Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Ascorbic Acid in Epigenetic Reprogramming

Author(s): Xinhui Liu, Aamir Khan, Huan Li, Shensen Wang, Xuechai Chen and Hua Huang*

Volume 17, Issue 1, 2022

Published on: 14 July, 2021

Page: [13 - 25] Pages: 13

DOI: 10.2174/1574888X16666210714152730

Price: $65

conference banner
Abstract

Emerging evidence suggests that ascorbic acid (vitamin C) enhances the reprogramming process by multiple mechanisms primarily due to its cofactor role in Fe(II) and 2-oxoglutarate-dependent dioxygenases, including the DNA demethylases Ten Eleven Translocase (TET) and histone demethylases. Epigenetic variations have been shown to play a critical role in somatic cell reprogramming. DNA methylation and histone methylation are extensively recognized as barriers to somatic cell reprogramming. N6-methyladenosine (m6A), known as RNA methylation, is an epigenetic modification of mRNAs and has also been shown to play a role in regulating cellular reprogramming. Multiple cofactors are reported to promote the activity of these demethylases, including vitamin C. Therefore, this review focuses and examines the evidence and mechanism of vitamin C in DNA and histone demethylation and highlights its potential involvement in the regulation of m6A demethylation. It also shows the significant contribution of vitamin C in epigenetic regulation, and the affiliation of demethylases with vitamin C-facilitated epigenetic reprogramming.

Keywords: Vitamin C, reprogramming, DNA demethylation, histone demethylation, RNA demethylation, iron and 2-oxoglutarate dependent dioxygenases, somatic cell regeneration.

Graphical Abstract

[1]
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385(6619): 810-3.
[http://dx.doi.org/10.1038/385810a0] [PMID: 9039911]
[2]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[3]
Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2(12): 3081-9.
[http://dx.doi.org/10.1038/nprot.2007.418] [PMID: 18079707]
[4]
Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Curr Opin Biotechnol 2007; 18(5): 467-73.
[http://dx.doi.org/10.1016/j.copbio.2007.09.007] [PMID: 18024106]
[5]
Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448(7151): 318-24.
[http://dx.doi.org/10.1038/nature05944] [PMID: 17554336]
[6]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[7]
Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012; 151(7): 1617-32.
[http://dx.doi.org/10.1016/j.cell.2012.11.039] [PMID: 23260147]
[8]
Tang S, Xie M, Cao N, Ding S. Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. J Med Chem 2016; 59(1): 2-15.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00789] [PMID: 26322868]
[9]
Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134(5): 877-86.
[http://dx.doi.org/10.1016/j.cell.2008.07.041] [PMID: 18691744]
[10]
Park S, Gianotti-Sommer A, Molina-Estevez FJ, et al. A comprehensive, ethnically diverse library of sickle cell disease-specific induced pluripotent stem cells. Stem Cell Rep 2017; 8(4): 1076-85.
[http://dx.doi.org/10.1016/j.stemcr.2016.12.017] [PMID: 28111279]
[11]
Griffin TA, Anderson HC, Wolfe JH. Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Rep 2015; 4(5): 835-46.
[http://dx.doi.org/10.1016/j.stemcr.2015.02.022] [PMID: 25866157]
[12]
Hew M, O’Connor K, Edel MJ, Lucas M. The possible future roles for iPSC-derived therapy for autoimmune diseases. J Clin Med 2015; 4(6): 1193-206.
[http://dx.doi.org/10.3390/jcm4061193] [PMID: 26239553]
[13]
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6(10): e253.
[http://dx.doi.org/10.1371/journal.pbio.0060253] [PMID: 18942890]
[14]
Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013; 12(4): 453-69.
[http://dx.doi.org/10.1016/j.stem.2013.02.005] [PMID: 23499384]
[15]
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341(6146): 651-4.
[http://dx.doi.org/10.1126/science.1239278] [PMID: 23868920]
[16]
Xu J, Du Y, Deng H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 2015; 16(2): 119-34.
[http://dx.doi.org/10.1016/j.stem.2015.01.013] [PMID: 25658369]
[17]
Li X, Liu D, Ma Y, et al. Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell 2017; 21(2): 264-73.
[18]
Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454(7205): 766-70.
[http://dx.doi.org/10.1038/nature07107] [PMID: 18600261]
[19]
Chen J, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 2013; 45(1): 34-42.
[http://dx.doi.org/10.1038/ng.2491] [PMID: 23202127]
[20]
Xie B, Zhang H, Wei R, et al. Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction 2016; 151(1): 9-16.
[http://dx.doi.org/10.1530/REP-15-0338] [PMID: 26515777]
[21]
Choi SW, Claycombe KJ, Martinez JA, Friso S, Schalinske KL. Nutritional epigenomics: A portal to disease prevention. Adv Nutr 2013; 4(5): 530-2.
[http://dx.doi.org/10.3945/an.113.004168] [PMID: 24038247]
[22]
Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Med 2013; 34(4): 883-901.
[http://dx.doi.org/10.1016/j.mam.2012.08.001] [PMID: 22981780]
[23]
Bird A. Perceptions of epigenetics. Nature 2007; 447(7143): 396-8.
[http://dx.doi.org/10.1038/nature05913] [PMID: 17522671]
[24]
Mizzen CA, Allis CD. Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci 1998; 54(1): 6-20.
[http://dx.doi.org/10.1007/s000180050121] [PMID: 9487383]
[25]
Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet 2000; 1(1): 11-9.
[http://dx.doi.org/10.1038/35049533] [PMID: 11262868]
[26]
Berdasco M, Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat Rev Genet 2019; 20(2): 109-27.
[http://dx.doi.org/10.1038/s41576-018-0074-2] [PMID: 30479381]
[27]
Burton MA, Lillycrop KA. Nutritional modulation of the epigenome and its implication for future health. Proc Nutr Soc 2019; 78(3): 305-12.
[http://dx.doi.org/10.1017/S0029665119000016] [PMID: 30777143]
[28]
Padayatty SJ, Levine M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis 2016; 22(6): 463-93.
[http://dx.doi.org/10.1111/odi.12446] [PMID: 26808119]
[29]
Kuiper C, Vissers MC. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: Physiological activity in tumor growth and progression. Front Oncol 2014; 4: 359.
[http://dx.doi.org/10.3389/fonc.2014.00359] [PMID: 25540771]
[30]
Gustafson CB, Yang C, Dickson KM, et al. Epigenetic reprogramming of melanoma cells by vitamin C treatment. Clin Epigenetics 2015; 7: 51.
[http://dx.doi.org/10.1186/s13148-015-0087-z] [PMID: 25977731]
[31]
Agathocleous M, Meacham CE, Burgess RJ, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 2017; 549(7673): 476-81.
[http://dx.doi.org/10.1038/nature23876] [PMID: 28825709]
[32]
Cimmino L, Dolgalev I, Wang Y, et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 2017; 170(6): 1079-95.
[http://dx.doi.org/10.1016/j.cell.2017.07.032]
[33]
Wilson JX. Regulation of vitamin C transport. Annu Rev Nutr 2005; 25: 105-25.
[http://dx.doi.org/10.1146/annurev.nutr.25.050304.092647] [PMID: 16011461]
[34]
Kalis K. [Dual action of vitamin C versus degradation and supplementation]. Postepy Hig Med Dosw 2015; 69: 1239-44.
[http://dx.doi.org/10.5604/17322693.1180642]
[35]
Ghanbari Kh, Hajheidari N. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal Biochem 2015; 473: 53-62.
[http://dx.doi.org/10.1016/j.ab.2014.12.013] [PMID: 25576954]
[36]
Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013; 500(7461): 222-6.
[http://dx.doi.org/10.1038/nature12362] [PMID: 23812591]
[37]
Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010; 6(1): 71-9.
[http://dx.doi.org/10.1016/j.stem.2009.12.001] [PMID: 20036631]
[38]
Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011; 9(6): 575-87.
[http://dx.doi.org/10.1016/j.stem.2011.10.005] [PMID: 22100412]
[39]
Yin R, Mao SQ, Zhao B, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 2013; 135(28): 10396-403.
[http://dx.doi.org/10.1021/ja4028346] [PMID: 23768208]
[40]
Chung TL, Brena RM, Kolle G, et al. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells 2010; 28(10): 1848-55.
[http://dx.doi.org/10.1002/stem.493] [PMID: 20687155]
[41]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[42]
Wu H, Zhang Y. Reversing DNA methylation: Mechanisms, genomics, and biological functions. Cell 2014; 156(1-2): 45-68.
[http://dx.doi.org/10.1016/j.cell.2013.12.019] [PMID: 24439369]
[43]
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930-5.
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[44]
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466(7310): 1129-33.
[http://dx.doi.org/10.1038/nature09303] [PMID: 20639862]
[45]
He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333(6047): 1303-7.
[http://dx.doi.org/10.1126/science.1210944] [PMID: 21817016]
[46]
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Sci 2011; 333(6047): 1300-3.
[http://dx.doi.org/10.1126/science.1210597] [PMID: 21778364]
[47]
Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013; 502(7472): 472-9.
[http://dx.doi.org/10.1038/nature12750] [PMID: 24153300]
[48]
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Sci 2009; 324(5929): 929-30.
[http://dx.doi.org/10.1126/science.1169786] [PMID: 19372393]
[49]
Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41(12): 1350-3.
[http://dx.doi.org/10.1038/ng.471] [PMID: 19881528]
[50]
Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462(7271): 315-22.
[http://dx.doi.org/10.1038/nature08514] [PMID: 19829295]
[51]
Hill PW, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 2014; 104(5): 324-33.
[http://dx.doi.org/10.1016/j.ygeno.2014.08.012] [PMID: 25173569]
[52]
Wang L, Zhang J, Duan J, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 2014; 157(4): 979-91.
[http://dx.doi.org/10.1016/j.cell.2014.04.017] [PMID: 24813617]
[53]
Arand J, Wossidlo M, Lepikhov K, Peat JR, Reik W, Walter J. Selective impairment of methylation maintenance is the major cause of DNA methylation reprogramming in the early embryo. Epigenetics Chromatin 2015; 8(1): 1.
[http://dx.doi.org/10.1186/1756-8935-8-1] [PMID: 25621012]
[54]
Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011; 334(6053): 194.
[http://dx.doi.org/10.1126/science.1212483] [PMID: 21940858]
[55]
Wossidlo M, Nakamura T, Lepikhov K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011; 2: 241.
[http://dx.doi.org/10.1038/ncomms1240] [PMID: 21407207]
[56]
Guibert S, Forné T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012; 22(4): 633-41.
[http://dx.doi.org/10.1101/gr.130997.111] [PMID: 22357612]
[57]
Hackett JA, Sengupta R, Zylicz JJ, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013; 339(6118): 448-52.
[http://dx.doi.org/10.1126/science.1229277] [PMID: 23223451]
[58]
Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004; 6(10): 984-90.
[http://dx.doi.org/10.1038/ncb1176] [PMID: 15448701]
[59]
Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: The role of tet proteins and cell division. Cell Stem Cell 2013; 13(3): 265-9.
[http://dx.doi.org/10.1016/j.stem.2013.08.005] [PMID: 24012367]
[60]
Hu X, Zhang L, Mao SQ, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014; 14(4): 512-22.
[http://dx.doi.org/10.1016/j.stem.2014.01.001] [PMID: 24529596]
[61]
Costa Y, Ding J, Theunissen TW, et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495(7441): 370-4.
[http://dx.doi.org/10.1038/nature11925] [PMID: 23395962]
[62]
Doege CA, Inoue K, Yamashita T, et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012; 488(7413): 652-5.
[http://dx.doi.org/10.1038/nature11333] [PMID: 22902501]
[63]
Wang T, Wu H, Li Y, et al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nat Cell Biol 2013; 15(6): 700-11.
[http://dx.doi.org/10.1038/ncb2748] [PMID: 23685628]
[64]
Koh KP, Yabuuchi A, Rao S, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011; 8(2): 200-13.
[http://dx.doi.org/10.1016/j.stem.2011.01.008] [PMID: 21295276]
[65]
Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010; 7(1): 51-63.
[http://dx.doi.org/10.1016/j.stem.2010.04.014] [PMID: 20621050]
[66]
Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15(7): 829-38.
[http://dx.doi.org/10.1038/ncb2765] [PMID: 23708003]
[67]
Wang G, Guo X, Hong W, et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci USA 2013; 110(8): 2858-63.
[http://dx.doi.org/10.1073/pnas.1212769110] [PMID: 23386720]
[68]
Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet 2013; 45(12): 1504-9.
[http://dx.doi.org/10.1038/ng.2807] [PMID: 24162740]
[69]
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 1964; 51: 786-94.
[http://dx.doi.org/10.1073/pnas.51.5.786] [PMID: 14172992]
[70]
Baxter CS, Byvoet P. Effects of carcinogens and other agents on histone methylation by a histone arginine methyltransferase purified from rat liver cytoplasm. Cancer Res 1974; 34(6): 1418-23.
[PMID: 4363659]
[71]
Murray K. The occurrence of epsilon-N-methyl lysine in histones. Biochem 1964; 3: 10-5.
[http://dx.doi.org/10.1021/bi00889a003] [PMID: 14114491]
[72]
Ueda K, Omachi A, Kawaichi M, Hayaishi O. Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci USA 1975; 72(1): 205-9.
[http://dx.doi.org/10.1073/pnas.72.1.205] [PMID: 164015]
[73]
Stevely WS, Stocken LA. Phosphorylation of rat-thymus histone. Biochem J 1966; 100(2): 20C-1C.
[http://dx.doi.org/10.1042/bj1000020C] [PMID: 16742404]
[74]
Ord MG, Stocken LA. Metabolic properties of histones from rat liver and thymus gland. Biochem J 1966; 98(3): 888-97.
[http://dx.doi.org/10.1042/bj0980888] [PMID: 5911533]
[75]
Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 2003; 100(23): 13225-30.
[http://dx.doi.org/10.1073/pnas.1735528100] [PMID: 14578449]
[76]
Goldknopf IL, Busch H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 1977; 74(3): 864-8.
[http://dx.doi.org/10.1073/pnas.74.3.864] [PMID: 265581]
[77]
Hunt LT, Dayhoff MO. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem Biophys Res Commun 1977; 74(2): 650-5.
[http://dx.doi.org/10.1016/0006-291X(77)90352-7] [PMID: 836318]
[78]
Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 2007; 6(5): 812-9.
[http://dx.doi.org/10.1074/mcp.M700021-MCP200] [PMID: 17267393]
[79]
Margueron R, Trojer P, Reinberg D. The key to development: Interpreting the histone code? Curr Opin Genet Dev 2005; 15(2): 163-76.
[http://dx.doi.org/10.1016/j.gde.2005.01.005] [PMID: 15797199]
[80]
Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 41-5.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[81]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[82]
Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet 2010; 70: 57-85.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60003-4] [PMID: 20920745]
[83]
Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: Protein lysine methyltransferases. Genome Biol 2005; 6(8): 227.
[http://dx.doi.org/10.1186/gb-2005-6-8-227] [PMID: 16086857]
[84]
Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128(4): 735-45.
[http://dx.doi.org/10.1016/j.cell.2007.02.009] [PMID: 17320510]
[85]
Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119(7): 941-53.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[86]
Hou H, Yu H. Structural insights into histone lysine demethylation. Curr Opin Struct Biol 2010; 20(6): 739-48.
[http://dx.doi.org/10.1016/j.sbi.2010.09.006] [PMID: 20970991]
[87]
Rotili D, Mai A. Targeting histone demethylases: A new avenue for the fight against cancer. Genes Cancer 2011; 2(6): 663-79.
[http://dx.doi.org/10.1177/1947601911417976] [PMID: 21941621]
[88]
Agger K, Christensen J, Cloos PA, Helin K. The emerging functions of histone demethylases. Curr Opin Genet Dev 2008; 18(2): 159-68.
[http://dx.doi.org/10.1016/j.gde.2007.12.003] [PMID: 18281209]
[89]
Shinagawa T, Takagi T, Tsukamoto D, et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014; 14(2): 217-27.
[http://dx.doi.org/10.1016/j.stem.2013.12.015] [PMID: 24506885]
[90]
Hirai H, Kikyo N. Inhibitors of suppressive histone modification promote direct reprogramming of fibroblasts to cardiomyocyte-like cells. Cardiovasc Res 2014; 102(1): 188-90.
[http://dx.doi.org/10.1093/cvr/cvu023] [PMID: 24477643]
[91]
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays 2015; 37(1): 52-9.
[http://dx.doi.org/10.1002/bies.201400072] [PMID: 25328107]
[92]
Ang YS, Tsai SY, Lee DF, et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011; 145(2): 183-97.
[http://dx.doi.org/10.1016/j.cell.2011.03.003] [PMID: 21477851]
[93]
Singhal N, Graumann J, Wu G, et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010; 141(6): 943-55.
[http://dx.doi.org/10.1016/j.cell.2010.04.037] [PMID: 20550931]
[94]
Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68(10): 3645-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2938] [PMID: 18483246]
[95]
Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439(7078): 811-6.
[http://dx.doi.org/10.1038/nature04433] [PMID: 16362057]
[96]
Stadtfeld M, Apostolou E, Ferrari F, et al. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet 2012; 44(4): 398-405.
[97]
Kamikawa YF, Donohoe ME. Histone demethylation maintains Prdm14 and Tsix expression and represses xIst in embryonic stem cells. PLoS One 2015; 10(5): e0125626.
[http://dx.doi.org/10.1371/journal.pone.0125626] [PMID: 25993097]
[98]
Ebata KT, Mesh K, Liu S, et al. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b. Epigenetics Chromatin 2017; 10: 36.
[http://dx.doi.org/10.1186/s13072-017-0143-3] [PMID: 28706564]
[99]
Zhang T, Huang K, Zhu Y, et al. Vitamin C-dependent lysine demethylase 6 (KDM6)-mediated demethylation promotes a chromatin state that supports the endothelial-to-hematopoietic transition. J Biol Chem 2019; 294(37): 13657-70.
[http://dx.doi.org/10.1074/jbc.RA119.009757] [PMID: 31341023]
[100]
Yu X, Wu C, Bhavanasi D, Wang H, Gregory BD, Huang J. Chromatin dynamics during the differentiation of long-term hematopoietic stem cells to multipotent progenitors. Blood Adv 2017; 1(14): 887-98.
[http://dx.doi.org/10.1182/bloodadvances.2016003384] [PMID: 29296732]
[101]
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014; 15(5): 293-306.
[http://dx.doi.org/10.1038/nrg3724] [PMID: 24662220]
[102]
Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 2013; 38(4): 204-9.
[http://dx.doi.org/10.1016/j.tibs.2012.12.006] [PMID: 23337769]
[103]
Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 2014; 41(1): 21-33.
[http://dx.doi.org/10.1016/j.jgg.2013.10.002] [PMID: 24480744]
[104]
Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 1975; 4(4): 379-86.
[http://dx.doi.org/10.1016/0092-8674(75)90158-0] [PMID: 164293]
[105]
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149(7): 1635-46.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[106]
Harper JE, Miceli SM, Roberts RJ, Manley JL. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 1990; 18(19): 5735-41.
[http://dx.doi.org/10.1093/nar/18.19.5735] [PMID: 2216767]
[107]
Schibler U, Kelley DE, Perry RP. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 1977; 115(4): 695-714.
[http://dx.doi.org/10.1016/0022-2836(77)90110-3] [PMID: 592376]
[108]
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117-20.
[http://dx.doi.org/10.1038/nature12730] [PMID: 24284625]
[109]
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16(2): 191-8.
[http://dx.doi.org/10.1038/ncb2902] [PMID: 24394384]
[110]
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997; 3(11): 1233-47.
[PMID: 9409616]
[111]
Finkel D, Groner Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology 1983; 131(2): 409-25.
[http://dx.doi.org/10.1016/0042-6822(83)90508-1] [PMID: 6318439]
[112]
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 2014; 8(1): 284-96.
[http://dx.doi.org/10.1016/j.celrep.2014.05.048] [PMID: 24981863]
[113]
Bujnicki JM, Feder M, Radlinska M, Blumenthal RM. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol 2002; 55(4): 431-44.
[http://dx.doi.org/10.1007/s00239-002-2339-8] [PMID: 12355263]
[114]
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10(2): 93-5.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[115]
Wang X, Feng J, Xue Y, et al. Corrigendum: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 2017; 542(7640): 260.
[http://dx.doi.org/10.1038/nature21073] [PMID: 28099411]
[116]
Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum Mol Genet 2000; 9(15): 2231-9.
[http://dx.doi.org/10.1093/oxfordjournals.hmg.a018914] [PMID: 11001926]
[117]
Horiuchi KY, Eason MM, Ferry JJ, et al. Assay development for histone methyltransferases. Assay Drug Dev Technol 2013; 11(4): 227-36.
[http://dx.doi.org/10.1089/adt.2012.480] [PMID: 23557020]
[118]
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24(2): 177-89.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[119]
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7(12): 885-7.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[120]
Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 1999; 10(10): 983-6.
[http://dx.doi.org/10.1007/s003359901144] [PMID: 10501967]
[121]
Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39(6): 724-6.
[http://dx.doi.org/10.1038/ng2048] [PMID: 17496892]
[122]
Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316(5826): 889-94.
[http://dx.doi.org/10.1126/science.1141634] [PMID: 17434869]
[123]
Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3(7): e115.
[http://dx.doi.org/10.1371/journal.pgen.0030115] [PMID: 17658951]
[124]
Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318(5855): 1469-72.
[http://dx.doi.org/10.1126/science.1151710] [PMID: 17991826]
[125]
Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 2010; 464(7292): 1205-9.
[http://dx.doi.org/10.1038/nature08921] [PMID: 20376003]
[126]
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49(1): 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[127]
Thalhammer A, Bencokova Z, Poole R, et al. Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1α (HIF-1α). PLoS One 2011; 6(1): e16210.
[http://dx.doi.org/10.1371/journal.pone.0016210] [PMID: 21264265]
[128]
Batista PJ, Molinie B, Wang J, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014; 15(6): 707-19.
[http://dx.doi.org/10.1016/j.stem.2014.09.019] [PMID: 25456834]
[129]
Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015; 347(6225): 1002-6.
[http://dx.doi.org/10.1126/science.1261417] [PMID: 25569111]
[130]
Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013; 19(12): 1848-56.
[http://dx.doi.org/10.1261/rna.041178.113] [PMID: 24141618]
[131]
Machnicka MA, Milanowska K, Osman Oglou O, et al. MODOMICS: A database of RNA modification pathways-2013 update. Nucleic Acids Res 2013; 41(Database issue): D262-7.
[PMID: 23118484]
[132]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485(7397): 201-6.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[133]
Camper SA, Albers RJ, Coward JK, Rottman FM. Effect of undermethylation on mRNA cytoplasmic appearance and half-life. Mol Cell Biol 1984; 4(3): 538-43.
[http://dx.doi.org/10.1128/MCB.4.3.538] [PMID: 6201720]
[134]
Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014; 24(12): 1403-19.
[http://dx.doi.org/10.1038/cr.2014.151] [PMID: 25412662]
[135]
Schwartz S, Agarwala SD, Mumbach MR, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155(6): 1409-21.
[http://dx.doi.org/10.1016/j.cell.2013.10.047] [PMID: 24269006]
[136]
Hess ME, Hess S, Meyer KD, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 2013; 16(8): 1042-8.
[http://dx.doi.org/10.1038/nn.3449] [PMID: 23817550]
[137]
Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015; 16(3): 289-301.
[http://dx.doi.org/10.1016/j.stem.2015.01.016] [PMID: 25683224]
[138]
Aguilo F, Zhang F, Sancho A, et al. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 2015; 17(6): 689-704.
[http://dx.doi.org/10.1016/j.stem.2015.09.005] [PMID: 26526723]
[139]
Guo M, Liu X, Zheng X, Huang Y, Chen X. m6A RNA modification determines cell fate by regulating mRNA degradation. Cell Reprogram 2017; 19(4): 225-31.
[http://dx.doi.org/10.1089/cell.2016.0041] [PMID: 28682669]
[140]
Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother 2019; 112: 108613.
[http://dx.doi.org/10.1016/j.biopha.2019.108613] [PMID: 30784918]
[141]
Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 2017; 18(11): 2622-34.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[142]
Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015; 29(13): 1343-55.
[http://dx.doi.org/10.1101/gad.262766.115] [PMID: 26159994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy