Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Novel Benzoxazole Linked 1,3,4-Oxadiazoles

Author(s): Sushmitha Bujji, Edigi P. Kumar, Sree K. Sivan, D.H. Manjunatha and N.J.P. Subhashini*

Volume 22, Issue 5, 2022

Published on: 06 July, 2021

Page: [933 - 942] Pages: 10

DOI: 10.2174/1871520621666210706120203

Price: $65

conference banner
Abstract

Background: Cancer disease is a serious concern globally. Global cancer occurrence is steadily increasing every year. There is always a persistent need to develop new anticancer drugs with reduced side effects or that act synergistically with the existing chemotherapeutics.

Objective: Benzoxazoles are fused bicyclic nitrogen and oxygen-containing heterocyclic compounds and are considered biologically privileged scaffolds. We designed a synthetic route to link the benzoxazoles with oxadiazole,s resulting in a better pharmacophore for anticancer activity.

Methods: A series of novel amide derivatives of benzoxazole linked 1,3,4-oxadiazoles (10 a-j) were synthesized and characterized by 1H NMR, 13C NMR, and mass spectroscopic techniques. The biological properties of the compounds were screened in vitro against four different tumor cell lines.

Results: The results suggest that the compound 10b having 3,4,5-trimethoxy substitution on the phenyl ring exhibited potent anticancer activity in three cell lines (A549 = 0.13 ± 0.014 μM, MCF-7 = 0.10 ± 0.013 μM and HT-29 = 0.22 ± 0.017 μM). Notably, among the synthesized derivatives, compounds 10b, 10c, 10f, 10g, and 10i exhibited potent anticancer activity than the control, with IC50 values in the range from 0.11 ± 0.02 to 0.93 ± 0.034 μM. Molecular docking simulation results showed that compounds were stabilized by hydrogen bond and π-π interactions with the protein.

Conclusion: The molecules showed comparable binding affinities with standard Combretastatin-A4. The present research work is in a preliminary phase and needs further studies to take the synthesized compounds to the next level in the cancer research field.

Keywords: Benzoxazole, 1, 3, 4-oxadiazole, anticancer activity, cytotoxicity assays, molecular docking, combretastatin-A4.

Graphical Abstract

[1]
The World Health Organization (WHO). Cancer Available from:. https://www.who.int/cancer/en/ [Accessed 05- march].
[2]
Ali, R.; Mirza, Z.; Ashraf, G.M.; Kamal, M.A.; Ansari, S.A.; Damanhouri, G.A.; Abuzenadah, A.M.; Chaudhary, A.G.; Sheikh, I.A. New anticancer agents: Recent developments in tumor therapy. Anticancer Res., 2012, 32(7), 2999-3005.
[PMID: 22753764]
[3]
Vinsová, J.; Horák, V.; Buchta, V.; Kaustová, J. Highly lipophilic benzoxazoles with potential antibacterial activity. Molecules, 2005, 10(7), 783-793.
[http://dx.doi.org/10.3390/10070783] [PMID: 18007347]
[4]
Kumar, D.; Jacob, M.R.; Reynolds, M.B.; Kerwin, S.M. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg. Med. Chem., 2002, 10(12), 3997-4004.
[http://dx.doi.org/10.1016/S0968-0896(02)00327-9] [PMID: 12413851]
[5]
Huang, S-T.; Hsei, I-J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg. Med. Chem., 2006, 14(17), 6106-6119.
[http://dx.doi.org/10.1016/j.bmc.2006.05.007] [PMID: 16714116]
[6]
McKee, M.L.; Kerwin, S.M. Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2′-hydroxyphenyl) benzoxazole analogs of UK-1. Bioorg. Med. Chem., 2008, 16(4), 1775-1783.
[http://dx.doi.org/10.1016/j.bmc.2007.11.019] [PMID: 18037301]
[7]
Murty, M.; Ram, K.R.; Rao, R.V.; Yadav, J.; Rao, J.V.; Cheriyan, V.T.; Anto, R.J. Synthesis and preliminary evaluation of 2-substituted-1, 3-benzoxazole and 3-[(3-substituted) propyl]-1, 3-benzoxazol-2 (3 H)-one derivatives as potent anticancer agents. Med. Chem. Res., 2011, 20(5), 576-586.
[http://dx.doi.org/10.1007/s00044-010-9353-y]
[8]
Oksuzoglu, E.; Tekiner-Gulbas, B.; Alper, S.; Temiz-Arpaci, O.; Ertan, T.; Yildiz, I.; Diril, N.; Sener-Aki, E.; Yalcin, I. Some benzoxazoles and benzimidazoles as DNA topoisomerase I and II inhibitors. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 37-42.
[http://dx.doi.org/10.1080/14756360701342516] [PMID: 18341251]
[9]
Vinsova, J.; Cermakova, K.; Tomeckova, A.; Ceckova, M.; Jampilek, J.; Cermak, P.; Kunes, J.; Dolezal, M.; Staud, F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem., 2006, 14(17), 5850-5865.
[http://dx.doi.org/10.1016/j.bmc.2006.05.030] [PMID: 16784871]
[10]
Tekiner-Gulbas, B.; Temiz-Arpaci, O.; Yildiz, I.; Altanlar, N. Synthesis and in vitro antimicrobial activity of new 2-[p-substituted-benzyl]-5-[substituted-carbonylamino] benzoxazoles. Eur. J. Med. Chem., 2007, 42(10), 1293-1299.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.022] [PMID: 17337097]
[11]
Brown, R.N.; Cameron, R.; Chalmers, D.K.; Hamilton, S.; Luttick, A.; Krippner, G.Y.; McConnell, D.B.; Nearn, R.; Stanislawski, P.C.; Tucker, S.P.; Watson, K.G. 2-Ethoxybenzoxazole as a bioisosteric replacement of an ethyl benzoate group in a human rhinovirus (HRV) capsid binder. Bioorg. Med. Chem. Lett., 2005, 15(8), 2051-2055.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.054] [PMID: 15808466]
[12]
Şener, E.A.; Bingöl, K.K.; Ören, I.; Arpaci, Ö.T.; Yaçin, I.; Altanlar, N. Synthesis and microbiological activity of some N-(o-hydroxyphenyl)benzamides and phenylacetamides as the possible metabolites of antimicrobial active benzoxazoles: part II. Farmaco, 2000, 55(6-7), 469-476.
[http://dx.doi.org/10.1016/S0014-827X(00)00070-7] [PMID: 11204748]
[13]
Coutts, S.M.; Khandwala, A.; Weinryb, I. REV 2871 (CHBZ): a potent antiallergic agent with a novel mechanism of action. II. Studies on the mechanism of action. Biochem. Pharmacol., 1987, 36(5), 673-682.
[http://dx.doi.org/10.1016/0006-2952(87)90718-0] [PMID: 2881546]
[14]
Ikeguchi, M.; Sawaki, M.; Nakayama, H.; Kikugawa, H.; Yoshii, H. Synthesis and herbicidal activity of new oxazinone herbicides with a long-lasting herbicidal activity against Echinochloa oryzicola. Pest Manag. Sci., 2004, 60(10), 981-991.
[http://dx.doi.org/10.1002/ps.900] [PMID: 15481824]
[15]
Darque, A.; Dumètre, A.; Hutter, S.; Casano, G.; Robin, M.; Pannecouque, C.; Azas, N. Synthesis and biological evaluation of new heterocyclic quinolinones as anti-parasite and anti-HIV drug candidates. Bioorg. Med. Chem. Lett., 2009, 19(20), 5962-5964.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.013] [PMID: 19748781]
[16]
El-Hady, H.A.; Abubshait, S.A. Synthesis and anticancer evaluation of imidazolinone and benzoxazole derivatives. Arab. J. Chem., 2017, 10, S3725-S3731.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.006]
[17]
An, Y.; Lee, E.; Yu, Y.; Yun, J.; Lee, M.Y.; Kang, J.S.; Kim, W-Y.; Jeon, R. Design and synthesis of novel benzoxazole analogs as Aurora B kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3067-3072.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.017] [PMID: 27209235]
[18]
Ueki, M.; Taniguchi, M. UK-1, a novel cytotoxic metabolite from Streptomyces sp. 517-02. III. Antibacterial action of demethyl UK-1. J. Antibiot. (Tokyo), 1997, 50(9), 788-790.
[http://dx.doi.org/10.7164/antibiotics.50.788] [PMID: 9360628]
[19]
Sato, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T. AJI9561, a new cytotoxic benzoxazole derivative produced by Streptomyces sp. J. Antibiot. (Tokyo), 2001, 54(1), 102-104.
[http://dx.doi.org/10.7164/antibiotics.54.102] [PMID: 11269707]
[20]
Guimarães, C.R.W.; Boger, D.L.; Jorgensen, W.L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J. Am. Chem. Soc., 2005, 127(49), 17377-17384.
[http://dx.doi.org/10.1021/ja055438j] [PMID: 16332087]
[21]
Savariz, F.C.; Formagio, A.S.; Barbosa, V.A.; Foglio, M.A.; Carvalho, J.E.d.; Duarte, M.C.; Dias Filho, B.P.; Sarragiotto, M.H. Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino (methyl)-2-thioxo-1, 3, 4-oxadiazol-5-yl] β-carboline derivatives. J. Braz. Chem. Soc., 2010, 21(2), 288-298.
[http://dx.doi.org/10.1590/S0103-50532010000200014]
[22]
Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Ther. Clin. Risk Manag., 2008, 4(2), 493-500.
[http://dx.doi.org/10.2147/TCRM.S2268] [PMID: 18728839]
[23]
Sangshetti, J.N.; Chabukswar, A.R.; Shinde, D.B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 444-448.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.120] [PMID: 21095127]
[24]
Patel, N.B.; Patel, J.C. Synthesis and antimicrobial activity of 3-(1,3,4-Oxadiazol-2-yl)quinazolin-4(3H)-ones. Sci. Pharm., 2010, 78(2), 171-193.
[http://dx.doi.org/10.3797/scipharm.0912-16] [PMID: 21179342]
[25]
Şahin, G.; Palaska, E.; Ekizoğlu, M.; Özalp, M. Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco, 2002, 57(7), 539-542.
[http://dx.doi.org/10.1016/S0014-827X(02)01245-4] [PMID: 12164209]
[26]
Harfenist, M.; Heuser, D.J.; Joyner, C.T.; Batchelor, J.F.; White, H.L. Selective inhibitors of monoamine oxidase. 3. Structure-activity relationship of tricyclics bearing imidazoline, oxadiazole, or tetrazole groups. J. Med. Chem., 1996, 39(9), 1857-1863.
[http://dx.doi.org/10.1021/jm950595m] [PMID: 8627609]
[27]
Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Nomani, M.S.; Saraswat, P.; Gaur, R.; Singh, A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7246-7250.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.057] [PMID: 22071303]
[28]
Ergün, Y.; Orhan, Ö.F.; Özer, U.G.; Gişi, G. Synergistic effect of [1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one] and antidepressant drugs in the mouse forced swimming test: Possible involvement of serotonergic pathway. Eur. J. Pharmacol., 2010, 630(1-3), 74-78.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.021] [PMID: 20035741]
[29]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.007] [PMID: 20122763]
[30]
Li, Y.; Zhu, H.; Chen, K.; Liu, R.; Khallaf, A.; Zhang, X.; Ni, J. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings. Org. Biomol. Chem., 2013, 11(24), 3979-3988.
[http://dx.doi.org/10.1039/c3ob40345a] [PMID: 23657615]
[31]
Husain, A.; Ajmal, M. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties. Acta Pharm., 2009, 59(2), 223-233.
[http://dx.doi.org/10.2478/v10007-009-0011-1] [PMID: 19564146]
[32]
James, N.D.; Growcott, J.W. Zibotentan endothelin ETA receptor antagonist oncolytic. Drugs Future, 2009, 34(8), 624-633.
[33]
Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H.A.; Ramanathan, M.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem., 2019, 168, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.033] [PMID: 30798049]
[34]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[35]
Schrödinger, L. New York Glide Version 5. 2010.
[36]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[37]
Sivan, S.K.; Vangala, R.; Manga, V. Molecular docking guided structure based design of symmetrical N,N′-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4591-4599.
[http://dx.doi.org/10.1016/j.bmc.2013.05.038] [PMID: 23777826]
[38]
Peddi, S.R.; Sivan, S.K.; Manga, V. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors. J. Biomol. Struct. Dyn., 2018, 36(2), 486-503.
[http://dx.doi.org/10.1080/07391102.2017.1281762] [PMID: 28081678]
[39]
Gaspari, R.; Prota, A.E.; Bargsten, K.; Cavalli, A.; Steinmetz, M.O. Structural basis of cis-and trans-combretastatin binding to tubulin. Chem, 2017, 2(1), 102-113.
[http://dx.doi.org/10.1016/j.chempr.2016.12.005]
[40]
Srivastava, H.K.; Sastry, G.N. Molecular dynamics investigation on a series of HIV protease inhibitors: Assessing the performance of MM-PBSA and MM-GBSA approaches. J. Chem. Inf. Model., 2012, 52(11), 3088-3098.
[http://dx.doi.org/10.1021/ci300385h] [PMID: 23121465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy