Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Prediction Mechanism of Nevadensin as Antibacterial Agent against S. sanguinis: In vitro and In silico Studies

Author(s): Aldina Amalia Nur Shadrina, Yetty Herdiyati, Ika Wiani, Mieke Hemiawati Satari and Dikdik Kurnia*

Volume 25, Issue 9, 2022

Published on: 07 July, 2021

Page: [1488 - 1497] Pages: 10

DOI: 10.2174/1386207324666210707104440

Price: $65

Abstract

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products, like Ocimum basilicum, will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development.

Objectives: The research objective is to isolate the secondary metabolite of O. basilicum extract that exhibits activity against S. sanguinis through in vitro and in silico analysis.

Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided fractionation. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed by using PyRx 0.8 program.

Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase.

Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.

Keywords: Antibacterial, DNA gyrase, in vitro, in silico, MurA enzyme, nevadensin, Ocimum basilicum.

Graphical Abstract

[1]
Fatriadi, F.; Kurnia, D.; Satari, M.H. Antibacterial activity of ethyl acetate fraction from methanolic extract of ant-plant tubers towards Streptococcus sanguinis ATCC 10566. Padjadjaran J. Dentistry, 2018, 30(3), 89-192.
[http://dx.doi.org/10.24198/pjd.vol30no3.20002]
[2]
Gugnani, N.; Pandit, I.K.; Srivastava, N.; Gupta, M.; Sharma, M. International caries detection and assessment system (ICDAS): A new concept. Int. J. Clin. Pediatr. Dent., 2011, 4(2), 93-100.
[http://dx.doi.org/10.5005/jp-journals-10005-1089] [PMID: 27672245]
[3]
Coronado-López, S.; Caballero-García, S.; Aguilar-Luis, M.A.; Mazulis, F.; Del Valle-Mendoza, J. Antibacterial activity and cytotoxic effect of Pelargonium peltatum (Geranium) against Streptococcus mutans and Streptococcus sanguinis. Int. J. Dent., 2018, 2018, 2714350.
[http://dx.doi.org/10.1155/2018/2714350] [PMID: 30622566]
[4]
Bernardi, D.; Adams, H.; Behr, M.; Eberhard, M.; Kern, S.; Rauch, E.; Scholz, T.; Kattner, L.; Klein, C.D. New inhibitors of MurA, an antibacterial target enzyme; Endotherm Life Sci. Mol, 2019, p. 1.
[5]
Jukič; M.; Gobec, S.; Sova, M. Reaching toward underexplored targets in antibacterial drug design. Drug Dev. Res., 2019, 80(1), 6-10.
[http://dx.doi.org/10.1002/ddr.21465] [PMID: 30312991]
[6]
Mosratö, J.; Mir, J.; Codony, F.; Mas, J.; Ribas, F. Microbial response to disinfectants, 2003, 657-693.
[7]
Herdiyati, Y.; Astrid, Y.; Shadrina, A.A.N.; Wiani, I.; Satari, M.H.; Kurnia, D. Potential fatty acid as antibacterial agent against oral bacteria of Streptococcus mutans and Streptococcus sanguinis from Basil (Ocimum americanum): In vitro and in silico studies. Curr. Drug Discov. Technol., 2020, 16, 1-10.
[http://dx.doi.org/10.2174/1570163817666200712171652] [PMID: 32652913]
[8]
Higgins, N.P. Gyrase In: Brenner’s encyclopedia of genetics. 2013, 3, 374-377.
[9]
Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmac., 2018, 103, 923-938.
[http://dx.doi.org/10.1016/j.biopha.2018.04.021] [PMID: 29710509]
[10]
Loyola-Rodriguez, J.P.; Ponce-Diaz, M.E.; Loyola-Leyva, A.; Garcia-Cortes, J.O.; Medina-Solis, C.E.; Contreras-Ramire, A.A.; Serena-Gomez, E. Determination and identification of antibiotic-resistant oral Streptococci isolated from active dental infections in adults. Acta Odontol. Scand., 2018, 76(4), 229-235.
[http://dx.doi.org/10.1080/00016357.2017.1405463] [PMID: 29160117]
[11]
Lavanya, J.; Periyar, S.S.; Jeevitha, P.M.; Preethi, J.; Aradana, M. Antioxidant and antimicrobial activity of selected medicinal plants againts human oral pathogens. Int. J. Pharm. Pharm. Sci., 2016, 8(9), 71-78.
[http://dx.doi.org/10.22159/ijpps.2016v8i9.11989]
[12]
Ahmed, S.; Ikram, D. ocimum basilicum: A Review on phytochemical and pharmacological studies. Pak. J. Chem., 2012, 2(2), 78-85.
[http://dx.doi.org/10.15228/2012.v02.i02.p05]
[13]
Pathak, A.; Sardar, A.; Kadam, V.; Rekadwad, B.; Karuppayil, S.M. Efficacy of some medicinal plant against human dental pathogens. Indian J. Nat. Prod. Resour., 2012, 3(1), 123-127.
[14]
Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733.
[http://dx.doi.org/10.3389/fphar.2020.00733] [PMID: 32508653]
[15]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[16]
Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol., 2009.
[17]
Abdullahi, M.; Adeniji, S.E. In silico molecular docking and adme/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents; Chemistry Africa, 2020, pp. 1-12.
[18]
Greenwood, D.; Finch, R.; Davey, P.; Wilcox, M. M. Antibiotics, susceptibility (sensitivity) test antimicrobial and chemoterapy; Mc Graw Hill Company: United State of America, 1995.
[19]
Mbaveng, A.T.; Sandjo, L.P.; Tankeo, S.B.; Ndifor, A.R.; Pantaleon, A.; Nagdjui, B.T.; Kuete, V. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes. Springerplus, 2015, 4(1), 823.
[http://dx.doi.org/10.1186/s40064-015-1645-8] [PMID: 26753111]
[20]
Bohm, B.A. Introduction to flavonoids; harwood academic publishers, 1998.
[21]
Supratman, U. Elucidation of structure of organic compounds; Widya Padjadjaran: Bandung, 2010.
[22]
Brahmachari, G. Nevadensin: Isolation, chemistry and bioactivity. Int. J. Green Pharm., 2010, 4(4)
[http://dx.doi.org/10.4103/0973-8258.74128]
[23]
Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to spectroscopy; Cengage Learning, 2008.
[24]
Sanni, S.; Onyeyili, P.A.; Sanni, F.S. phytochemical analysis, elemental determination and some in vitro antibacterial activity of Ocimum basilicum L. leaf extract. Res. J. Phytochem., 2008, 2(2), 77-83.
[http://dx.doi.org/10.3923/rjphyto.2008.77.83]
[25]
Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical constituents and antioxidant activity of sweet basil (Ocimum basilicum L.) essential oil on ground beef from boran and nguni cattle. Int. J. Food Sci., 2019, 2019, 2628747.
[http://dx.doi.org/10.1155/2019/2628747] [PMID: 30713849]
[26]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[27]
Al-Amri, S.H.A.; Odisho, S.M.; Ibrahem, O.M.S. In vitro antiviral potential of Ocimum basilicum and Olea europaea leaves extract against Newcastle disease virus of poultry. Iraqi J. Vet. Med., 2015, 39(1), 94-99.
[http://dx.doi.org/10.30539/iraqijvm.v39i1.204]
[28]
Silva, V.A.; da Sousa, J.P.; Pessoa, H.L.F.; de Freitas, A.F.R.; Countinho, H.D.M.; Alves, L.B.N.; Lima, E.O. Antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharm. Biol., 2016, 54(5), 863-867.
[29]
El-Soud, N.H.A.; Deabes, M.; El-Kassem, L.A.; Khalil, M. Chemical composition and antifungal activity of Ocimum basilicum L. essential oil. Open Access Maced. J. Med. Sci., 2015, 3(3), 374-379.
[http://dx.doi.org/10.3889/oamjms.2015.082] [PMID: 27275253]
[30]
Nour, A.H.; Elhussein, S.A.; Osman, N.A.; Nour, A.H.; Yusoff, M.M. A study of the essential oils of four sudanese accessions of basil (Ocimum basilicum L.) against anopheles mosquito larvae. Am. J. Appl. Sci., 2009, 6(7), 1359-1363.
[http://dx.doi.org/10.3844/ajassp.2009.1359.1363]
[31]
Nour, A.H.; Nour, A.H.; Yusoff, M.M.; Sandanasamy, J.D.O. Bioactive compounds from basil (Ocimum basilicum) essential oils with larvicidal activity against Aedes aegypti larvae. 3rd International. Conference on biology, environment and chemistry, 2012.
[32]
Qamar, K.A.; Dar, A.; Siddiqui, B.S.; Kabir, N.; Aslam, H.; Ahmed, S.; Erum, S.; Habib, S.; Begum, S. Anticancer activity of Ocimum basilicum and the effect of ursolic acid on the cytoskeleton of mcf-7 human breast cancer cells. Lett. Drug Des. Discov., 2010, 7, 726-736.
[http://dx.doi.org/10.2174/1570180811007010726]
[33]
Qamar, K.A.; Farooq, A.D.; Siddiqui, B.S.; Kabir, N.; Begum, S. Antiproliferative effects of Ocimum basilicum methanolic extract and fractions, oleanolic acid and 3-epi-ursolic acid. Curr. Tradit. Med., 2020, 6(2), 134-146.
[http://dx.doi.org/10.2174/2215083805666191010152439]
[34]
Rezzoug, M.; Bakchiche, B.; Gherib, A.; Roberta, A. FlaminiGuido; Kilinçarslan, Ö.; Mammadov, R.; Bardaweel, S.K. Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and thymus algeriensis boiss. & reut. from the algerian saharan atlas. BMC Complement. Altern. Med., 2019, 19(1), 146.
[http://dx.doi.org/10.1186/s12906-019-2556-y] [PMID: 31227024]
[35]
Ganapaty, S.; Chandrashekhar, V.M.; Chitme, H.R.; Narsu, M.L. Free radical scavenging activity of gossypin and nevadensin: An in-vitro evaluation. Indian J. Pharmacol., 2007, 39(6), 281-283.
[http://dx.doi.org/10.4103/0253-7613.39147]
[36]
Akhtar, N.; Ali, M.; Alam, M.S. Chemical constituents from the seeds of Zanthoxylum alatum. J. Asian Nat. Prod. Res., 2009, 11(1), 91-95.
[http://dx.doi.org/10.1080/10286020802514622] [PMID: 19177245]
[37]
Shivakumar, N.; Agrawal, P.; Gupta, P.K. Green pharmacy: An alternative and complementary medicine. Int. J. Pharm. Sci. Res., 2013, 4(2), 575-581.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.4(2).575-81]
[38]
Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: from biosynthesis to health benefits. Plants (Basel), 2016, 5(2), 27.
[http://dx.doi.org/10.3390/plants5020027] [PMID: 27338492]
[39]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[40]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[41]
Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240.
[http://dx.doi.org/10.1126/sciadv.1501240] [PMID: 27051863]
[42]
Kurnia, D.; Hutabarat, G.S.; Windaryanti, D.; Herlina, T.; Herdiyati, Y.; Satari, M.H. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of mura enzymes: in vitro and in silico study. Drug Des. Devel. Ther., 2020, 14, 2977-2985.
[http://dx.doi.org/10.2147/DDDT.S255269] [PMID: 32801638]
[43]
Eschenburg, S.; Priestman, M.A.; Abdul-Latif, F.A.; Delachaume, C.; Fassy, F.; Schönbrunn, E. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J. Biol. Chem., 2005, 280(14), 14070-14075.
[http://dx.doi.org/10.1074/jbc.M414412200] [PMID: 15701635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy