenesis of immune evasion and clinical manifestations of falciparum malaria. Med. Hypotheses, 1998, 51(2), 105-110.
[http://dx.doi.org/10.1016/S0306-9877(98)90102-5] [PMID: 9881815]
[112]
Silvie, O.; Charrin, S.; Billard, M.; Franetich, J-F.; Clark, K.L.; van Gemert, G-J.; Sauerwein, R.W.; Dautry, F.; Boucheix, C.; Mazier, D.; Rubinstein, E. Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. J. Cell Sci., 2006, 119(Pt 10), 1992-2002.
[http://dx.doi.org/10.1242/jcs.02911] [PMID: 16687736]
[113]
Arama, C.; Diarra, I.; Kouriba, B.; Sirois, F.; Fedoryak, O.; Thera, M.A.; Coulibaly, D.; Lyke, K.E.; Plowe, C.V.; Chrétien, M.; Doumbo, O.K.; Mbikay, M. Malaria severity: Possible influence of the E670G PCSK9 polymorphism: A preliminary case-control study in Malian children. PLoS One, 2018, 13(2), e0192850.
[http://dx.doi.org/10.1371/journal.pone.0192850] [PMID: 29447211]
[114]
Fedoryak, O.; Arama, C.; Diarra, I.; Kouriba, B.; Chrétien, M.; Mbikay, M. Association of the rs562556 pcsk9 gene polymorphism with reduced mortality in severe malaria among malian children. Can. J. Infect. Dis. Med. Microbiol., 2020, 2020, 9340480.
[http://dx.doi.org/10.1155/2020/9340480] [PMID: 33029265]
[115]
Wyss, K.; Wångdahl, A.; Vesterlund, M.; Hammar, U.; Dashti, S.; Naucler, P.; Färnert, A. Obesity and diabetes as risk factors for severe plasmodium falciparum malaria: Results from a swedish nationwide study. Clin. Infect. Dis., 2017, 65(6), 949-958.
[http://dx.doi.org/10.1093/cid/cix437] [PMID: 28510633]
[116]
Rumjanek, F.D.; Campos, E.G.; Afonso, L.C. Evidence for the occurrence of LDL receptors in extracts of schistosomula of Schistosoma mansoni. Mol. Biochem. Parasitol., 1988, 28(2), 145-152.
[http://dx.doi.org/10.1016/0166-6851(88)90062-X] [PMID: 3367933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy