Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Drug Repurposing: An Alternative Strategy to Treat COVID-19

Author(s): Pengyu Han*, Huifang zheng, Pingping Wen, Li Pan, Dan Geng and Dianxing Sun*

Volume 23, Issue 6, 2022

Published on: 24 August, 2021

Page: [818 - 827] Pages: 10

DOI: 10.2174/1389201022666210709141320

Price: $65

Abstract

In order to curve the ongoing trend of the COVID-19 pandemic and save more lives, effective treatments against COVID-19 are urgently needed. Compared to developing new drugs, which may take too much time, it’s more efficient and cost-effective to repurpose existing drugs in the treatment of COVID-19. Fortunately, some of the shared features of COVID-19 and other wellknown diseases make it possible to use old strategies to combat this new challenge. In this paper, we reviewed various possible strategies of drug repurposing in the treatment of COVID-19 and explored the possible scientific mechanisms behind each strategy.

Keywords: COVID-19, SARS-CoV-2, Immuno-regulation, Risk factor, pH, Anti-viral agents, Surfactants.

Graphical Abstract

[1]
Karatayev, V.A.; Anand, M.; Bauch, C.T. Local lockdowns outperform global lockdown on the far side of the COVID-19 epidemic curve. Proc. Natl. Acad. Sci. USA, 2020, 117(39), 24575-24580.
[http://dx.doi.org/10.1073/pnas.2014385117] [PMID: 32887803]
[2]
Lim, J.M.; Tun, Z.M.; Kumar, V.; Quaye, S.E.D.; Offeddu, V.; Cook, A.R.; Lwin, M.O.; Jiang, S.; Tam, C.C. Population anxiety and positive behaviour change during the COVID-19 epidemic: Cross-sectional surveys in Singapore, China and Italy. Influenza other Respi. Viruses, 2021, 15(1), 45-55.
[http://dx.doi.org/10.1111/irv.12785.]
[3]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[4]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[5]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[6]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[7]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[8]
Xu, J.; Shi, P.Y.; Li, H.; Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis., 2020, 6(5), 909-915.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[9]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[10]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[11]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[12]
Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, 92(5), 491-494.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[13]
Yesilkaya, U.H.; Balcioglu, Y.H. Neuroimmune correlates of the nervous system involvement of COVID-19: A commentary. J. Clin. Neurosci., 2020, 78, 449-450.
[http://dx.doi.org/10.1016/j.jocn.2020.05.056] [PMID: 32505431]
[14]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[15]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[16]
Jafarzadeh, A.; Chauhan, P.; Saha, B.; Jafarzadeh, S.; Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci., 2020, 257, 118102.
[http://dx.doi.org/10.1016/j.lfs.2020.118102] [PMID: 32687918]
[17]
Abeygunasekera, A.; Jayasinghe, S. Is the anti-filarial drug diethylcarbamazine useful to treat COVID-19? Med. Hypotheses, 2020, 143, 109843.
[http://dx.doi.org/10.1016/j.mehy.2020.109843] [PMID: 32492560]
[18]
Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol., 2014, 734, 35-41.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.046] [PMID: 24726556]
[19]
Ribeiro, E.L.; Barbosa, K.P.; Fragoso, I.T.; Donato, M.A.; Gomes, F.O.; da Silva, B.S.; Soares e Silva, A.K.; Rocha, S.W.; da Silva, V.A., Junior; Peixoto, C.A. Diethylcarbamazine attenuates the development of carrageenan-induced lung injury in mice. Mediators Inflamm., 2014, 2014, 105120.
[http://dx.doi.org/10.1155/2014/105120] [PMID: 24550603]
[20]
Rodrigues, G.B.; Oliveira, E.E.; Junior, F.J.B.M.; Santos, L.A.M.D.; Oliveira, W.H.; França, M.E.R.; Lós, D.B.; Gabínio, B.M.; de Lira, F.C.M.L.; Peixoto, C.A. Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. Int. Immunopharmacol., 2017, 50, 330-337.
[http://dx.doi.org/10.1016/j.intimp.2017.07.014] [PMID: 28743082]
[21]
Sakaguchi, Y.; Shirahase, H.; Kunishiro, K.; Ichikawa, A.; Kanda, M.; Uehara, Y. Effect of combination of nitric oxide synthase and cyclooxygenase inhibitors on carrageenan-induced pleurisy in rats. Life Sci., 2006, 79(5), 442-447.
[http://dx.doi.org/10.1016/j.lfs.2006.01.022] [PMID: 16481007]
[22]
Medina-De la Garza, C.E.; Guerrero-Ramírez, G.; García-Hernández, M.; Castro-Corona, M.A.; Torres-López, E.; Brattig, N.W.; Salinas-Carmona, M.C. Immunomodulatory activity of diethylcarbamazine on humoral, cellular cytokine response and respiratory burst in BALB/c mice. Immunopharmacol. Immunotoxicol., 2012, 34(3), 477-483.
[http://dx.doi.org/10.3109/08923973.2011.630008] [PMID: 22564175]
[23]
Kitchen, L.W.; Mather, F.J.; Chapple, F.E.; Bilello, J.A. Effect of administration of diethylcarbamazine on murine leukemia virus (Cas-Br-M) infected mice. J. Clin. Lab. Immunol., 1990, 33(3), 97-105.
[PMID: 1967004]
[24]
Unal, G.; Turan, B.; Balcioglu, Y.H. Immunopharmacological management of COVID-19: Potential therapeutic role of valproic acid. Med. Hypotheses, 2020, 143, 109891.
[http://dx.doi.org/10.1016/j.mehy.2020.109891] [PMID: 32498007]
[25]
Gokcay, H.; Kirlioglu, S.S.; Balcioglu, Y.H. Valproate-associated isolated serum creatine kinase elevation. Am. J. Ther., 2020.
[http://dx.doi.org/10.1097/MJT.0000000000001176] [PMID: 32251004]
[26]
Ichiyama, T.; Okada, K.; Lipton, J.M.; Matsubara, T.; Hayashi, T.; Furukawa, S. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res., 2000, 857(1-2), 246-251.
[http://dx.doi.org/10.1016/S0006-8993(99)02439-7] [PMID: 10700573]
[27]
Li, G.; Nowak, M.; Bauer, S.; Schlegel, K.; Stei, S.; Allenhöfer, L.; Waschbisch, A.; Tackenberg, B.; Höllerhage, M.; Höglinger, G.U.; Wegner, S.; Wang, X.; Oertel, W.H.; Rosenow, F.; Hamer, H.M. Levetiracetam but not valproate inhibits function of CD8+ T lymphocytes. Seizure, 2013, 22(6), 462-466.
[http://dx.doi.org/10.1016/j.seizure.2013.03.006] [PMID: 23639870]
[28]
Bhargava, P.; Panda, P.; Ostwal, V.; Ramaswamy, A. Repurposing valproate to prevent acute respiratory distress syndrome/acute lung injury in COVID-19: A review of immunomodulatory action. Cancer Res Stat Treat, 2020, 3(5), S65-S70.
[http://dx.doi.org/10.4103/CRST.CRST_156_20]
[29]
Pitt, B.; Sutton, N.R.; Wang, Z.; Goonewardena, S.N.; Holinstat, M. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur. J. Pharmacol., 2021, 898, 173988.
[http://dx.doi.org/10.1016/j.ejphar.2021.173988] [PMID: 33667455]
[30]
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (covid-19). JAMA Cardiol., 2020, 5(7), 811-818.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[31]
Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; Huang, H.; Yang, B.; Huang, C. Association of cardiac injury with mortality in hospitalized patients with covid-19 in wuhan, china. JAMA Cardiol., 2020, 5(7), 802-810.
[http://dx.doi.org/10.1001/jamacardio.2020.0950] [PMID: 32211816]
[32]
Fried, J.A.; Ramasubbu, K.; Bhatt, R.; Topkara, V.K.; Clerkin, K.J.; Horn, E.; Rabbani, L.; Brodie, D.; Jain, S.S.; Kirtane, A.J.; Masoumi, A.; Takeda, K.; Kumaraiah, D.; Burkhoff, D.; Leon, M.; Schwartz, A.; Uriel, N.; Sayer, G. The variety of cardiovascular presentations of covid-19. Circulation, 2020, 141(23), 1930-1936.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047164] [PMID: 32243205]
[33]
Moderato, L.; Monello, A.; Lazzeroni, D.; Binno, S.; Giacalone, R.; Ferraro, S.; Piepoli, M.F.; Villani, G.Q. Takotsubo syndrome during SARS-CoV-2 pneumonia: A possible cardiovascular complication. G. Ital. Cardiol. (Rome), 2020, 21(6), 417-420.
[PMID: 32425184]
[34]
Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; Maroldi, R.; Adamo, M.; Ammirati, E.; Sinagra, G.; Lombardi, C.M.; Metra, M. Cardiac involvement in a patient with coronavirus disease 2019 (covid-19). JAMA Cardiol., 2020, 5(7), 819-824.
[http://dx.doi.org/10.1001/jamacardio.2020.1096] [PMID: 32219357]
[35]
Bambakidis, T.; Dekker, S.E.; Halaweish, I.; Liu, B.; Nikolian, V.C.; Georgoff, P.E.; Piascik, P.; Li, Y.; Sillesen, M.; Alam, H.B. Valproic acid modulates platelet and coagulation function ex vivo. Blood Coagul. Fibrinolysis, 2017, 28(6), 479-484.
[http://dx.doi.org/10.1097/MBC.0000000000000626] [PMID: 28230635]
[36]
Saluveer, O.; Larsson, P.; Ridderstråle, W.; Hrafnkelsdóttir, T.J.; Jern, S.; Bergh, N. Profibrinolytic effect of the epigenetic modifier valproic acid in man. PLoS One, 2014, 9(10), e107582.
[http://dx.doi.org/10.1371/journal.pone.0107582] [PMID: 25295869]
[37]
Van Beneden, K.; Geers, C.; Pauwels, M.; Mannaerts, I.; Verbeelen, D.; van Grunsven, L.A.; Van den Branden, C. Valproic acid attenuates proteinuria and kidney injury. J. Am. Soc. Nephrol., 2011, 22(10), 1863-1875.
[http://dx.doi.org/10.1681/ASN.2010111196] [PMID: 21868496]
[38]
Khan, S.; Jena, G.; Tikoo, K.; Kumar, V. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat. Biochimie, 2015, 110, 1-16.
[http://dx.doi.org/10.1016/j.biochi.2014.12.015] [PMID: 25572918]
[39]
Council, E.-E.; Group, E. W. Chronic kidney disease is a key risk factor for severe COVID-19: A call to action by the ERA-EDTA. Nephrol. Dial. Transplant., 2021, 36(1), 87-94.
[http://dx.doi.org/10.1093/ndt/gfaa314] [PMID: 33340043]
[40]
Viswanathan, V.; Puvvula, A.; Jamthikar, A.D.; Saba, L.; Johri, A.M.; Kotsis, V.; Khanna, N.N.; Dhanjil, S.K.; Majhail, M.; Misra, D.P.; Agarwal, V.; Kitas, G.D.; Sharma, A.M.; Kolluri, R.; Naidu, S.; Suri, J.S. Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review. World J. Diabetes, 2021, 12(3), 215-237.
[http://dx.doi.org/10.4239/wjd.v12.i3.215] [PMID: 33758644]
[41]
Lampl, B.M.J.; Buczovsky, M.; Martin, G.; Schmied, H.; Leitzmann, M.; Salzberger, B. Clinical and epidemiological data of COVID-19 from Regensburg, Germany: A retrospective analysis of 1084 consecutive cases. Infection, 2021.
[http://dx.doi.org/10.1007/s15010-021-01580-2] [PMID: 33666894]
[42]
Khan, S.; Kumar, S.; Jena, G. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie, 2016, 125, 42-52.
[http://dx.doi.org/10.1016/j.biochi.2016.02.014] [PMID: 26944797]
[43]
Subramanian, S.; Iles, T.; Ikramuddin, S.; Steer, C.J. Merit of an ursodeoxycholic acid clinical trial in covid-19 patients. Vaccines (Basel), 2020, 8(2), E320.
[http://dx.doi.org/10.3390/vaccines8020320] [PMID: 32575350]
[44]
de Vries, E.; Beuers, U. Management of cholestatic disease in 2017. Liver Int., 2017, 37(Suppl. 1), 123-129.
[http://dx.doi.org/10.1111/liv.13306] [PMID: 28052628]
[45]
Talebian, R.; Panahipour, L.; Gruber, R. Ursodeoxycholic acid attenuates the expression of proinflammatory cytokines in periodontal cells. J. Periodontol., 2020.
[http://dx.doi.org/10.1002/JPER.19-0013] [PMID: 31960968]
[46]
Kim, Y.J.; Jeong, S.H.; Kim, E.K.; Kim, E.J.; Cho, J.H. Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells. Oncol. Rep., 2017, 38(6), 3632-3638.
[http://dx.doi.org/10.3892/or.2017.6045] [PMID: 29130098]
[47]
Ko, W.K.; Lee, S.H.; Kim, S.J.; Jo, M.J.; Kumar, H.; Han, I.B.; Sohn, S. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS One, 2017, 12(6), e0180673.
[http://dx.doi.org/10.1371/journal.pone.0180673] [PMID: 28665991]
[48]
Ko, W.K.; Kim, S.J.; Jo, M.J.; Choi, H.; Lee, D.; Kwon, I.K.; Lee, S.H.; Han, I.B.; Sohn, S. Ursodeoxycholic acid inhibits inflammatory responses and promotes functional recovery after spinal cord injury in rats. Mol. Neurobiol., 2019, 56(1), 267-277.
[http://dx.doi.org/10.1007/s12035-018-0994-z] [PMID: 29691718]
[49]
Lapenna, D.; Ciofani, G.; Festi, D.; Neri, M.; Pierdomenico, S.D.; Giamberardino, M.A.; Cuccurullo, F. Antioxidant properties of ursodeoxycholic acid. Biochem. Pharmacol., 2002, 64(11), 1661-1667.
[http://dx.doi.org/10.1016/S0006-2952(02)01391-6] [PMID: 12429355]
[50]
Niu, F.; Xu, X.; Zhang, R.; Sun, L.; Gan, N.; Wang, A. Ursodeoxycholic acid stimulates alveolar fluid clearance in LPS-induced pulmonary edema via ALX/cAMP/PI3K pathway. J. Cell. Physiol., 2019, 234(11), 20057-20065.
[http://dx.doi.org/10.1002/jcp.28602] [PMID: 30972764]
[51]
Abdulrab, S.; Al-Maweri, S.; Halboub, E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med. Hypotheses, 2020, 143, 109897.
[http://dx.doi.org/10.1016/j.mehy.2020.109897] [PMID: 32505909]
[52]
Yin, L.; Busch, D.; Qiao, Z.; van Griensven, M.; Teuben, M.; Hildebrand, F.; Pape, H.C.; Pfeifer, R. Dose-dependent effects of peroxisome proliferator-activated receptors β/δ agonist on systemic inflammation after haemorrhagic shock. Cytokine, 2018, 103, 127-132.
[http://dx.doi.org/10.1016/j.cyto.2017.09.021] [PMID: 28969938]
[53]
Derosa, G.; Sahebkar, A.; Maffioli, P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J. Cell. Physiol., 2018, 233(1), 153-161.
[http://dx.doi.org/10.1002/jcp.25804] [PMID: 28098353]
[54]
Filip-Ciubotaru, F.; Foia, L.; Manciuc, C.; Grigore, C. PPARs: Structure, mechanisms of action and control. Note I. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2011, 115(2), 477-484.
[PMID: 21870744]
[55]
Darwish, I.; Mubareka, S.; Liles, W.C. Immunomodulatory therapy for severe influenza. Expert Rev. Anti Infect. Ther., 2011, 9(7), 807-822.
[http://dx.doi.org/10.1586/eri.11.56] [PMID: 21810053]
[56]
Yao, Q.; Liu, J.; Zhang, Z.; Li, F.; Zhang, C.; Lai, B.; Xiao, L.; Wang, N. Peroxisome proliferator-activated receptor γ (PPARγ) induces the gene expression of integrin αVβ5 to promote macrophage M2 polarization. J. Biol. Chem., 2018, 293(43), 16572-16582.
[http://dx.doi.org/10.1074/jbc.RA118.003161] [PMID: 30181212]
[57]
Tan, M.H. Current treatment of insulin resistance in type 2 diabetes mellitus. Int. J. Clin. Pract. Suppl., 2000, (113), 54-62.
[PMID: 11965833]
[58]
Ali, Z.A.; El-Mallakh, R.S. Nebulized lidocaine in covid-19, an hypothesis. Med. Hypotheses, 2020, 144, 109947.
[http://dx.doi.org/10.1016/j.mehy.2020.109947] [PMID: 32505070]
[59]
Segal, A.; Awayda, M.S.; Eggermont, J.; Van Driessche, W.; Weber, W.M. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes. Pflugers Arch., 2002, 443(5-6), 882-891.
[http://dx.doi.org/10.1007/s00424-001-0773-x] [PMID: 11889589]
[60]
Tanaka, A.; Minoguchi, K.; Oda, N.; Yokoe, T.; Matsuo, H.; Okada, S.; Tasaki, T.; Adachi, M. Inhibitory effect of lidocaine on T cells from patients with allergic asthma. J. Allergy Clin. Immunol., 2002, 109(3), 485-490.
[http://dx.doi.org/10.1067/mai.2002.122155] [PMID: 11897996]
[61]
Azoulay, E.; Herigault, S.; Levame, M.; Brochard, L.; Schlemmer, B.; Harf, A.; Delclaux, C. Effect of granulocyte colony-stimulating factor on bleomycin-induced acute lung injury and pulmonary fibrosis. Crit. Care Med., 2003, 31(5), 1442-1448.
[http://dx.doi.org/10.1097/01.CCM.0000050453.28177.33] [PMID: 12771616]
[62]
Hunt, L.W.; Frigas, E.; Butterfield, J.H.; Kita, H.; Blomgren, J.; Dunnette, S.L.; Offord, K.P.; Gleich, G.J. Treatment of asthma with nebulized lidocaine: A randomized, placebo-controlled study. J. Allergy Clin. Immunol., 2004, 113(5), 853-859.
[http://dx.doi.org/10.1016/j.jaci.2004.02.039] [PMID: 15131566]
[63]
Ruwanpura, S.M.; Thomas, B.J.; Bardin, P.G. Pirfenidone: Molecular mechanisms and potential clinical applications in lung disease. Am. J. Respir. Cell Mol. Biol., 2020, 62(4), 413-422.
[http://dx.doi.org/10.1165/rcmb.2019-0328TR] [PMID: 31967851]
[64]
Li, Y.; Li, H.; Liu, S.; Pan, P.; Su, X.; Tan, H.; Wu, D.; Zhang, L.; Song, C.; Dai, M.; Li, Q.; Mao, Z.; Long, Y.; Hu, Y.; Hu, C. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol. Immunol., 2018, 99, 134-144.
[http://dx.doi.org/10.1016/j.molimm.2018.05.003] [PMID: 29783158]
[65]
Fois, A.G.; Posadino, A.M.; Giordo, R.; Cossu, A.; Agouni, A.; Rizk, N.M.; Pirina, P.; Carru, C.; Zinellu, A.; Pintus, G. Antioxidant activity mediates pirfenidone antifibrotic effects in human pulmonary vascular smooth muscle cells exposed to sera of idiopathic pulmonary fibrosis patients. Oxid. Med. Cell. Longev., 2018, 2018, 2639081.
[http://dx.doi.org/10.1155/2018/2639081] [PMID: 30420906]
[66]
Saha, A.; Vaidya, P.J.; Chavhan, V.B.; Achlerkar, A.; Leuppi, J.D.; Chhajed, P.N. Combined pirfenidone, azithromycin and prednisolone in post-H1N1 ARDS pulmonary fibrosis. Sarcoidosis Vasc. Diffuse Lung Dis., 2018, 35(1), 85-90.
[PMID: 32476885]
[67]
Seifirad, S. Pirfenidone: A novel hypothetical treatment for COVID-19. Med. Hypotheses, 2020, 144, 110005.
[http://dx.doi.org/10.1016/j.mehy.2020.110005] [PMID: 32575019]
[68]
Segar, J.M.; Reed, D.; Stopeck, A.; Livingston, R.B.; Chalasani, P. A phase ii study of irinotecan and etoposide as treatment for refractory metastatic breast cancer. Oncologist, 2019, 24(12), 1512-e1267.
[http://dx.doi.org/10.1634/theoncologist.2019-0516] [PMID: 31383812]
[69]
Rialdi, A.; Campisi, L.; Zhao, N.; Lagda, A.C.; Pietzsch, C.; Ho, J.S.Y.; Martinez-Gil, L.; Fenouil, R.; Chen, X.; Edwards, M.; Metreveli, G.; Jordan, S.; Peralta, Z.; Munoz-Fontela, C.; Bouvier, N.; Merad, M.; Jin, J.; Weirauch, M.; Heinz, S.; Benner, C.; van Bakel, H.; Basler, C.; García-Sastre, A.; Bukreyev, A.; Marazzi, I. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352(6289), aad7993.
[http://dx.doi.org/10.1126/science.aad7993] [PMID: 27127234]
[70]
Lehmberg, K.; Nichols, K.E.; Henter, J.I.; Girschikofsky, M.; Greenwood, T.; Jordan, M.; Kumar, A.; Minkov, M.; La Rosée, P.; Weitzman, S. Consensus recommendations for the diagnosis and management of hemophagocytic lymphohistiocytosis associated with malignancies. Haematologica, 2015, 100(8), 997-1004.
[PMID: 26314082]
[71]
Lovetrue, B. The AI-discovered aetiology of COVID-19 and rationale of the irinotecan+ etoposide combination therapy for critically ill COVID-19 patients. Med. Hypotheses, 2020, 144, 110180.
[http://dx.doi.org/10.1016/j.mehy.2020.110180] [PMID: 33254502]
[72]
Deng, Y.; Angelova, A. Coronavirus-induced host cubic membranes and lipid-related antiviral therapies: A focus on bioactive plasmalogens. Front. Cell Dev. Biol., 2021, 9, 630242.
[http://dx.doi.org/10.3389/fcell.2021.630242] [PMID: 33791293]
[73]
Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res., 2019, 74, 186-195.
[http://dx.doi.org/10.1016/j.plipres.2019.04.003] [PMID: 30974122]
[74]
Das, U.N. Bioactive lipids in covid-19-further evidence. Arch. Med. Res., 2021, 52(1), 107-120.
[http://dx.doi.org/10.1016/j.arcmed.2020.09.006] [PMID: 32981754]
[75]
Zhuo, R.; Rong, P.; Wang, J.; Parvin, R.; Deng, Y. The potential role of bioactive plasmalogens in lung surfactant. Front. Cell Dev. Biol., 2021, 9, 618102.
[http://dx.doi.org/10.3389/fcell.2021.618102] [PMID: 33681198]
[76]
Adefegha, S.A.; Leal, D.B.R.; de Oliveira, J.S.; Manzoni, A.G.; Bremm, J.M. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct., 2017, 8(12), 4459-4468.
[http://dx.doi.org/10.1039/C7FO01008G] [PMID: 29090709]
[77]
Robertson, R.C.; Guihéneuf, F.; Bahar, B.; Schmid, M.; Stengel, D.B.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (lps)-stimulated human thp-1 macrophages. Mar. Drugs, 2015, 13(8), 5402-5424.
[http://dx.doi.org/10.3390/md13085402] [PMID: 26308008]
[78]
Allam-Ndoul, B.; Guénard, F.; Barbier, O.; Vohl, M.C. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis., 2016, 15, 69.
[http://dx.doi.org/10.1186/s12944-016-0241-4] [PMID: 27044314]
[79]
Allam-Ndoul, B.; Guénard, F.; Barbier, O.; Vohl, M.C. Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages. Genes Nutr., 2017, 12, 7.
[http://dx.doi.org/10.1186/s12263-017-0554-6] [PMID: 28250850]
[80]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[81]
Korant, B.D.; Kauer, J.C.; Butterworth, B.E. Zinc ions inhibit replication of rhinoviruses. Nature, 1974, 248(449), 588-590.
[http://dx.doi.org/10.1038/248588a0] [PMID: 4363085]
[82]
Nakai, K.; Lucas-Lenard, J. Processing of mengovirus precursor polypeptides in the presence of zinc ions and sulfhydryl compounds. J. Virol., 1976, 18(3), 918-925.
[http://dx.doi.org/10.1128/JVI.18.3.918-925.1976] [PMID: 178929]
[83]
Odon, V.; Fros, J.J.; Goonawardane, N.; Dietrich, I.; Ibrahim, A.; Alshaikhahmed, K.; Nguyen, D.; Simmonds, P. The role of ZAP and OAS3/RNAseL pathways in the attenuation of an RNA virus with elevated frequencies of CpG and UpA dinucleotides. Nucleic Acids Res., 2019, 47(15), 8061-8083.
[http://dx.doi.org/10.1093/nar/gkz581] [PMID: 31276592]
[84]
Duggal, N.; Jaishankar, D.; Yadavalli, T.; Hadigal, S.; Mishra, Y.K.; Adelung, R.; Shukla, D. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Mol. Vis., 2017, 23, 26-38.
[PMID: 28275313]
[85]
Sundaram, M.E.; Meydani, S.N.; Vandermause, M.; Shay, D.K.; Coleman, L.A.; Vitamin, E. Vitamin E, vitamin A, and zinc status are not related to serologic response to influenza vaccine in older adults: An observational prospective cohort study. Nutr. Res., 2014, 34(2), 149-154.
[http://dx.doi.org/10.1016/j.nutres.2013.12.004] [PMID: 24461316]
[86]
Hunter, J.; Arentz, S.; Goldenberg, J.; Yang, G.; Beardsley, J.; Mertz, D.; Leeder, S. Rapid review protocol: Zinc for the prevention or treatment of COVID-19 and other coronavirus-related respiratory tract infections. Integr. Med. Res., 2020, 9(3), 100457.
[http://dx.doi.org/10.1016/j.imr.2020.100457] [PMID: 32690999]
[87]
Pasternak, C.A. A novel form of host defence: Membrane protection by Ca2+ and Zn2+. Biosci. Rep., 1987, 7(2), 81-91.
[http://dx.doi.org/10.1007/BF01121871] [PMID: 2820526]
[88]
Ripa, S.; Ripa, R. Zinc and immune function. Minerva Med., 1995, 86(7-8), 315-318.
[PMID: 7478075]
[89]
Bin, B.H.; Seo, J.; Kim, S.T. Function, structure, and transport aspects of zip and znt zinc transporters in immune cells. J. Immunol. Res., 2018, 2018, 9365747.
[http://dx.doi.org/10.1155/2018/9365747] [PMID: 30370308]
[90]
Wang, M.X.; Win, S.S.; Pang, J. Zinc supplementation reduces common cold duration among healthy adults: A systematic review of randomized controlled trials with micronutrients supplementation. Am. J. Trop. Med. Hyg., 2020, 103(1), 86-99.
[http://dx.doi.org/10.4269/ajtmh.19-0718] [PMID: 32342851]
[91]
Kelly, F.C. Iodine in medicine and pharmacy since its discovery-1811-1961. Proc. R. Soc. Med., 1961, 54(10), 831-836.
[http://dx.doi.org/10.1177/003591576105401001] [PMID: 19994130]
[92]
Pittman, P.R.; Garman, P.M.; Kim, S.H.; Schmader, T.J.; Nieding, W.J.; Pike, J.G.; Knight, R.; Johnston, S.C.; Huggins, J.W.; Kortepeter, M.G.; Korman, L.; Ranadive, M.; Quinn, X.; Meyers, M.S. Smallpox vaccine, ACAM2000: Sites and duration of viral shedding and effect of povidone iodine on scarification site shedding and immune response. Vaccine, 2015, 33(26), 2990-2996.
[http://dx.doi.org/10.1016/j.vaccine.2015.04.062] [PMID: 25930115]
[93]
Scholtissek, C.; Müller, K. Effect of dimethylsulfoxide (DMSO) on virus replication and maturation. Arch. Virol., 1988, 100(1-2), 27-35.
[http://dx.doi.org/10.1007/BF01310905] [PMID: 3390002]
[94]
Stranges, S.; Sieri, S.; Vinceti, M.; Grioni, S.; Guallar, E.; Laclaustra, M.; Muti, P.; Berrino, F.; Krogh, V. A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health, 2010, 10, 564.
[http://dx.doi.org/10.1186/1471-2458-10-564] [PMID: 20858268]
[95]
Gazdík, F.; Piják, M.R.; Gazdíková, K. Need of complementary therapy with selenium in asthmatics. Nutrition, 2004, 20(10), 950-952.
[http://dx.doi.org/10.1016/j.nut.2004.06.020] [PMID: 15474890]
[96]
Tanguy, S.; Grauzam, S.; de Leiris, J.; Boucher, F. Impact of dietary selenium intake on cardiac health: Experimental approaches and human studies. Mol. Nutr. Food Res., 2012, 56(7), 1106-1121.
[http://dx.doi.org/10.1002/mnfr.201100766] [PMID: 22760983]
[97]
Rawarak, N.; Suttitheptumrong, A.; Reamtong, O.; Boonnak, K.; Pattanakitsakul, S.N. Protein disulfide isomerase inhibitor suppresses viral replication and production during antibody-dependent enhancement of dengue virus infection in human monocytic cells. Viruses, 2019, 11(2), E155.
[http://dx.doi.org/10.3390/v11020155] [PMID: 30781856]
[98]
Vitoux, D.; Chappuis, P.; Arnaud, J.; Bost, M.; Accominotti, M.; Roussel, A.M. [Selenium, glutathione peroxidase, peroxides and platelet functions]. Ann. Biol. Clin. (Paris), 1996, 54(5), 181-187. [Selenium, glutathione peroxidase, peroxides and platelet functions].
[PMID: 8869357]
[99]
Kieliszek, M.; Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses, 2020, 143, 109878.
[http://dx.doi.org/10.1016/j.mehy.2020.109878] [PMID: 32464491]
[100]
Li, H.J.; Gao, D.S.; Li, Y.T.; Wang, Y.S.; Liu, H.Y.; Zhao, J. Antiviral effect of lithium chloride on porcine epidemic diarrhea virus in vitro. Res. Vet. Sci., 2018, 118, 288-294.
[http://dx.doi.org/10.1016/j.rvsc.2018.03.002] [PMID: 29547727]
[101]
Zhao, F.R.; Xie, Y.L.; Liu, Z.Z.; Shao, J.J.; Li, S.F.; Zhang, Y.G.; Chang, H.Y. Lithium chloride inhibits early stages of foot-and-mouth disease virus (FMDV) replication in vitro. J. Med. Virol., 2017, 89(11), 2041-2046.
[http://dx.doi.org/10.1002/jmv.24821] [PMID: 28390158]
[102]
Fidelix, T.S.; Macedo, C.R.; Maxwell, L.J.; Fernandes Moça Trevisani, V. Diacerein for osteoarthritis. Cochrane Database Syst. Rev., 2014, (2), CD005117.
[PMID: 24515444]
[103]
Jin, Y.; Qin, S.; Gao, H.; Zhu, G.; Wang, W.; Zhu, W.; Wang, Y. An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress. Extremophiles, 2018, 22(1), 39-45.
[http://dx.doi.org/10.1007/s00792-017-0975-6] [PMID: 29103183]
[104]
Li, S.W.; Yang, T.C.; Lai, C.C.; Huang, S.H.; Liao, J.M.; Wan, L.; Lin, Y.J.; Lin, C.W. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur. J. Pharmacol., 2014, 738, 125-132.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.028] [PMID: 24877694]
[105]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[106]
Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism, 2020, 108, 154262.
[http://dx.doi.org/10.1016/j.metabol.2020.154262] [PMID: 32422233]
[107]
Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol., 2017, 102(4), 977-988.
[http://dx.doi.org/10.1189/jlb.3RI0716-335R] [PMID: 28733462]
[108]
Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; Yuan, Z.; Feng, Z.; Zhang, Y.; Wu, Y.; Chen, Y. Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (covid-19). Front. Immunol., 2020, 11, 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[109]
Ershad, M.; Naji, A.; Vearrier, D. N acetylcysteine; StatPearls: Treasure Island, FL, 2020.
[110]
Scheffel, M.J.; Scurti, G.; Wyatt, M.M.; Garrett-Mayer, E.; Paulos, C.M.; Nishimura, M.I.; Voelkel-Johnson, C. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol. Immunother., 2018, 67(4), 691-702.
[http://dx.doi.org/10.1007/s00262-018-2120-5] [PMID: 29396710]
[111]
Samiec, P.S.; Drews-Botsch, C.; Flagg, E.W.; Kurtz, J.C.; Sternberg, P., Jr; Reed, R.L.; Jones, D.P. Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. Free Radic. Biol. Med., 1998, 24(5), 699-704.
[http://dx.doi.org/10.1016/S0891-5849(97)00286-4] [PMID: 9586798]
[112]
Sharafkhah, M.; Abdolrazaghnejad, A.; Zarinfar, N.; Mohammadbeigi, A.; Massoudifar, A.; Abaszadeh, S. Safety and efficacy of N-acetyl-cysteine for prophylaxis of ventilator-associated pneumonia: A randomized, double blind, placebo-controlled clinical trial. Med. Gas Res., 2018, 8(1), 19-23.
[http://dx.doi.org/10.4103/2045-9912.229599] [PMID: 29770192]
[113]
Wunsch, H. Mechanical ventilation in covid-19: Interpreting the current epidemiology. Am. J. Respir. Crit. Care Med., 2020, 202(1), 1-4.
[http://dx.doi.org/10.1164/rccm.202004-1385ED] [PMID: 32402207]
[114]
Nieman, D.C.; Henson, D.A.; Nehlsen-Cannarella, S.L.; Ekkens, M.; Utter, A.C.; Butterworth, D.E.; Fagoaga, O.R. Influence of obesity on immune function. J. Am. Diet. Assoc., 1999, 99(3), 294-299.
[http://dx.doi.org/10.1016/S0002-8223(99)00077-2] [PMID: 10076580]
[115]
Banerjee, M.; Gupta, S.; Sharma, P.; Shekhawat, J.; Gauba, K. Obesity and covid-19: A fatal alliance. Indian J. Clin. Biochem., 2020, 1-8.
[PMID: 32837031]
[116]
Yang, H.R.; Tu, T.H.; Jeong, D.Y.; Yang, S.; Kim, J.G. Obesity induced by estrogen deficiency is associated with hypothalamic inflammation. Biochem. Biophys. Rep., 2020, 23, 100794.
[http://dx.doi.org/10.1016/j.bbrep.2020.100794] [PMID: 32885054]
[117]
Lim, M.A.; Pranata, R.; Huang, I.; Yonas, E.; Soeroto, A.Y.; Supriyadi, R. Multiorgan failure with emphasis on acute kidney injury and severity of covid-19: Systematic review and meta-analysis. Can. J. Kidney Health Dis., 2020, 7, 2054358120938573.
[http://dx.doi.org/10.1177/2054358120938573] [PMID: 32685180]
[118]
Fidan, C.; Aydoğdu, A. As a potential treatment of COVID-19. Montelukast. Med. Hypotheses, 2020, 142, 109828.
[http://dx.doi.org/10.1016/j.mehy.2020.109828] [PMID: 32416408]
[119]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[120]
Sturman, L.S.; Ricard, C.S.; Holmes, K.V. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion. J. Virol., 1990, 64(6), 3042-3050.
[http://dx.doi.org/10.1128/jvi.64.6.3042-3050.1990] [PMID: 2159562]
[121]
Gallagher, T.M.; Escarmis, C.; Buchmeier, M.J. Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein. J. Virol., 1991, 65(4), 1916-1928.
[http://dx.doi.org/10.1128/jvi.65.4.1916-1928.1991] [PMID: 1848311]
[122]
Tan, J.; Verschueren, K.H.; Anand, K.; Shen, J.; Yang, M.; Xu, Y.; Rao, Z.; Bigalke, J.; Heisen, B.; Mesters, J.R.; Chen, K.; Shen, X.; Jiang, H.; Hilgenfeld, R. pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: Molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol., 2005, 354(1), 25-40.
[http://dx.doi.org/10.1016/j.jmb.2005.09.012] [PMID: 16242152]
[123]
Giannini, E.G.; Crespi, M.; Djahandideh, A.; Demarzo, M.G.; Moscatelli, A.; Bodini, G.; Furnari, M.; Marabotto, E.; Plaz Torres, M.C.; Zentilin, P.; Savarino, V. Appropriateness of proton pump inhibitors treatment in clinical practice: Prospective evaluation in outpatients and perspective assessment of drug optimisation. Dig. Liver Dis., 2020, 52(8), 862-868.
[http://dx.doi.org/10.1016/j.dld.2020.05.005] [PMID: 32505566]
[124]
Kirchheiner, J.; Glatt, S.; Fuhr, U.; Klotz, U.; Meineke, I.; Seufferlein, T.; Brockmöller, J. Relative potency of proton-pump inhibitors-comparison of effects on intragastric pH. Eur. J. Clin. Pharmacol., 2009, 65(1), 19-31.
[http://dx.doi.org/10.1007/s00228-008-0576-5] [PMID: 18925391]
[125]
Rafiee, L.; Hajhashemi, V.; Javanmard, S.H. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat. Iran. J. Basic Med. Sci., 2016, 19(9), 977-984.
[PMID: 27803785]
[126]
Kallapur, S.; Ikegami, M. The surfactants. Am. J. Perinatol., 2000, 17(7), 335-343.
[http://dx.doi.org/10.1055/s-2000-13445] [PMID: 12141520]
[127]
Han, S.; Mallampalli, R.K. The role of surfactant in lung disease and host defense against pulmonary infections. Ann. Am. Thorac. Soc., 2015, 12(5), 765-774.
[http://dx.doi.org/10.1513/AnnalsATS.201411-507FR] [PMID: 25742123]
[128]
Chepurnov, A.A.; Bakulina, L.F.; Dadaeva, A.A.; Ustinova, E.N.; Chepurnova, T.S.; Baker, J.R., Jr Inactivation of ebola virus with a surfactant nanoemulsion. Acta Trop., 2003, 87(3), 315-320.
[http://dx.doi.org/10.1016/S0001-706X(03)00120-7] [PMID: 12875924]
[129]
Fukushi, M.; Yamashita, M.; Miyoshi-Akiyama, T.; Kubo, S.; Yamamoto, K.; Kudo, K. Laninamivir octanoate and artificial surfactant combination therapy significantly increases survival of mice infected with lethal influenza H1N1 Virus. PLoS One, 2012, 7(8), e42419.
[http://dx.doi.org/10.1371/journal.pone.0042419] [PMID: 22879974]
[130]
Leth-Larsen, R.; Zhong, F.; Chow, V.T.; Holmskov, U.; Lu, J. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology, 2007, 212(3), 201-211.
[http://dx.doi.org/10.1016/j.imbio.2006.12.001] [PMID: 17412287]
[131]
Bizzarri, M.; Laganà, A.S.; Aragona, D.; Unfer, V. Inositol and pulmonary function. Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2? Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3426-3432.
[PMID: 32271462]
[132]
Hashemi, M.M.; Holden, B.S.; Taylor, M.F.; Wilson, J.; Coburn, J.; Hilton, B.; Nance, T.; Gubler, S.; Genberg, C.; Deng, S.; Savage, P.B. Antibacterial and antifungal activities of poloxamer micelles containing ceragenin csa-131 on ciliated tissues. Molecules, 2018, 23(3), E596.
[http://dx.doi.org/10.3390/molecules23030596] [PMID: 29518893]
[133]
Mitja, O.; Corbacho-Monne, M.; Ubals, M.; Tebe, C.; Penafiel, J.; Tobias, A.; Ballana, E.; Alemany, A.; Riera-Marti, N.; Perez, C.A.; Suner, C.; Laporte, P.; Admella, P.; Mitja, J.; Clua, M.; Bertran, L.; Sarquella, M.; Gavilan, S.; Ara, J.; Argimon, J.M.; Casabona, J.; Cuatrecasas, G.; Canadas, P.; Elizalde-Torrent, A.; Fabregat, R.; Farre, M.; Forcada, A.; Flores-Mateo, G.; Muntada, E.; Nadal, N.; Narejos, S.; Gil-Ortega, A.N.; Prat, N.; Puig, J.; Quinones, C.; Reyes-Urena, J.; Ramirez-Viaplana, F.; Ruiz, L.; Riveira-Munoz, E.; Sierra, A.; Velasco, C.; Vivanco-Hidalgo, R.M.; Sentis, A. C, G. B.; Clotet, B.; Vall-Mayans, M.; GROUP, B. P.-C.-R. Hydroxychloroquine for early treatment of adults with mild covid-19: A randomized-controlled trial. Clin. Infect. Dis., 2020, 73(11), e4073-e4081.
[http://dx.doi.org/10.1093/cid/ciaa1009]
[134]
Alanagreh, L.; Alzoughool, F.; Atoum, M. Risk of using hydroxychloroquine as a treatment of COVID-19. Int. J. Risk Saf. Med., 2020, 31(3), 111-116.
[http://dx.doi.org/10.3233/JRS-200024] [PMID: 32474476]
[135]
Pathak, D.S.K.; Salunke, D.A.A.; Thivari, D.P.; Pandey, A.; Nandy, D.K.; Harish, V.K.; Ratna, D.; Pandey, D.S.; Chawla, D.J.; Mujawar, D.J.; Dhanwate, D.A.; Menon, D.V. No benefit of hydroxychloroquine in COVID-19: Results of systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr., 2020, 14(6), 1673-1680.
[http://dx.doi.org/10.1016/j.dsx.2020.08.033] [PMID: 32905939]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy