Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Treatment of Small Cell Lung Cancer with Lurbinectedin: A Review

Author(s): Prince Singh Rajput, Sharib Raza Khan, Preeti Singh and Pooja A. Chawla*

Volume 22, Issue 5, 2022

Published on: 06 July, 2021

Page: [812 - 820] Pages: 9

DOI: 10.2174/1871520621666210706150057

Price: $65

conference banner
Abstract

Background: Lurbinectedin was approved on June 15, 2020 by the Food and Drug Administration with the brand name ZEPZELCA as the first systematic approved therapy for patients having Small Cell Lung Cancer (SCLC).

Objectives: In this review, an attempt is made to summarize different aspects of Lurbinectedin, including the pathophysiology, chemistry, chemical synthesis, mechanism of action, adverse reactions, and pharmacokinetics. Special attention is given to various reported clinical trials of lurbinectedin.

Methods: A comprehensive literature search was conducted in the relevant databases like ScienceDirect, PubMed, ResearchGate and Google Scholar to identify studies. After a thorough study of these reports, significant findings/data were collected and compiled under suitable headings. Important findings related to clinical trials have been tabulated.

Conclusion: Lurbinectedin is known to act by inhibiting the active transcription of encoding genes, thereby suppressing tumor-related macrophages with an impact on tumour atmosphere. Lurbinectedin has emerged as a potential drug candidate for the treatment of Small-Cell Lung Cancer (SCLC).

Keywords: Small cell lung cancer, lurbinectedin, pathophysiology, clinical trials, RNA, cell death.

Graphical Abstract

[1]
Hu, L.; Wu, Y.; Tan, D.; Meng, H.; Wang, K.; Bai, Y.; Yang, K. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2015, 34(1), 7.
[http://dx.doi.org/10.1186/s13046-015-0123-z] [PMID: 25613496]
[2]
Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer, 2017, 17(12), 725-737.
[http://dx.doi.org/10.1038/nrc.2017.87] [PMID: 29077690]
[3]
Rodriguez, E.; Lilenbaum, R.C. Small cell lung cancer: Past, present, and future. Curr. Oncol. Rep., 2010, 12(5), 327-334.
[http://dx.doi.org/10.1007/s11912-010-0120-5] [PMID: 20632219]
[4]
Basumallik, N.; Agarwal, M. Cancer, lung small cell (oat cell). Stat Pearls., 2019. Last Update: July 17, 2021.https://www.ncbi.nlm.nih.gov/books/NBK482458/
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Ko, E.C.; Raben, D.; Formenti, S.C. The integration of radiotherapy with immunotherapy for the treatment of non–small cell lung cancer. Clin. Cancer Res., 2018, 24(23), 5792-5806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3620] [PMID: 29945993]
[7]
Markham, A. Lurbinectedin: First approval. Drugs, 2020, 80(13), 1345-1353.
[http://dx.doi.org/10.1007/s40265-020-01374-0] [PMID: 32816202]
[8]
Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets. Mar. Drugs, 2019, 17(6), 329.
[http://dx.doi.org/10.3390/md17060329] [PMID: 31159480]
[9]
Baena, J.; Modrego, A.; Zeaiter, A.; Kahatt, C.; Alfaro, V.; Jimenez-Aguilar, E.; Mazarico, J.M.; Paz-Ares, L. Lurbinectedin in the treatment of relapsed small cell lung cancer. Future Oncol., 2021, 17(18), 2279-2289.
[10]
Leal, J.F.; Martínez-Díez, M.; García-Hernández, V.; Moneo, V.; Domingo, A.; Bueren-Calabuig, J.A.; Negri, A.; Gago, F.; Guillén-Navarro, M.J.; Avilés, P.; Cuevas, C.; García-Fernández, L.F.; Galmarini, C.M. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br. J. Pharmacol., 2010, 161(5), 1099-1110.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00945.x] [PMID: 20977459]
[11]
Xie, W.; Forveille, S.; Iribarren, K.; Sauvat, A.; Senovilla, L.; Wang, Y.; Humeau, J.; Perez-Lanzon, M.; Zhou, H.; Martínez-Leal, J.F.; Kroemer, G.; Kepp, O. Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. OncoImmunology, 2019, 8(11)e1656502
[http://dx.doi.org/10.1080/2162402X.2019.1656502] [PMID: 31646106]
[12]
Belgiovine, C.; Bello, E.; Liguori, M.; Craparotta, I.; Mannarino, L.; Paracchini, L.; Beltrame, L.; Marchini, S.; Galmarini, C.M.; Mantovani, A.; Frapolli, R.; Allavena, P.; D’Incalci, M. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br. J. Cancer, 2017, 117(5), 628-638.
[http://dx.doi.org/10.1038/bjc.2017.205] [PMID: 28683469]
[13]
PharmaMar The U.S. Food and Drug Administration (FDA) has granted orphan drug designation to PharmaMar’s lurbinectedin. 2018.Availble form . https://pharmamar.com/
[14]
PharmaMar PharmaMar receives positive opinion from EMA (COMP) for orphan drug designation of Zepsyre(R) (lurbinectedin) for small-cell lung cancer. 2019.Availble form . https://pharmamar.com/
[15]
PharmaMar Lurbinectedin receives orphan drug designation from the TGA for small-cell lung cancer in Australia. 2020.Availble form . https://pharmamar.com/
[16]
Asia, S.T. New small cell lung cancer drug accepted for TGA evaluation under Project Orbis., 2020.Availble form . http://stbiopharma.com/
[17]
D’Angelo, S.P.; Pietanza, M.C. The molecular pathogenesis of small cell lung cancer. Cancer Biol. Ther., 2010, 10(1), 1-10.
[http://dx.doi.org/10.4161/cbt.10.1.12045] [PMID: 21361067]
[18]
Lantuejoul, S.; Fernandez-Cuesta, L.; Damiola, F.; Girard, N.; McLeer, A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl. Lung Cancer Res., 2020, 9(5), 2233-2244.
[http://dx.doi.org/10.21037/tlcr-20-269] [PMID: 33209646]
[19]
Kerr, J.F.; Winterford, C.M.; Harmon, B.V. Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994, 73(8), 2013-2026.
[http://dx.doi.org/10.1002/1097-0142(19940415)73:8<2013:AID-CNCR2820730802>3.0.CO;2-J] [PMID: 8156506]
[20]
Wyllie, A.H. Apoptosis (the 1992 Frank Rose memorial lecture). Br. J. Cancer, 1993, 67(2), 205-208.
[http://dx.doi.org/10.1038/bjc.1993.40] [PMID: 8431353]
[21]
Yonish-Rouach, E.; Resnitzky, D.; Lotem, J.; Sachs, L.; Kimchi, A.; Oren, M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 1991, 352(6333), 345-347.
[http://dx.doi.org/10.1038/352345a0] [PMID: 1852210]
[22]
Shaw, P.; Bovey, R.; Tardy, S.; Sahli, R.; Sordat, B.; Costa, J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4495-4499.
[http://dx.doi.org/10.1073/pnas.89.10.4495] [PMID: 1584781]
[23]
McDonnell, T.J.; Marin, M.C.; Hsu, B.; Brisbay, S.M.; McConnell, K.; Tu, S-M.; Campbell, M.L.; Rodriguez-Villanueva, J. The bcl-2 oncogene: Apoptosis and neoplasia. Radiat. Res., 1993, 136(3), 307-312.
[http://dx.doi.org/10.2307/3578541] [PMID: 8278571]
[24]
Bissonnette, R.P.; Echeverri, F.; Mahboubi, A.; Green, D.R. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature, 1992, 359(6395), 552-554.
[http://dx.doi.org/10.1038/359552a0] [PMID: 1406975]
[25]
O’Neill, A.J.; Staunton, M.J.; Gaffney, E.F. Apoptosis occurs independently of bcl-2 and p53 over-expression in non-small cell lung carcinoma. Histopathology, 1996, 29(1), 45-50.
[http://dx.doi.org/10.1046/j.1365-2559.1996.d01-478.x] [PMID: 8818693]
[26]
Anton, R.C.; Brown, R.W.; Younes, M.; Gondo, M.M.; Stephenson, M.A.; Cagle, P.T. Absence of prognostic significance of bcl-2 immunopositivity in non-small cell lung cancer: Analysis of 427 cases. Hum. Pathol., 1997, 28(9), 1079-1082.
[http://dx.doi.org/10.1016/S0046-8177(97)90062-9] [PMID: 9308733]
[27]
Paz-Elizur, T.; Sevilya, Z.; Leitner-Dagan, Y.; Elinger, D.; Roisman, L.C.; Livneh, Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett., 2008, 266(1), 60-72.
[http://dx.doi.org/10.1016/j.canlet.2008.02.032] [PMID: 18374480]
[28]
Zabarovsky, E.R.; Lerman, M.I.; Minna, J.D. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 2002, 21(45), 6915-6935.
[http://dx.doi.org/10.1038/sj.onc.1205835] [PMID: 12362274]
[29]
Barreca, M.; Spanò, V.; Montalbano, A.; Cueto, M.; Díaz Marrero, A.R.; Deniz, I.; Erdoğan, A.; Lukić Bilela, L.; Moulin, C.; Taffin-de-Givenchy, E.; Spriano, F.; Perale, G.; Mehiri, M.; Rotter, A.; Thomas, P. O.; Barraja, P.; Gaudêncio, S.P.; Bertoni, F. Marine anticancer agents: An overview with a particular focus on their chemical classes. Mar. Drugs, 2020, 18(12), 619.
[http://dx.doi.org/10.3390/md18120619] [PMID: 33291602]
[30]
Burgering, B.M.; Kops, G.J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci., 2002, 27(7), 352-360.
[http://dx.doi.org/10.1016/S0968-0004(02)02113-8] [PMID: 12114024]
[31]
Jimenez, P.C.; Wilke, D.V.; Branco, P.C.; Bauermeister, A.; Rezende-Teixeira, P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Enriching cancer pharmacology with drugs of marine origin. Br. J. Pharmacol., 2020, 177(1), 3-27.
[http://dx.doi.org/10.1111/bph.14876] [PMID: 31621891]
[32]
Shinn, L.T.; Vo, K.A.; Reeves, D.J. Lurbinectedin: A New treatment option for relapsed/refractory small-cell lung cancer. Ann. Pharmacother., 2020, •••1060028020983014
[PMID: 33348988]
[33]
Imperatore, C.; Aiello, A.; D’Aniello, F.; Senese, M.; Menna, M. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules, 2014, 19(12), 20391-20423.
[http://dx.doi.org/10.3390/molecules191220391] [PMID: 25490431]
[34]
Lorente Crivillé, A. A marine natural products.Marine natural products. Synthesis and structure determination; Universitat de Barcelona, 2014.
[35]
Corey, E.J.; Gin, D.Y.; Kania, R.S. Enantioselective total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 1996, 118(38), 9202-9203.
[http://dx.doi.org/10.1021/ja962480t]
[36]
Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. Total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 2002, 124(23), 6552-6554.
[http://dx.doi.org/10.1021/ja026216d] [PMID: 12047173]
[37]
Kawagishi, F.; Toma, T.; Inui, T.; Yokoshima, S.; Fukuyama, T. Total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 2013, 135(37), 13684-13687.
[http://dx.doi.org/10.1021/ja408034x] [PMID: 24001124]
[38]
Cuevas, C.; Pérez, M.; Martín, M.J.; Chicharro, J.L.; Fernández-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de La Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org. Lett., 2000, 2(16), 2545-2548.
[http://dx.doi.org/10.1021/ol0062502] [PMID: 10956543]
[39]
Xu, S.; Wang, G.; Zhu, J.; Shen, C.; Yang, Z.; Yu, J.; Li, Z.; Lin, T.; Sun, X.; Zhang, F. A concise and practical semisynthesis of ecteinascidin 743 and. Jorumycin. Eur. J. Org. Chem., 2017, 2017(5), 975-983.
[http://dx.doi.org/10.1002/ejoc.201601409]
[40]
Lemon, B.; Tjian, R. Orchestrated response: A symphony of transcription factors for gene control. Genes Dev., 2000, 14(20), 2551-2569.
[http://dx.doi.org/10.1101/gad.831000] [PMID: 11040209]
[41]
Trigo, J.; Subbiah, V.; Besse, B.; Moreno, V.; López, R.; Sala, M.A.; Peters, S.; Ponce, S.; Fernández, C.; Alfaro, V.; Gómez, J.; Kahatt, C.; Zeaiter, A.; Zaman, K.; Boni, V.; Arrondeau, J.; Martínez, M.; Delord, J.P.; Awada, A.; Kristeleit, R.; Olmedo, M.E.; Wannesson, L.; Valdivia, J.; Rubio, M.J.; Anton, A.; Sarantopoulos, J.; Chawla, S.P.; Mosquera-Martinez, J.; D’Arcangelo, M.; Santoro, A.; Villalobos, V.M.; Sands, J.; Paz-Ares, L. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: A single-arm, open-label, phase 2 basket trial. Lancet Oncol., 2020, 21(5), 645-654.
[http://dx.doi.org/10.1016/S1470-2045(20)30068-1] [PMID: 32224306]
[42]
Santamaría Nuñez, G.; Robles, C.M.G.; Giraudon, C.; Martínez-Leal, J.F.; Compe, E.; Coin, F.; Aviles, P.; Galmarini, C.M.; Egly, J-M. Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Mol. Cancer Ther., 2016, 15(10), 2399-2412.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0172] [PMID: 27630271]
[43]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[44]
Poveda, A.; Oaknin, A.; Romero, I.; Guerrero-Zotano, A.; Fariñas-Madrid, L.; Rodriguez-Freixinos, V.; Mallol, P.; Lopez-Reig, R.; Lopez-Guerrero, J.A. A phase I dose-finding, pharmacokinetics and genotyping study of olaparib and lurbinectedin in patients with advanced solid tumors. Sci. Rep., 2021, 11(1), 1-11.
[http://dx.doi.org/10.1038/s41598-021-82671-w] [PMID: 33627685]
[45]
PharmaMar ZEPZELCA® (lurbinectedin): US prescribing information. 2020.Availble from. https://pharmamar.com/
[46]
Fernandez-Teruel, C.; Gonzalez, I.; Trocóniz, I.F.; Lubomirov, R.; Soto, A.; Fudio, S. Population-pharmacokinetic and covariate analysis of lurbinectedin (PM01183), a new RNA polymerase II inhibitor, in pooled phase I/II trials in patients with cancer. Clin. Pharmacokinet., 2019, 58(3), 363-374.
[http://dx.doi.org/10.1007/s40262-018-0701-2] [PMID: 30090974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy