Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Morelloflavone as Potential Anticancer Agent Against MCF-7 Breast Cancer Cell Lines: In vitro and In silico Studies

Author(s): Darwati, Nurlelasari, Tri Mayanti, Nurul Ambardhani and Dikdik Kurnia*

Volume 19, Issue 4, 2022

Published on: 06 July, 2021

Page: [293 - 303] Pages: 11

DOI: 10.2174/1570180818666210706110538

Price: $65

Abstract

Background: Breast cancer is most commonly reported to contribute to people's death. Nowadays, cancer treatment is focused on investigating anticancer drugs from natural compounds. Various methods, including in vitro, in vivo, and in silico methods, are used to assess the potential of anticancer compounds. The efficacy of bioactive compounds from medicinal plant origin lies in their affordability and minimized side effects. The Garcinia genus contains bioactive compounds, such as xanthones, benzophenones, triterpenes, biflavonoids, and benzoquinones.

Objective: The study aimed at investigating an active compound that can inhibit cancer cell growth and proteins that contribute to cancer cell growth, such as Caspase-9, TNF-α, ER-α, and HER-2.

Methods: This study is divided into three steps. The first step is the isolation of the active compound from G. cymosa. The second step is an assessment of cytotoxic activity against MCF-7 cell by using MTT assay, and the last one is an investigation of the molecular mechanism of an active compound against Caspase-9, TNF-α, ER-α, and HER-2 by using in silico studies utilizing various programs, such as PyRx 0.8, PYMOL, and Discovery Studio.

Results: Morelloflavone from G. cymosa stem barks has exhibited anticancer activity (55.84 μg/mL) eight times lower than doxorubicin (6.99 μg/mL), but it can block the activity of Caspase-9, TNF-α, ER- α, and HER-2. The binding affinity of morelloflavone is the strongest of all ligands.

Conclusion: The natural flavonoid, morelloflavone, may be a new lead candidate for anticancer agent inhibiting action mechanism of Caspase-9, TNF-α, ER-α, and HER-2, respectively.

Keywords: Garcinia cymosa, morelloflavone, caspase-9, TNF-α, ER-α, HER-2.

Graphical Abstract

[1]
Al-Sharif, I.; Remmal, A.; Aboussekhra, A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer, 2013, 13(600), 600.
[http://dx.doi.org/10.1186/1471-2407-13-600] [PMID: 24330704]
[2]
Brewster, A.M.; Chavez-MacGregor, M.; Brown, P. Epidemiology, biology, and treatment of triple-negative breast cancer in women of African ancestry. Lancet Oncol., 2014, 15(13), e625-e634.
[http://dx.doi.org/10.1016/S1470-2045(14)70364-X] [PMID: 25456381]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Panieri, E. Breast cancer screening in developing countries. Best Pract. Res. Clin. Obstet. Gynaecol., 2012, 26(2), 283-290.
[http://dx.doi.org/10.1016/j.bpobgyn.2011.11.007] [PMID: 22222136]
[5]
Gerber, B.; Freund, M.; Reimer, T. Recurrent breast cancer: Treatment strategies for maintaining and prolonging good quality of life. Dtsch. Arztebl. Int., 2010, 107(6), 85-91.
[http://dx.doi.org/10.3238/arztebl.2010.0085] [PMID: 20204119]
[6]
Allegra, C.J.; Yothers, G.; O’Connell, M.J.; Sharif, S.; Petrelli, N.J.; Lopa, S.H.; Wolmark, N. Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J. Clin. Oncol., 2013, 31(3), 359-364.
[http://dx.doi.org/10.1200/JCO.2012.44.4711] [PMID: 23233715]
[7]
Sharma, V.; Sharma, P.C.; Kumar, V. in silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv. Chem., 2016, 2016, 1-9.
[8]
Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; Gustafsson, J.A. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 2007, 87(3), 905-931.
[http://dx.doi.org/10.1152/physrev.00026.2006] [PMID: 17615392]
[9]
Chidi-Ogbolu, N.; Baar, K. Effect of estrogen on musculoskeletal performance and injury risk. Front. Physiol., 2019, 9, 1834.
[http://dx.doi.org/10.3389/fphys.2018.01834] [PMID: 30697162]
[10]
Thomas, C.; Gustafsson, J.A. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer, 2011, 11(8), 597-608.
[http://dx.doi.org/10.1038/nrc3093] [PMID: 21779010]
[11]
Hamedeyazdan, S.; Fathiazad, F.; Sharifi, S.; Nazemiyeh, H. Antiproliferative activity of Marrubium persicum extract in the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev., 2012, 13(11), 5843-5848.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5843] [PMID: 23317267]
[12]
Suganya, J.; Radha, M.; Naorem, D.L.; Nishandhini, M. in silico docking studies of selected flavonoids--natural healing agents against breast cancer. Asian Pac. J. Cancer Prev., 2014, 15(19), 8155-8159.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8155] [PMID: 25338999]
[13]
Dickson, R.B.; Stancel, G.M. Estrogen receptor-mediated processes in normal and cancer cells. J. Natl. Cancer Inst. Monogr., 2000, (27), 135-145.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a024237] [PMID: 10963625]
[14]
Fuqua, S.A. The role of estrogen receptors in breast cancer metastasis. J. Mammary Gland Biol. Neoplasia, 2001, 6(4), 407-417.
[http://dx.doi.org/10.1023/A:1014782813943] [PMID: 12013530]
[15]
Bai, J.W.; Wei, M.; Li, J.W.; Zhang, G.J. Notch signaling pathway and endocrine resistance in breast cancer. Front. Pharmacol., 2020, 11(924), 924.
[http://dx.doi.org/10.3389/fphar.2020.00924] [PMID: 32636747]
[16]
Hayashi, S.I.; Eguchi, H.; Tanimoto, K.; Yoshida, T.; Omoto, Y.; Inoue, A.; Yoshida, N.; Yamaguchi, Y. The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr. Relat. Cancer, 2003, 10(2), 193-202.
[http://dx.doi.org/10.1677/erc.0.0100193] [PMID: 12790782]
[17]
Tan, H.; Zhong, Y.; Pan, Z. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines. BMC Cancer, 2009, 9(31), 31.
[http://dx.doi.org/10.1186/1471-2407-9-31] [PMID: 19171042]
[18]
Salih, A.K.; Fentiman, I.S. Breast cancer prevention: Present and future. Cancer Treat. Rev., 2001, 27(5), 261-273.
[http://dx.doi.org/10.1053/ctrv.2001.0235] [PMID: 11871862]
[19]
Tabassum, S.; Zaki, M.; Afzal, M.; Arjmand, F. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74(74), 509-523.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.046] [PMID: 24508781]
[20]
Naqsh e Zahra, S.; Khattak, N.A.; Mir, A. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theor. Biol. Med. Model., 2013, 10(1), 1-9.
[http://dx.doi.org/10.1186/1742-4682-10-1] [PMID: 23276293]
[21]
Sudha, A.; Srinivasan, P.; Kanimozhi, V.; Palanivel, K.; Kadalmani, B. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3',4',7-trimethoxyflavone in human breast cancer cells MCF-7: An in vitro and in silico approach. J. Recept. Signal Transduct. Res., 2018, 38(3), 179-190.
[http://dx.doi.org/10.1080/10799893.2018.1468780] [PMID: 29734849]
[22]
Jabit, Md. L.; Wahyuni, F.S.; Khalid, R.; Israf, D.A.; Shaari, K.; Lajis, N.H.; Stanslas, J. Cytotoxic and nitric oxide inhibitory activities of methanol extracts of Garcinia species. Pharm. Biol., 2009, 47(11), 1019-1026.
[http://dx.doi.org/10.3109/13880200902973787]
[23]
Rukachaisirikul, V.; Trisuwan, K.; Sukpondma, Y.; Phongpaichit, S. A new benzoquinone derivative from the leaves of Garcinia parvifolia. Arch. Pharm. Res., 2008, 31(1), 17-20.
[http://dx.doi.org/10.1007/s12272-008-1114-9] [PMID: 18277602]
[24]
Matsumoto, K.; Akao, Y.; Kobayashi, E.; Ito, T.; Ohguchi, K.; Tanaka, T.; Iinuma, M.; Nozawa, Y. Cytotoxic benzophenone derivatives from Garcinia species display a strong apoptosis-inducing effect against human leukemia cell lines. Biol. Pharm. Bull., 2003, 26(4), 569-571.
[http://dx.doi.org/10.1248/bpb.26.569] [PMID: 12673047]
[25]
Nakatani, K.; Nakahata, N.; Arakawa, T.; Yasuda, H.; Ohizumi, Y. Inhibition of cyclooxygenase and prostaglandin E2 synthesis by γ-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem. Pharmacol., 2002, 63(1), 73-79.
[http://dx.doi.org/10.1016/S0006-2952(01)00810-3] [PMID: 11754876]
[26]
Lin, Y.M.; Anderson, H.; Flavin, M.T.; Pai, Y.H.S.; Mata-Greenwood, E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.C. in vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod., 1997, 60(9), 884-888.
[http://dx.doi.org/10.1021/np9700275] [PMID: 9322359]
[27]
Permana, D.; Lajis, N.H.; Mackeen, M.M.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H. Isolation and bioactivities of constitutents of the roots of Garcinia atroviridis. J. Nat. Prod., 2001, 64(7), 976-979.
[http://dx.doi.org/10.1021/np000563o] [PMID: 11473441]
[28]
Rukachaisirikul, V.; Kamkaew, M.; Sukavisit, D.; Phongpaichit, S.; Sawangchote, P.; Taylor, W.C. Antibacterial xanthones from the leaves of Garcinia nigrolineata. J. Nat. Prod., 2003, 66(12), 1531-1535.
[http://dx.doi.org/10.1021/np0303254] [PMID: 14695790]
[29]
Rukachaisirikul, V.; Naklue, W.; Sukpondma, Y.; Phongpaichit, S. An antibacterial biphenyl derivative from Garcinia bancana MIQ. Chem. Pharm. Bull. (Tokyo), 2005, 53(3), 342-343.
[http://dx.doi.org/10.1248/cpb.53.342] [PMID: 15744113]
[30]
Panthong, K.; Pongcharoen, W.; Phongpaichit, S.; Taylor, W.C. Tetraoxygenated xanthones from the fruits of Garcinia cowa. Phytochemistry, 2006, 67(10), 999-1004.
[http://dx.doi.org/10.1016/j.phytochem.2006.02.027] [PMID: 16678870]
[31]
Mahabusarakam, W.; Chairerk, P.; Taylor, W.C. Xanthones from Garcinia cowa Roxb. latex. Phytochemistry, 2005, 66(10), 1148-1153.
[http://dx.doi.org/10.1016/j.phytochem.2005.02.025] [PMID: 15924919]
[32]
Panthong, K.; Hutadilok-Towatano, N.; Panthong, A. Cowaxanthone F, a new tetraoxygenated xanthone, and other anti-inflammatory and antioxidant compounds from Garcinia cowa. Can. J. Chem., 2009, 87(11), 1636-1640.
[http://dx.doi.org/10.1139/V09-123]
[33]
Kaennakam, S.; Siripong, P.; Tip-Pyang, S. Kaennacowanols A-C, three new xanthones and their cytotoxicity from the roots of Garcinia cowa. Fitoterapia, 2015, 102, 171-176.
[http://dx.doi.org/10.1016/j.fitote.2015.03.008] [PMID: 25771120]
[34]
Jamila, N.; Khairuddean, M.; Yaacob, N.S.; Kamal, N.N.S.N.M.; Osman, H.; Khan, S.N.; Khan, N. Cytotoxic benzophenone and triterpene from Garcinia hombroniana. Bioorg. Chem., 2014, 54, 60-67.
[http://dx.doi.org/10.1016/j.bioorg.2014.04.003] [PMID: 24813683]
[35]
Menon, L.N.; Sindhu, G.; Raghu, K.G.; Rameshkumar, K.B. Chemical composition and cytotoxicity of Garcinia rubro-echinata, a western ghats endemics species. Nat. Prod. Commun., 2018, (1311), 1479-1499.
[36]
Sukandar, E.R.; Kaennakam, S.; Rassamee, K.; Siripong, P.; Fatmawati, S.; Ersam, T.; Tip-Pyang, S. Xanthones and biphenyls from the stems of Garcinia cylindrocarpa and their cytotoxicity. Fitoterapia, 2018, 130, 112-117.
[http://dx.doi.org/10.1016/j.fitote.2018.08.019] [PMID: 30153471]
[37]
Yuliar, Y.; Manjang, Y.; Ibrahim, S. Phenolic constituents from the tree barks of Garcinia cf cymosa and their antioxidant and antibacterial activities. Mal. J. Fun. Appl. Sci, 2013, 9(3), 115-118.
[http://dx.doi.org/10.11113/mjfas.vxxnx.xxx]
[38]
Heah, K.G.; Shobri, N.R.B.M. Khoruddin. A review on methyl thiazodiphenyl-tetrazoliumbromide (MTT) assay in cell viability. Res. J. App. Sci, 2017, 12(9), 372-378.
[39]
Oluwatosin, A.; Tolulope, A.; Ayokulehin, K.; Patricia, O.; Aderemi, K.; Catherine, F.; Olusegun, A. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac. J. Trop. Med., 2014, 7(2), 97-104.
[http://dx.doi.org/10.1016/S1995-7645(14)60003-1] [PMID: 24461521]
[40]
Gontijo, V.S.; Judice, W.A.S.; Codonho, B.; Pereira, I.O.; Assis, D.M.; Januário, J.P.; Caroselli, E.E.; Juliano, M.A.; de Carvalho Dosatti, A.; Marques, M.J.; Viegas, Junior C.; Henrique dos Santos, M. Leishmanicidal, antiproteolytic and antioxidant evaluation of natural biflavonoids isolated from Garcinia brasiliensis and their semisynthetic derivatives. Eur. J. Med. Chem., 2012, 58(58), 613-623.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.021] [PMID: 23178961]
[41]
Waterman, P.G.; Crichton, E.G. Xanthones and biflavonoids from Garcina densivenia stem bark. Phytochemistry, 1980, 19, 2723-2726.
[http://dx.doi.org/10.1016/S0031-9422(00)83950-3]
[42]
Elfita, E.; Muharni, M.; Latief, M.; Darwati, D.; Widiyantoro, A.; Supriyatna, S.; Bahti, H.H.; Dachriyanus, D.; Cos, P.; Maes, L.; Foubert, K.; Apers, S.; Pieters, L. Antiplasmodial and other constituents from four Indonesian Garcinia spp. Phytochemistry, 2009, 70(7), 907-912.
[http://dx.doi.org/10.1016/j.phytochem.2009.04.024] [PMID: 19481231]
[43]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The national cancer institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[PMID: 1462164]
[44]
Tanamatarayat, P.; Chunsakaow, S.; Duangrat, C. Screening of some rubiaceous plants for cytotoxicity activity against cervix carcinoma (KB-3-1) cell line. J. Pharm. Sci., 2003, 27(3-4), 167-172.
[45]
Nguyen, N.H.; Ta, Q.T.H.; Pham, Q.T.; Luong, T.N.H.; Phung, V.T.; Duong, T.H.; Vo, V.G. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules, 2020, 25(12), 1-16.
[http://dx.doi.org/10.3390/molecules25122912] [PMID: 32599892]
[46]
Dahlman-Wright, K.; Cavailles, V.; Fuqua, S.A.; Jordan, V.C.; Katzenellenbogen, J.A.; Korach, K.S.; Maggi, A.; Muramatsu, M.; Parker, M.G.; Gustafsson, J.A. International union of pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev., 2006, 58(4), 773-781.
[http://dx.doi.org/10.1124/pr.58.4.8] [PMID: 17132854]
[47]
Gross, J.M.; Yee, D. How does the estrogen receptor work? Breast Cancer Res., 2002, 4(2), 62-64.
[http://dx.doi.org/10.1186/bcr424] [PMID: 11879565]
[48]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[49]
Pang, X.; Yi, T.; Yi, Z.; Cho, S.G.; Qu, W.; Pinkaew, D.; Fujise, K.; Liu, M. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res., 2009, 69(2), 518-525.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2531] [PMID: 19147565]
[50]
Dictionary of natural products on DVD, 2007. Version 16:1. Chapman and Hall/CRC
[51]
Gil, B.; Sanz, M.J.; Terencio, M.C.; Gunasegaran, R.; Payá, M.; Alcaraz, M.J. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem. Pharmacol., 1997, 53(5), 733-740.
[http://dx.doi.org/10.1016/S0006-2952(96)00773-3] [PMID: 9113093]
[52]
Gontijo, V.S.; Januario, J.P.; Judice, W.A.S.; Alyne, A.A.; Ingridy, R.C.; Diego, M.A.; Marcelo, H. Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases. J. Med. Plants Res., 2015, 9(13), 426-434.
[http://dx.doi.org/10.5897/JMPR2014.5641]
[53]
Ogunwa, T.H.; Taii, K.; Sadakane, K.; Kawata, Y.; Maruta, S.; Miyanishi, T.; Miyani, T. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5. J. Biochem., 2019, 166(2), 129-137.
[http://dx.doi.org/10.1093/jb/mvz015] [PMID: 30785183]
[54]
Rozmer, Z.; Berki, T.; Perjési, P. Different effects of two cyclic chalcone analogues on cell cycle of Jurkat T cells. Toxicol. In Vitro, 2006, 20(8), 1354-1362.
[http://dx.doi.org/10.1016/j.tiv.2006.05.006] [PMID: 16828254]
[55]
Taher, M.; Aminuddin, A.; Susanti, D.; Aminudin, N.I.; On, S.; Ahmad, F.; Hamidon, H. Cytotoxic, anti-inflammatory and adipogenic effects of inophyllum D, calanone, isocordato-oblongic acid, and morelloflavone on cell lines. Nat. Prod. Sci., 2016, 22(2), 122-128.
[http://dx.doi.org/10.20307/nps.2016.22.2.122]
[56]
Osman, A.M.; Bayoumi, H.M.; Al-Harthi, S.E.; Damanhouri, Z.A.; Elshal, M.F. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell Int., 2012, 12(1), 47-53.
[http://dx.doi.org/10.1186/1475-2867-12-47] [PMID: 23153194]
[57]
Gupta, A.; Chaudhary, N.; Kakularam, K.R.; Pallu, R.; Polamarasetty, A. The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One, 2015, 10(8), e0134472.
[http://dx.doi.org/10.1371/journal.pone.0134472] [PMID: 26305898]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy