Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Beneficial Effects of Liposomal Formulations of Lichen Substances: A Review

Author(s): Vinay Bharadwaj Tatipamula, Ha Thi Nguyen and Biljana Kukavica*

Volume 19, Issue 3, 2022

Published on: 05 January, 2022

Page: [252 - 259] Pages: 8

DOI: 10.2174/1567201818666210713110719

Price: $65

Abstract

Lichens are commonly used as essential traditional medicines to treat various conditions, including skin disorders, wounds, digestive, respiratory, obstetric, and gynecological problems in many cultures in Africa, Asia, Europe, Haitian, Oceania, and North and South America. Lichens have been deeply investigated for their phytochemical properties and, to date, numerous compounds (also known as substances) have been successfully isolated from the extracts. However, the low solubility and bioavailability of pure lichen substances have been widely recognized as significant issues hindering their biological applications. Recently, several groups have investigated the properties and the potential applications of lichen metabolites-based liposomal formulations and revealed a substantial improvement in their solubility, bioactivity, and toxicity in the animal. Thus, in this topical review, we aimed to provide an overview of liposomal structures, the efficacy of liposomal formulations, as well as their beneficial effects as compared to the free compounds themselves.

Keywords: Lichen, liposomal formulations, lichen metabolites, loaded liposomes, liposomal structures, liposomal types.

Graphical Abstract

[1]
Crawford, S.D. Lichens used in traditional medicine. Lichen secondary metabolites; Ranković, B., Ed.; Springer International Publishing: Cham, 2015, pp. 27-80.
[2]
Dayan, F.E.; Romagni, J.G. Lichens as a potential source of pesticides. Pestic. Outlook, 2001, 12, 229-232.
[http://dx.doi.org/10.1039/b110543b]
[3]
Bharadwaj, V.T. New record of mangrove lichens from Andhra Pradesh and Orissa states of India. Stud. Fungi., 2019, 4, 97-100.
[http://dx.doi.org/10.5943/sif/4/1/12]
[4]
Bharadwaj, V.T.; Sastry, G.V.; Murthy, K. A note on the occurrence of lichens on Vainateya Godavari mangroves in East Godavari district of Andhra Pradesh India. Stud. Fungi., 2018, 3, 302-308.
[http://dx.doi.org/10.5943/sif/3/1/30]
[5]
Armaleo, D.; Müller, O.; Lutzoni, F.; Andrésson, Ó.S.; Blanc, G.; Bode, H.B.; Collart, F.R.; Dal Grande, F.; Dietrich, F.; Grigoriev, I.V.; Joneson, S.; Kuo, A.; Larsen, P.E.; Logsdon, J.M., Jr; Lopez, D.; Martin, F.; May, S.P.; McDonald, T.R.; Merchant, S.S.; Miao, V.; Morin, E.; Oono, R.; Pellegrini, M.; Rubinstein, N.; Sanchez-Puerta, M.V.; Savelkoul, E.; Schmitt, I.; Slot, J.C.; Soanes, D.; Szövényi, P.; Talbot, N.J.; Veneault-Fourrey, C.; Xavier, B.B. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genom., 2019, 20(1), 605.
[http://dx.doi.org/10.1186/s12864-019-5629-x] [PMID: 31337355]
[6]
Ranković, B.; Kosanić, M. Lichens as a potential source of bioactive secondary metabolites. Lichen secondary metabolites: Bioactive properties and pharmaceutical potential; Ranković, B., Ed.; Springer International Publishing: Cham, 2015, pp. 1-29.
[7]
Stocker-Wörgötter, E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep., 2008, 25(1), 188-200.
[http://dx.doi.org/10.1039/B606983P] [PMID: 18250902]
[8]
Prokopiev, I.A.; Poryadina, L.N.; Konoreva, L.A.; Chesnokov, S.V.; Shavarda, A.L. Variation in the composition of secondary metabolites in Flavocetraria lichens from Western Siberia. Russ. J. Ecol., 2018, 49, 401-405.
[http://dx.doi.org/10.1134/S1067413618050107]
[9]
Tatipamula, V.B. Chemical and pharmacological evaluation of manglicolous lichens, 1st; Lap lambert Academic Publishing: Mauritius, 2019.
[10]
Elix, J.A.; Whitton, A.A.; Sargent, M.V. Recent progress in the chemistry of lichen substances. Fortschritte der chemie organischer naturstoffe / Progress in the chemistry of organic natural products; Springer: Vienna, 1984, 45, pp. 103-234.
[http://dx.doi.org/10.1007/978-3-7091-8717-3_2]
[11]
Tatipamula, V.B.; Vedula, G.S. Antimicrobial and anti-tubercular activities of isolates and semi-synthetic derivatives of lichen Ramalina leiodea (Nyl.) Nyl. J. Serb. Chem. Soc., 2019, 84, 555-562.
[http://dx.doi.org/10.2298/JSC180924003T]
[12]
Tatipamula, V.B.; Vedula, G.S.; Sastry, A.V.S. Chemical and pharmacological evaluation of manglicolous lichen Roccella montagnei Bel Em. D. D. Awasthi. Fut. J. Pharm. Sci., 2019, 5, 8.
[http://dx.doi.org/10.1186/s43094-019-0009-6]
[13]
Tatipamula, V.B.; Vedula, G.S.; Sastry, A.V.S. Antarvedisides A-B from manglicolous lichen Dirinaria consimilis (Stirton) and their pharmacological profile. Asian J. Chem., 2019, 31, 805-812.
[http://dx.doi.org/10.14233/ajchem.2019.21734]
[14]
Tatipamula, V.B.; Vedula, G.S. Fibrinolytic, anti-inflammatory and cytotoxic potentialities of extracts and chemical constituents of manglicolous lichen, Graphis ajarekarii Patw. & C. R. Kulk. Nat. Prod. J., 2020, 10, 87-93.
[http://dx.doi.org/10.2174/2210315508666180604101813]
[15]
Haritha, P.; Patnaik, S.K.; Tatipamula, V.B. Chemical and pharmacological evaluation of manglicolous lichen Graphis ajarekarii Patw. & C. R. Kulk. Vietnam J. Sci. Technol., 2019, 53, 300-308.
[http://dx.doi.org/10.15625/2525-2518/57/3/13679]
[16]
Tatipamula, V.B.; Annam, S.S.P.; Nguyen, H.T.; Polimati, H.; Yejella, R.P. Sekikaic acid modulates pancreatic β-cells in streptozotocin-induced type 2 diabetic rats by inhibiting digestive enzymes. Nat. Prod. Res., 2021, 35(23), 5420-5424.
[http://dx.doi.org/10.1080/14786419.2020.1775226] [PMID: 32498563]
[17]
Huneck, S. The significance of lichens and their metabolites. Naturwissenschaften, 1999, 86(12), 559-570.
[http://dx.doi.org/10.1007/s001140050676] [PMID: 10643590]
[18]
Oksanen, I. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol., 2006, 73(4), 723-734.
[http://dx.doi.org/10.1007/s00253-006-0611-3] [PMID: 17082931]
[19]
Nimis, P.L. Pollution monitoring with lichens. Lichenol., 1994, 26, 102-103.
[http://dx.doi.org/10.1017/S0024282994000174]
[20]
Tatipamula, V.B.; Kukavica, B. Protective effects of extracts of lichen Dirinaria consimilis (Stirton) D.D. Awasthi in bifenthrin- and diazinon-induced oxidative stress in rat erythrocytes in vitro. Drug Chem. Toxicol., 2020, 1-8.
[http://dx.doi.org/10.1080/01480545.2020.1762632] [PMID: 32396740]
[21]
Sharma, A. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154, 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[22]
Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int. J. Mol. Sci., 2018, 19(1), 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[23]
Gregoriadis, G.; Florence, A.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs, 1993, 45(1), 15-28.
[http://dx.doi.org/10.2165/00003495-199345010-00003] [PMID: 7680982]
[24]
Ghanbarzadeh, S.; Arami, S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. BioMed. Res. Int., 2013, 2013, 616810.
[http://dx.doi.org/10.1155/2013/616810] [PMID: 23936825]
[25]
Chu, C-J.; Szoka, F.C. PH-sensitive liposomes. J. Liposome Res., 1994, 4, 361-395.
[http://dx.doi.org/10.3109/08982109409037050]
[26]
Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev., 2014, 66, 110-116.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[27]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7413-7417.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[28]
Alving, C.R. Liposomes as carriers of antigens and adjuvants. J. Immunol. Methods, 1991, 140(1), 1-13.
[http://dx.doi.org/10.1016/0022-1759(91)90120-5] [PMID: 1712030]
[29]
Yuda, T.; Maruyama, K.; Takizawa, T.; Iwatsuru, M. Long-circulating liposomes. Drug Deliv. Syst., 1994, 9, 145-160.
[http://dx.doi.org/10.2745/dds.9.145]
[30]
Mignet, N.; Seguin, J.; Chabot, G.G. Bioavailability of polyphenol liposomes: a challenge ahead. Pharmaceutics, 2013, 5(3), 457-471.
[http://dx.doi.org/10.3390/pharmaceutics5030457] [PMID: 24300518]
[31]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[32]
Qin, J.; Chen, D.; Lu, W.; Xu, H.; Yan, C.; Hu, H.; Chen, B.; Qiao, M.; Zhao, X. Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev. Ind. Pharm., 2008, 34(6), 602-608.
[http://dx.doi.org/10.1080/03639040701833559] [PMID: 18568910]
[33]
Teeranachaideekul, V.; Nithitanakool, S.; Junhunkit, T.; Ponpanich, L.; Nopporn, N.; Detamornrat, U.; Chulasiri, M. Liposomes: a novel carrier system for Artocarpus lakoocha extract to improve skin whitening. J. Asian Assoc. Schools Pharm., 2013, 2, 243-253.
[34]
Lira, M.C.B.; Siqueira-Moura, M.P.; Rolim-Santos, H.M.L.; Galetti, F.C.S.; Simioni, A.R.; Santos, N.P.; Tabosa Do Egito, E.S.; Silva, C.L.; Tedesco, A.C.; Santos-Magalhães, N.S. In vitro uptake and antimycobacterial activity of liposomal usnic acid formulation. J. Liposome Res., 2009, 19(1), 49-58.
[http://dx.doi.org/10.1080/08982100802564628] [PMID: 19515007]
[35]
Lira, M.C.B.; Ferraz, M.S.; Silva, D.G.V.C.; Cortes, M.E.; Teixeira, K.I.; Caetano, N.P.; Sinisterra, R.D.; Ponchel, G.; Santos-Magalhães, N.S. Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes. J. Incl. Phenom. Macrocycl. Chem., 2009, 64, 215-224.
[http://dx.doi.org/10.1007/s10847-009-9554-5]
[36]
Nunes, P.S.; Albuquerque, R.L., Jr; Cavalcante, D.R.R.; Dantas, M.D.M.; Cardoso, J.C.; Bezerra, M.S.; Souza, J.C.C.; Serafini, M.R.; Quitans, L.J., Jr; Bonjardim, L.R.; Araújo, A.A.S. Collagen-based films containing liposome-loaded usnic acid as dressing for dermal burn healing. J. Biomed. Biotechnol., 2011, 2011, 761593.
[http://dx.doi.org/10.1155/2011/761593] [PMID: 21274404]
[37]
Araújo, R.V.S.; Melo-Júnior, M.R.; Beltrão, E.I.C.; Mello, L.A.; Iacomini, M.; Carneiro-Leão, A.M.A.; Carvalho, L.B., Jr; Santos- Magalhães, N.S. Evaluation of the antischistosomal activity of sulfated α-D-glucan from the lichen Ramalina celastri free and encapsulated into liposomes. Braz. J. Med. Biol. Res., 2011, 44(4), 311-318.
[http://dx.doi.org/10.1590/S0100-879X2011000400007] [PMID: 21344137]
[38]
Si, K.; Wei, L.; Yu, X.; Wu, F.; Li, X.; Li, C.; Cheng, Y. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp. Parasitol., 2016, 166, 68-74.
[http://dx.doi.org/10.1016/j.exppara.2016.03.021] [PMID: 27004468]
[39]
Nunes, P.S.; Rabelo, A.S.; Souza, J.C.; Santana, B.V.; da Silva, T.M.M.; Serafini, M.R.; Dos Passos, M.P.; Dos Santos, L.B.; Cardoso, J.C.; Alves, J.C.S.; Frank, L.A.; Guterres, S.S.; Pohlmann, A.R.; Pinheiro, M.S.; de Albuquerque, R.L.C.; Araújo, A.A.S. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm., 2016, 513(1-2), 473-482.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.040] [PMID: 27633280]
[40]
Cavalcanti, I.M.F.; Menezes, T.G.C.; Campos, L.A.A.; Ferraz, M.S.; Maciel, M.A.V.; Caetano, M.N.P.; Santos-Magalhães, N.S. interaction study between vancomycin and liposomes containing natural compounds against methicillin-resistant Staphylococcus aureus clinical isolates. Braz. J. Pharm. Sci., 2018, 54, 1-8.
[http://dx.doi.org/10.1590/s2175-97902018000200203]
[41]
Francolini, I.; Giansanti, L.; Piozzi, A.; Altieri, B.; Mauceri, A.; Mancini, G. Glucosylated liposomes as drug delivery systems of usnic acid to address bacterial infections. Colloids Surf. B Biointerfaces, 2019, 181, 632-638.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.056] [PMID: 31207445]
[42]
Battista, S.; Bellio, P.; Celenza, G.; Galantini, L.; Franceschini, I.; Mancini, G.; Giansanti, L. Correlation of physicochemical and antimicrobial properties of liposomes loaded with (+)-usnic acid. ChemPlusChem, 2020, 85(5), 1014-1021.
[http://dx.doi.org/10.1002/cplu.202000125] [PMID: 32421257]
[43]
Battista, S.; Campitelli, P.; Galantini, L.; Köber, M.; Vargas-Nadal, G.; Ventosa, N.; Giansanti, L. Use of n-oxide and cationic surfactants to enhance antioxidant properties of (+)-usnic acid loaded liposomes. Colloids Surf. A Physicochem. Eng. Asp., 2020, 585, 124154.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy