Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Phase-Changeable Nanoparticle-Mediated Energy Conversion Promotes Highly Efficient High-Intensity Focused Ultrasound Ablation

Author(s): Zeng Zeng, Ji-Bin Liu and Cheng-Zhong Peng*

Volume 29, Issue 8, 2022

Published on: 23 August, 2021

Page: [1369 - 1378] Pages: 10

DOI: 10.2174/0929867328666210708085110

Price: $65

Abstract

This review describes how phase-changeable nanoparticles enable highly-efficient high-intensity focused ultrasound ablation (HIFU). HIFU is effective in the clinical treatment of solid malignant tumors; however, it has intrinsic disadvantages for treating some deep lesions, such as damage to surrounding normal tissues. When phase-changeable nanoparticles are used in HIFU treatment, they could serve as good synergistic agents because they are transported in the blood and permeated and accumulated effectively in tissues. HIFU’s thermal effects can trigger nanoparticles to undergo a special phase transition, thus enhancing HIFU ablation efficiency. Nanoparticles can also carry anticancer agents and release them in the targeted area to achieve chemo-synergistic therapy response. Although the formation of nanoparticles is complicated and HIFU applications are still in an early stage, the potential for their use in synergy with HIFU treatment shows promising results.

Keywords: High-intensity focused ultrasound ablation, nanoparticles, microbubbles, synergistic mechanism, therapeutic effect, malignant tumors.

[1]
Lafon, C.; Melodelima, D.; Salomir, R.; Chapelon, J.Y. Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound. Int. J. Hyperthermia, 2007, 23(2), 153-163.
[http://dx.doi.org/10.1080/02656730601173029] [PMID: 17578339]
[2]
Lehmann, J.F. The biophysical basis of biologic ultrasonic reactions with special reference to ultrasonic therapy. Arch. Phys. Med. Rehabil., 1953, 34(3), 139-152.
[PMID: 13031770]
[3]
Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med., 2020, 9(2), 460.
[http://dx.doi.org/10.3390/jcm9020460] [PMID: 32046072]
[4]
Jolesz, F.A. MRI-guided focused ultrasound surgery. Annu. Rev. Med., 2009, 60, 417-430.
[http://dx.doi.org/10.1146/annurev.med.60.041707.170303] [PMID: 19630579]
[5]
Zhou, Y.F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol., 2011, 2(1), 8-27.
[http://dx.doi.org/10.5306/wjco.v2.i1.8] [PMID: 21603311]
[6]
Orsi, F.; Arnone, P.; Chen, W.; Zhang, L. High intensity focused ultrasound ablation: A new therapeutic option for solid tumors. J. Cancer Res. Ther., 2010, 6(4), 414-420.
[http://dx.doi.org/10.4103/0973-1482.77064] [PMID: 21358073]
[7]
Al-Bataineh, O.; Jenne, J.; Huber, P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat. Rev., 2012, 38(5), 346-353.
[http://dx.doi.org/10.1016/j.ctrv.2011.08.004] [PMID: 21924838]
[8]
Lin, C.Y.; Pitt, W.G. Acoustic droplet vaporization in biology and medicine. BioMed Res. Int., 2013, 2013, 404361.
[http://dx.doi.org/10.1155/2013/404361] [PMID: 24350267]
[9]
Paparel, P.; Curiel, L.; Chesnais, S.; Ecochard, R.; Chapelon, J.Y.; Gelet, A. Synergistic inhibitory effect of high-intensity focused ultrasound combined with chemotherapy on Dunning adenocarcinoma. BJU Int., 2005, 95(6), 881-885.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05420.x] [PMID: 15794802]
[10]
Zhao, H.; Yang, G.; Wang, D.; Yu, X.; Zhang, Y.; Zhu, J.; Ji, Y.; Zhong, B.; Zhao, W.; Yang, Z.; Aziz, F. Concurrent gemcitabine and high-intensity focused ultrasound therapy in patients with locally advanced pancreatic cancer. Anticancer Drugs, 2010, 21(4), 447-452.
[http://dx.doi.org/10.1097/CAD.0b013e32833641a7] [PMID: 20075714]
[11]
Zhou, Y.; Wang, Z.; Chen, Y.; Shen, H.; Luo, Z.; Li, A.; Wang, Q.; Ran, H.; Li, P.; Song, W.; Yang, Z.; Chen, H.; Wang, Z.; Lu, G.; Zheng, Y. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater., 2013, 25(30), 4123-4130.
[http://dx.doi.org/10.1002/adma.201301655] [PMID: 23788403]
[12]
Zhang, K.; Chen, H.; Li, F.; Wang, Q.; Zheng, S.; Xu, H.; Ma, M.; Jia, X.; Chen, Y.; Mou, J.; Wang, X.; Shi, J. A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials, 2014, 35(22), 5875-5885.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.043] [PMID: 24746229]
[13]
Chen, X.; Tan, L.; Liu, T.; Meng, X. Micro-Nanomaterials for Tumor Microwave Hyperthermia: Design, Preparation, and Application. Curr. Drug Deliv., 2017, 14(3), 307-322.
[http://dx.doi.org/10.2174/1567201813666160108113805] [PMID: 26743355]
[14]
Sokka, S.D.; King, R.; Hynynen, K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys. Med. Biol., 2003, 48(2), 223-241.
[http://dx.doi.org/10.1088/0031-9155/48/2/306] [PMID: 12587906]
[15]
Yu, M.H.; Lee, J.Y.; Kim, H.R.; Kim, B.R.; Park, E.J.; Kim, H.S.; Han, J.K.; Choi, B.I. Therapeutic effects of microbubbles added to combined high-intensity focused ultrasound and chemo therapy in a pancreatic cancer xenograft model. Korean J. Radiol., 2016, 17(5), 779-788.
[http://dx.doi.org/10.3348/kjr.2016.17.5.779] [PMID: 27587968]
[16]
Schutt, E.G.; Klein, D.H.; Mattrey, R.M.; Riess, J.G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew. Chem. Int. Ed. Engl., 2003, 42(28), 3218-3235.
[http://dx.doi.org/10.1002/anie.200200550] [PMID: 12876730]
[17]
Oeffinger, BE; Wheatley, MA Development and characterization of a nano-scale contrast agent.Ultrasonics,, 2004, 42(1-9), 343-347.
[http://dx.doi.org/10.1016/j.ultras.2003.11.011]
[18]
Lindner, J.R. Microbubbles in medical imaging: Current applications and future directions. Nat. Rev. Drug Discov., 2004, 3(6), 527-532.
[http://dx.doi.org/10.1038/nrd1417] [PMID: 15173842]
[19]
Yildirim, A.; Blum, N.T.; Goodwin, A.P. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics, 2019, 9(9), 2572-2594.
[http://dx.doi.org/10.7150/thno.32424] [PMID: 31131054]
[20]
Moyer, L.C.; Timbie, K.F.; Sheeran, P.S.; Price, R.J.; Miller, G.W.; Dayton, P.A. High-intensity focused ultrasound ablation enhancement in vivovia phase-shift nanodroplets compared to microbubbles. J. Ther. Ultrasound, 2015, 3, 7.
[http://dx.doi.org/10.1186/s40349-015-0029-4] [PMID: 26045964]
[21]
Yao, Y.; Yang, K.; Cao, Y.; Zhou, X.; Xu, J.; Liu, J.; Wang, Q.; Wang, Z.; Wang, D. Comparison of the synergistic effect of lipid nanobubbles and SonoVue microbubbles for high intensity focused ultrasound thermal ablation of tumors. PeerJ, 2016, 4, e1716.
[http://dx.doi.org/10.7717/peerj.1716] [PMID: 26925336]
[22]
Vlaisavljevich, E.; Durmaz, Y.Y.; Maxwell, A.; Elsayed, M.; Xu, Z. Nanodroplet-mediated histotripsy for image-guided targeted ultrasound cell ablation. Theranostics, 2013, 3(11), 851-864.
[http://dx.doi.org/10.7150/thno.6717] [PMID: 24312155]
[23]
Yildirim, A.; Shi, D.; Roy, S.; Blum, N.T.; Chattaraj, R.; Cha, J.N.; Goodwin, A.P. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating. ACS Appl. Mater. Interfaces, 2018, 10(43), 36786-36795.
[http://dx.doi.org/10.1021/acsami.8b15368] [PMID: 30339360]
[24]
Zhao, Y.; Song, W.; Wang, D.; Ran, H.; Wang, R.; Yao, Y.; Wang, Z.; Zheng, Y.; Li, P. Phase-Shifted PFH@PLGA/Fe3O4 Nanocapsules for MRI/US Imaging and Photothermal Therapy with near-Infrared Irradiation. ACS Appl. Mater. Interfaces, 2015, 7(26), 14231-14242.
[http://dx.doi.org/10.1021/acsami.5b01873] [PMID: 26067333]
[25]
He, K.; Ran, H.; Su, Z.; Wang, Z.; Li, M.; Hao, L. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int. J. Nanomedicine, 2019, 14, 519-529.
[http://dx.doi.org/10.2147/IJN.S184579] [PMID: 30666111]
[26]
Cheng, C.A.; Chen, W.; Zhang, L.; Wu, H.H.; Zink, J.I. A Responsive Mesoporous Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. J. Am. Chem. Soc., 2019, 141(44), 17670-17684.
[http://dx.doi.org/10.1021/jacs.9b07591] [PMID: 31604010]
[27]
Díaz-López, R.; Tsapis, N.; Fattal, E. Liquid perfluorocarbons as contrast agents for ultrasonography and (19)F-MRI. Pharm. Res., 2010, 27(1), 1-16.
[http://dx.doi.org/10.1007/s11095-009-0001-5] [PMID: 19902338]
[28]
Liu, M.S.; Long, D.M. Perfluoroctylbromide as a diagnostic contrast medium in gastroenterography. Radiology, 1977, 122(1), 71-76.
[http://dx.doi.org/10.1148/122.1.71] [PMID: 830356]
[29]
Ishijima, A.; Tanaka, J.; Azuma, T.; Minamihata, K.; Yamaguchi, S.; Kobayashi, E.; Nagamune, T.; Sakuma, I. The lifetime evaluation of vapourised phase-change nano-droplets. Ultrasonics, 2016, 69, 97-105.
[http://dx.doi.org/10.1016/j.ultras.2016.04.002] [PMID: 27082763]
[30]
Rapoport, N.; Nam, K.H.; Gupta, R.; Gao, Z.; Mohan, P.; Payne, A.; Todd, N.; Liu, X.; Kim, T.; Shea, J.; Scaife, C.; Parker, D.L.; Jeong, E.K.; Kennedy, A.M. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release, 2011, 153(1), 4-15.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.022] [PMID: 21277919]
[31]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[32]
Yildirim, A.; Chattaraj, R.; Blum, N.T.; Shi, D.; Kumar, K.; Goodwin, A.P. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Adv. Healthc. Mater., 2017, 6(18), 201700514.
[http://dx.doi.org/10.1002/adhm.201700514]
[33]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[34]
Xu, J.S.; Huang, J.; Qin, R.; Hinkle, G.H.; Povoski, S.P.; Martin, E.W.; Xu, R.X. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials, 2010, 31(7), 1716-1722.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.052] [PMID: 20006382]
[35]
Wheatley, M.A.; Forsberg, F.; Oum, K.; Ro, R.; El-Sherif, D. Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics, 2006, 44(4), 360-367.
[http://dx.doi.org/10.1016/j.ultras.2006.04.003] [PMID: 16730047]
[36]
Zhang, K.; Li, P.; He, Y.; Bo, X.; Li, X.; Li, D.; Chen, H.; Xu, H. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment. Biomaterials, 2016, 99, 34-46.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.014] [PMID: 27209261]
[37]
Sun, Y.; Zheng, Y.; Ran, H.; Zhou, Y.; Shen, H.; Chen, Y.; Chen, H.; Krupka, T.M.; Li, A.; Li, P.; Wang, Z.; Wang, Z. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials, 2012, 33(24), 5854-5864.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.062] [PMID: 22617321]
[38]
Zhang, X.; Zheng, Y.; Wang, Z.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M.; Li, Q.; Xiao, X.; Luo, X.; Wang, Z.; Qi, H. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials, 2014, 35(19), 5148-5161.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.036] [PMID: 24680663]
[39]
Dabbagh, A.; Abdullah, B.J.; Abu Kasim, N.H.; Abdullah, H.; Hamdi, M. A new mechanism of thermal sensitivity for rapid drug release and low systemic toxicity in hyperthermia and thermal ablation temperature ranges. Int. J. Hyperthermia, 2015, 31(4), 375-385.
[http://dx.doi.org/10.3109/02656736.2015.1006268] [PMID: 25716769]
[40]
Khokhlova, V.A.; Fowlkes, J.B.; Roberts, W.W.; Schade, G.R.; Xu, Z.; Khokhlova, T.D.; Hall, T.L.; Maxwell, A.D.; Wang, Y.N.; Cain, C.A. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. Int. J. Hyperthermia, 2015, 31(2), 145-162.
[http://dx.doi.org/10.3109/02656736.2015.1007538] [PMID: 25707817]
[41]
Phillips, L.C.; Puett, C.; Sheeran, P.S.; Wilson Miller, G.; Matsunaga, T.O.; Dayton, P.A. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. J. Acoust. Soc. Am., 2013, 134(2), 1473-1482.
[http://dx.doi.org/10.1121/1.4812866] [PMID: 23927187]
[42]
Oh, K.S.; Han, H.; Yoon, B.D.; Lee, M.; Kim, H.; Seo, D.W.; Seo, J.H.; Kim, K.; Kwon, I.C.; Yuk, S.H. Effect of HIFU treatment on tumor targeting efficacy of docetaxel-loaded Pluronic nanoparticles. Colloids Surf. B Biointerfaces, 2014, 119, 137-144.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.007] [PMID: 24881526]
[43]
Hancock, H.A.; Smith, L.H.; Cuesta, J.; Durrani, A.K.; Angstadt, M.; Palmeri, M.L.; Kimmel, E.; Frenkel, V. Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: Preliminary evidence for a novel mechanism. Ultrasound Med. Biol., 2009, 35(10), 1722-1736.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2009.04.020] [PMID: 19616368]
[44]
Sirsi, S.R.; Borden, M.A. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev., 2014, 72, 3-14.
[http://dx.doi.org/10.1016/j.addr.2013.12.010] [PMID: 24389162]
[45]
Wang, Q.; Manmi, K.; Liu, K.K. Cell mechanics in biomedical cavitation. Interface Focus, 2015, 5(5), 20150018.
[http://dx.doi.org/10.1098/rsfs.2015.0018] [PMID: 26442142]
[46]
Zhang, K.; Li, P.; Chen, H.; Bo, X.; Li, X.; Xu, H. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process. ACS Nano, 2016, 10(2), 2549-2558.
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[47]
Fang, Y.; Li, H.Y.; Yin, H.H.; Xu, S.H.; Ren, W.W.; Ding, S.S.; Tang, W.Z.; Xiang, L.H.; Wu, R.; Guan, X.; Zhang, K. Radiofrequency-Sensitive Longitudinal Relaxation Tuning Strategy Enabling the Visualization of Radiofrequency Ablation Intensified by Magnetic Composite. ACS Appl. Mater. Interfaces, 2019, 11(12), 11251-11261.
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[48]
Wang, X.; Chen, H.; Chen, Y.; Ma, M.; Zhang, K.; Li, F.; Zheng, Y.; Zeng, D.; Wang, Q.; Shi, J. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv. Mater., 2012, 24(6), 785-791.
[http://dx.doi.org/10.1002/adma.201104033] [PMID: 22223403]
[49]
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[50]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[51]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Warren, C.W.C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[52]
Moon, H.; Yoon, C.; Lee, T.W.; Ha, K.S.; Chang, J.H.; Song, T.K.; Kim, K.; Kim, H. Therapeutic Ultrasound Contrast Agents for the Enhancement of Tumor Diagnosis and Tumor Therapy. J. Biomed. Nanotechnol., 2015, 11(7), 1183-1192.
[http://dx.doi.org/10.1166/jbn.2015.2056] [PMID: 26307841]
[53]
Han, H.; Lee, H.; Kim, K.; Kim, H. Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery. J. Control. Release, 2017, 266, 75-86.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.022] [PMID: 28928042]
[54]
Sadeghi-Goughari, M.; Jeon, S.; Kwon, H.J. Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced With Nanoparticles. IEEE Trans. Biomed. Eng., 2020, 67(11), 3083-3093.
[http://dx.doi.org/10.1109/TBME.2020.2975746] [PMID: 32091987]
[55]
Li, H.; Yu, C.; Zhang, J.; Li, Q.; Qiao, H.; Wang, Z.; Zeng, D. pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int. J. Pharm., 2019, 556, 226-235.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.006] [PMID: 30543892]
[56]
Chen, Y.; Chen, H.; Shi, J. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv. Healthc. Mater., 2015, 4(1), 158-165.
[http://dx.doi.org/10.1002/adhm.201400127] [PMID: 24898413]
[57]
Gao, X.; Zou, W.; Jiang, B.; Xu, D.; Luo, Y.; Xiong, J.; Yan, S.; Wang, Y.; Tang, Y.; Chen, C.; Li, H.; Qiao, H.; Wang, Q.; Zou, J. Experimental Study of Retention on the Combination of Bifidobacterium with High-Intensity Focused Ultrasound (HIFU) Synergistic Substance in Tumor Tissues. Sci. Rep., 2019, 9(1), 6423.
[http://dx.doi.org/10.1038/s41598-019-42832-4] [PMID: 31015517]
[58]
Xu, Y.; Cui, H.; Zhu, Q.; Hua, X.; Xia, H.; Tan, K.; Gao, Y.; Zhao, J.; Liu, Z. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction. BioMed Res. Int., 2016, 2016, 4759750.
[http://dx.doi.org/10.1155/2016/4759750] [PMID: 27579317]
[59]
Fan, C.H.; Chang, E.L.; Ting, C.Y.; Lin, Y.C.; Liao, E.C.; Huang, C.Y.; Chang, Y.C.; Chan, H.L.; Wei, K.C.; Yeh, C.K. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials, 2016, 106, 46-57.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.017] [PMID: 27544926]
[60]
Chen, C.C.; Sheeran, P.S.; Wu, S.Y.; Olumolade, O.O.; Dayton, P.A.; Konofagou, E.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J. Control. Release, 2013, 172(3), 795-804.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.025] [PMID: 24096019]
[61]
Wang, C-H.; Kang, S-T.; Yeh, C-K. Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials, 2013, 34(7), 1852-1861.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.037] [PMID: 23219326]
[62]
Ho, Y.J.; Yeh, C.K. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization. Acta Biomater., 2017, 49, 472-485.
[http://dx.doi.org/10.1016/j.actbio.2016.11.018] [PMID: 27836803]
[63]
Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K.S.; Zhang, Q.; Shuai, X. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS Nano, 2018, 12(4), 3449-3460.
[http://dx.doi.org/10.1021/acsnano.8b00076]
[64]
Deng, Z.; Xiao, Y.; Pan, M.; Li, F.; Duan, W.; Meng, L.; Liu, X.; Yan, F.; Zheng, H. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J. Control. Release, 2016, 243, 333-341.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.030] [PMID: 27984104]
[65]
Zhang, N.; Cai, X.; Gao, W.; Wang, R.; Xu, C.; Yao, Y.; Hao, L.; Sheng, D.; Chen, H.; Wang, Z.; Zheng, Y. A Multifunctional Theranostic Nanoagent for Dual-Mode Image-Guided HIFU/Chemo- Synergistic Cancer Therapy. Theranostics, 2016, 6(3), 404-417.
[http://dx.doi.org/10.7150/thno.13478] [PMID: 26909114]
[66]
Tang, H.; Guo, Y.; Peng, L.; Fang, H.; Wang, Z.; Zheng, Y.; Ran, H.; Chen, Y. in vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Appl. Mater. Interfaces, 2018, 10(18), 15428-15441.
[http://dx.doi.org/10.1021/acsami.8b01967] [PMID: 29652130]
[67]
Kwan, J.J.; Myers, R.; Coviello, C.M.; Graham, S.M.; Shah, A.R.; Stride, E.; Carlisle, R.C.; Coussios, C.C. Ultrasound-Propelled Nanocups for Drug Delivery. Small, 2015, 11(39), 5305-5314.
[http://dx.doi.org/10.1002/smll.201501322] [PMID: 26296985]
[68]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release, 2016, 244(Pt A), 108-121.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy