Review Article

Recent Advances in Predicting Protein-lncRNA Interactions Using Machine Learning Methods

Author(s): Han Yu, Zi-Ang Shen, Yuan-Ke Zhou and Pu-Feng Du*

Volume 22, Issue 3, 2022

Published on: 12 July, 2021

Page: [228 - 244] Pages: 17

DOI: 10.2174/1566523221666210712190718

Price: $65

Abstract

Long non-coding RNAs (LncRNAs) are a type of RNA with little or no protein-coding ability. Their length is more than 200 nucleotides. A large number of studies have indicated that lncRNAs play a significant role in various biological processes, including chromatin organizations, epigenetic programmings, transcriptional regulations, post-transcriptional processing, and circadian mechanism at the cellular level. Since lncRNAs perform vast functions through their interactions with proteins, identifying lncRNA-protein interaction is crucial to the understandings of the lncRNA molecular functions. However, due to the high cost and time-consuming disadvantage of experimental methods, a variety of computational methods have emerged. Recently, many effective and novel machine learning methods have been developed. In general, these methods fall into two categories: semisupervised learning methods and supervised learning methods. The latter category can be further classified into the deep learning-based method, the ensemble learning-based method, and the hybrid method. In this paper, we focused on supervised learning methods. We summarized the state-of-the-art methods in predicting lncRNA-protein interactions. Furthermore, the performance and the characteristics of different methods have also been compared in this work. Considering the limits of the existing models, we analyzed the problems and discussed future research potentials.

Keywords: lncRNA-protein interaction prediction, computational model, machine learning, deep learning, LncRNAs, chromatin organizations.

Graphical Abstract

[1]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[2]
Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007; 14(2): 103-5.
[http://dx.doi.org/10.1038/nsmb0207-103] [PMID: 17277804]
[3]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[4]
Gonzalez I, Munita R, Agirre E, et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat Struct Mol Biol 2015; 22(5): 370-6.
[http://dx.doi.org/10.1038/nsmb.3005] [PMID: 25849144]
[5]
Xu X, Wang K, Zha X. An antisense lncRNA functions in alternative splicing of Bmdsx in the silkworm, Bombyx mori. Biochem Biophys Res Commun 2019; 516(3): 639-44.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.107] [PMID: 31242972]
[6]
Schaukowitch K, Kim T-K. Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 2014; 264: 25-38.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.009] [PMID: 24342564]
[7]
Barkan A. Genome-wide analysis of RNA-protein interactions in plants. Totowa, NJ: Humana Press 2009; 553.
[http://dx.doi.org/10.1007/978-1-60327-563-7_2]
[8]
Tripathi R, Soni A, Varadwaj PK. Integrated analysis of dysregulated lncRNA expression in breast cancer cell identified by RNA-seq study. Noncoding RNA Res 2016; 1(1): 35-42.
[http://dx.doi.org/10.1016/j.ncrna.2016.09.002] [PMID: 30159409]
[9]
Engreitz JM, Haines JE, Perez EM, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 2016; 539(7629): 452-5.
[http://dx.doi.org/10.1038/nature20149] [PMID: 27783602]
[10]
Cao J. The functional role of long non-coding RNAs and epigenetics. Biol Proced Online 2014; 16(1): 11.
[http://dx.doi.org/10.1186/1480-9222-16-11] [PMID: 25276098]
[11]
Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 2013; 56(10): 876-85.
[http://dx.doi.org/10.1007/s11427-013-4553-6] [PMID: 24091684]
[12]
Pang Q, Ge J, Shao Y, et al. Increased expression of long intergenic non-coding RNA LINC00152 in gastric cancer and its clinical significance. Tumour Biol 2014; 35(6): 5441-7.
[http://dx.doi.org/10.1007/s13277-014-1709-3] [PMID: 24523021]
[13]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[14]
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 2016; 14(1): 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[15]
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21(6): 354-61.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[16]
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: Regulators of disease. J Pathol 2010; 220(2): 126-39.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[17]
Khalil AM, Rinn JL. RNA-protein interactions in human health and disease. Semin Cell Dev Biol 2011; 22(4): 359-65.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.016] [PMID: 21333748]
[18]
Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2004; 2(7): E171.
[http://dx.doi.org/10.1371/journal.pbio.0020171] [PMID: 15252442]
[19]
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311-23.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[20]
Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39(6): 925-38.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[21]
Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet 2006; 22(1): 1-5.
[http://dx.doi.org/10.1016/j.tig.2005.10.003] [PMID: 16290135]
[22]
Johnsson P, Lipovich L, Grandér D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 2014; 1840(3): 1063-71.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.035] [PMID: 24184936]
[23]
Keene JD, Komisarow JM, Friedersdorf MB. RIP-Chip: The isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 2006; 1(1): 302-7.
[http://dx.doi.org/10.1038/nprot.2006.47] [PMID: 17406249]
[24]
Ray D, Kazan H, Chan ET, et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 2009; 27(7): 667-70.
[http://dx.doi.org/10.1038/nbt.1550] [PMID: 19561594]
[25]
Darnell RB. HITS-CLIP: Panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 2010; 1(2): 266-86.
[http://dx.doi.org/10.1002/wrna.31] [PMID: 21935890]
[26]
Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed Res Int 2015; 2015: 671950.
[http://dx.doi.org/10.1155/2015/671950] [PMID: 26839884]
[27]
Yang J, Li A, Ge M, et al. Relevance search for predicting lncRNA–protein interactions based on heterogeneous network. Neurocomputing 2016; 206: 81-8.
[http://dx.doi.org/10.1016/j.neucom.2015.11.109]
[28]
Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding RNA-protein interactions. Genomics Proteomics Bioinformatics 2016; 14(1): 62-71.
[http://dx.doi.org/10.1016/j.gpb.2016.01.004] [PMID: 26917505]
[29]
Zheng X, Wang Y, Tian K, et al. Fusing multiple protein-protein similarity networks to effectively predict lncRNA-protein interactions. BMC Bioinformatics 2017; 18(S12)(Suppl. 12): 420.
[http://dx.doi.org/10.1186/s12859-017-1819-1] [PMID: 29072138]
[30]
Zhang W, Qu Q, Zhang Y, et al. The linear neighborhood propagation method for predicting long non-coding RNA-protein interactions. Neurocomputing 2018; 273: 526-34.
[http://dx.doi.org/10.1016/j.neucom.2017.07.065]
[31]
Zhang H, Ming Z, Fan C, Zhao Q, Liu H. A path-based computational model for long non-coding RNA-protein interaction prediction. Genomics 2020; 112(2): 1754-60.
[http://dx.doi.org/10.1016/j.ygeno.2019.09.018] [PMID: 31639442]
[32]
Zhang T, Wang M, Xi J, et al. LPGNMF: Predicting long noncoding RNA and protein interaction using graph regularized nonnegative matrix factorization. IEEE/ACM Trans Comput Biol and Bioinf 2020; 17(1): 189-97.
[http://dx.doi.org/10.1109/TCBB.2018.2861009] [PMID: 30059315]
[33]
Liu H, Ren G, Hu H, et al. LPI-NRLMF: LncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget 2017; 8(61): 103975-84.
[http://dx.doi.org/10.18632/oncotarget.21934] [PMID: 29262614]
[34]
Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H. IRWNRLPI: Integrating random walk and neighborhood regularized logistic matrix factorization for lncrna-protein interaction prediction. Front Genet 2018; 9: 239.
[http://dx.doi.org/10.3389/fgene.2018.00239] [PMID: 30023002]
[35]
Ma Y, He T, Jiang X. Projection-based neighborhood non-negative matrix factorization for lncrna-protein interaction prediction. Front Genet 2019; 10: 1148.
[http://dx.doi.org/10.3389/fgene.2019.01148] [PMID: 31824563]
[36]
Shen C, Ding Y, Tang J, Guo F. Multivariate information fusion with fast kernel learning to kernel ridge regression in predicting lncrna-protein interactions. Front Genet 2019; 9: 716.
[http://dx.doi.org/10.3389/fgene.2018.00716] [PMID: 30697228]
[37]
Shen C, Ding Y, Tang J, et al. LPI-KTASLP: Prediction of lncrnaprotein interaction by semi-supervised link learning with multivariate information. IEEE Access 2019; 7: 13486-96.
[http://dx.doi.org/10.1109/ACCESS.2019.2894225]
[38]
Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics 2011; 12(1): 489.
[http://dx.doi.org/10.1186/1471-2105-12-489] [PMID: 22192482]
[39]
Wang Y, Chen X, Liu Z-P, et al. De novo prediction of RNA-protein interactions from sequence information. Mol Biosyst 2013; 9(1): 133-42.
[http://dx.doi.org/10.1039/C2MB25292A] [PMID: 23138266]
[40]
Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013; 14(1): 651.
[http://dx.doi.org/10.1186/1471-2164-14-651] [PMID: 24063787]
[41]
Suresh V, Liu L, Adjeroh D, Zhou X. RPI-Pred: Predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res 2015; 43(3): 1370-9.
[http://dx.doi.org/10.1093/nar/gkv020] [PMID: 25609700]
[42]
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015; 33(8): 831-8.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[43]
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015; 12(10): 931-4.
[http://dx.doi.org/10.1038/nmeth.3547] [PMID: 26301843]
[44]
Hassanzadeh HR, Wang MD. DeeperBind: Enhancing prediction of sequence specificities of dna binding proteins 6
[http://dx.doi.org/10.1109/BIBM.2016.7822515]
[45]
Lewis BA, Walia RR, Terribilini M, et al. PRIDB: A protein-RNA interface database. Nucleic Acids Research 2011; 39(Database): D277-82.
[46]
consortium wwPDB, Burley SK, Berman HM. Protein data bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019; 47(D1): D520-2.
[http://dx.doi.org/10.1093/nar/gky949]
[47]
Coimbatore Narayanan B, Westbrook J, Ghosh S, et al. The nucleic acid database: New features and capabilities. Nucleic Acids Res 2014; 42(Database issue): D114-22.
[http://dx.doi.org/10.1093/nar/gkt980] [PMID: 24185695]
[48]
Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2.0: An updated database of ncRNA interactions. Nucleic Acids Res 2014; 42(Database issue): D104-8.
[http://dx.doi.org/10.1093/nar/gkt1057] [PMID: 24217916]
[49]
Hao Y, Wu W, Li H, et al. NPInter v3.0: An upgraded database of noncoding RNA-associated interactions. Database (Oxford) 2016; 2016baw057
[http://dx.doi.org/10.1093/database/baw057] [PMID: 27087310]
[50]
Teng X, Chen X, Xue H, et al. NPInter v4.0: An integrated database of ncRNA interactions. Nucleic Acids Res 2019; •••gkz969
[http://dx.doi.org/10.1093/nar/gkz969] [PMID: 31670377]
[51]
Pan X, Fan Y-X, Yan J, Shen HB. IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics 2016; 17(1): 582.
[http://dx.doi.org/10.1186/s12864-016-2931-8] [PMID: 27506469]
[52]
Zhang S-W, Zhang X-X, Fan X-N, Li WN. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural network with the copy-padding trick. Anal Biochem 2020; 601: 113767.
[http://dx.doi.org/10.1016/j.ab.2020.113767] [PMID: 32454029]
[53]
Pancaldi V, Bähler J. In silico characterization and prediction of global protein-mRNA interactions in yeast. Nucleic Acids Res 2011; 39(14): 5826-36.
[http://dx.doi.org/10.1093/nar/gkr160] [PMID: 21459850]
[54]
Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 2008; 6(10)e255
[http://dx.doi.org/10.1371/journal.pbio.0060255] [PMID: 18959479]
[55]
Fan X-N, Zhang S-W. LPI-BLS: Predicting lncRNA-protein interactions with a broad learning system-based stacked ensemble classifier. Neurocomputing 2019; 370: 88-93.
[http://dx.doi.org/10.1016/j.neucom.2019.08.084]
[56]
Bai Y, Dai X, Ye T, et al. PlncRNADB: A repository of plant lncrnas and lncrna-rbp protein interactions. CBIO 2019; 14(7): 621-7.
[http://dx.doi.org/10.2174/1574893614666190131161002]
[57]
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010; 26(5): 680-2.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[58]
Yi H-C, You Z-H, Cheng L, et al. Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions. Comput Struct Biotechnol J 2019; 18: 20-6.
[http://dx.doi.org/10.1016/j.csbj.2019.11.004] [PMID: 31890140]
[59]
Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res 2012; 22(9): 1760-74.
[http://dx.doi.org/10.1101/gr.135350.111] [PMID: 22955987]
[60]
Cheng Z, Huang K, Wang Y, Liu H, Guan J, Zhou S. Selecting high-quality negative samples for effectively predicting protein-RNA interactions. BMC Syst Biol 2017; 11(S2)(Suppl. 2): 9.
[http://dx.doi.org/10.1186/s12918-017-0390-8] [PMID: 28361676]
[61]
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7.
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[62]
Hashemifar S, Neyshabur B, Khan AA, Xu J. Predicting protein-protein interactions through sequence-based deep learning. Bioinformatics 2018; 34(17): i802-10.
[http://dx.doi.org/10.1093/bioinformatics/bty573] [PMID: 30423091]
[63]
Hu H, Zhang L, Ai H, et al. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol 2018; 15(6): 797-806.
[http://dx.doi.org/10.1080/15476286.2018.1457935] [PMID: 29583068]
[64]
Bhartiya D, Pal K, Ghosh S, et al. lncRNome: A comprehensive knowledgebase of human long noncoding RNAs. Database 2013. 2013.
[http://dx.doi.org/10.1093/database/bat034] [PMID: 23846593]
[65]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[66]
Zhao Y, Li H, Fang S, et al. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016; 44(D1): D203-8.
[http://dx.doi.org/10.1093/nar/gkv1252] [PMID: 26586799]
[67]
Chen W, Zhang X, Brooker J, Lin H, Zhang L, Chou KC. PseKNC-General: A cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics 2015; 31(1): 119-20.
[http://dx.doi.org/10.1093/bioinformatics/btu602] [PMID: 25231908]
[68]
Wei L, Liao M, Gao Y, et al. Improved and promising identification of human micrornas by incorporating a high-quality negative set. IEEE/ACM Trans Comput Biol and Bioinf 2014; 11(1): 192-201.
[http://dx.doi.org/10.1109/TCBB.2013.146]
[69]
Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. Bioinformatics 2009; 25(20): 2655-62.
[http://dx.doi.org/10.1093/bioinformatics/btp500] [PMID: 19706744]
[70]
Guo Y, Yu L, Wen Z, Li M. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res 2008; 36(9): 3025-30.
[http://dx.doi.org/10.1093/nar/gkn159] [PMID: 18390576]
[71]
Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 2015; 43(W1)W65-71
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[72]
Cao D-S, Xu Q-S, Liang Y-Z. propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics 2013; 29(7): 960-2.
[http://dx.doi.org/10.1093/bioinformatics/btt072] [PMID: 23426256]
[73]
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion 38. 2010; 11: 3371-408.
[http://dx.doi.org/10.5555/1756006.1953039]
[74]
Le QV. Building high-level features using large scale unsupervised learning. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 2013.
[http://dx.doi.org/10.1109/ICASSP.2013.6639343]
[75]
Cheng S, Zhang L, Tan J, Gong W, Li C, Zhang X. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strategy. Comput Biol Chem 2019; 83107088
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107088] [PMID: 31330489]
[76]
Peng C, Han S, Zhang H, Li Y. RPITER: A hierarchical deep learning framework for ncrna−protein interaction prediction. Int J Mol Sci 2019; 20(5): 1070.
[http://dx.doi.org/10.3390/ijms20051070] [PMID: 30832218]
[77]
Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995; 11(6): 681-4.
[http://dx.doi.org/10.1093/bioinformatics/11.6.681] [PMID: 8808585]
[78]
Lorenz R, Bernhart SH, Höner Zu Siederdissen C, et al. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6(1): 26.
[http://dx.doi.org/10.1186/1748-7188-6-26] [PMID: 22115189]
[79]
Wekesa JS, Meng J, Luan Y. Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics 2020; 112(5): 2928-36.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.005] [PMID: 32437848]
[80]
Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence prediction using gapped k-mer features. PLOS Comput Biol 2014; 10(7)e1003711
[http://dx.doi.org/10.1371/journal.pcbi.1003711] [PMID: 25033408]
[81]
Tang G, Shi J, Wu W, Yue X, Zhang W. Sequence-based bacterial small RNAs prediction using ensemble learning strategies. BMC Bioinformatics 2018; 19(S20)(Suppl. 20): 503.
[http://dx.doi.org/10.1186/s12859-018-2535-1] [PMID: 30577759]
[82]
Magnan CN, Baldi P. SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 2014; 30(18): 2592-7.
[http://dx.doi.org/10.1093/bioinformatics/btu352] [PMID: 24860169]
[83]
Yan Z, Hamilton WL, Blanchette M. Graph neural representational learning of RNA secondary structures for predicting RNAprotein interactions. Bioinformatics 2020; 36(Supplement_1): i276-84.
[http://dx.doi.org/10.1093/bioinformatics/btaa456] [PMID: 32657407 ]
[84]
Yates AD, Achuthan P, Akanni W, et al. Ensembl 2020. Nucleic Acids Res 2020; 48(D1): D682-8.
[PMID: 31691826]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy