Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

(S,R)3-(4-Hydroxyphenyl)-4,5-Dihydro-5-Isoxazole Acetic Acid Methyl Ester Inhibits Epithelial-to-Mesenchymal Transition Through TGF-β/Smad4 Axis in Nasopharyngeal Carcinoma

Author(s): Qibing Chen, Yan Wang, Fen Li, Xiang Cheng, Yu Xiao, Shiming Chen, Bokui Xiao and Zezhang Tao*

Volume 22, Issue 6, 2022

Published on: 05 January, 2022

Page: [1080 - 1090] Pages: 11

DOI: 10.2174/1871520621666210706101442

Price: $65

Abstract

Background: Macrophage migration inhibitory factor (MIF), originally reported as an inflammation regulating molecule, is elevated in various cancer cells, which may promote carcinogenesis. Meanwhile, ISO-1 is a potent small molecular inhibitor of MIF, which has not been investigated in nasopharyngeal carcinoma (NPC), hence the impact of ISO-1 on NPC cells remains to be illustrated.

Objective: This study intended to explore the biological function of ISO-1 in NPC cells in vitro and prove a possibility of ISO-1 being a novel agent in NPC treatments.

Methods: Gene expression of MIF in Head and Neck squamous cell carcinoma was obtained from The Cancer Genome Atlas (TCGA) database. Nasal pharyngeal tissues were collected from adult patients undergoing nasopharyngeal biopsy for MIF level detection. Proliferation of NPC cell lines 5-8B and 6-10B was studied using Cell Counting Kit-8 (CCK-8) assay and plate-colony-formation assay, apoptosis was determined by flow cytometry and TUNEL staining, migration and invasion capacities were measured by wound-healing assay and transwell assay, all to explore the function of ISO-1 in NPC cells in vitro. Epithelial-to-mesenchymal transition (EMT) level of NPC cells was determined by Western blot analysis and immunofluorescence assay.

Results: Transcript level of MIF was significantly higher in head and neck squamous cell carcinoma. Protein MIF was overexpressed in human NPC tissues compared to non-cancerous ones, and its expression could be compromised by ISO-1 in vitro. 100μM ISO-1 significantly hindered NPC cells' migration and invasion capacitiesin vitro but acted relatively poorly on proliferation and apoptosis. Immunofluorescence assay and Western blotting implied a downregulated EMT level through TGF-β/Smad4 axis in ISO-1 treated NPC cells compared to the vehicle.

Conclusion: This study indicated that MIF antagonist ISO-1 holds an impact on NPC progression by influencing the migration and invasion of NPC cells ISO-1 inhibits the EMT process of NPC cells through TGF-β/Smad4 axis, supporting that prudent application of ISO-1 may be a potential adjuvant treatment for NPC.

Keywords: Nasopharyngeal carcinoma, epithelial-to-mesenchymal transition, macrophage migration inhibitory factor, ISO-1, transforming growth factor-β, NPC.

Graphical Abstract

[1]
Cho, W.C. Nasopharyngeal carcinoma: Molecular biomarker discovery and progress. Mol. Cancer, 2007, 6, 1.
[http://dx.doi.org/10.1186/1476-4598-6-1] [PMID: 17199893]
[2]
Tuan, J.K.; Ha, T.C.; Ong, W.S.; Siow, T.R.; Tham, I.W.; Yap, S.P.; Tan, T.W.; Chua, E.T.; Fong, K.W.; Wee, J.T. Late toxicities after conventional radiation therapy alone for nasopharyngeal carcinoma. Radiother. Oncol., 2012, 104(3), 305-311.
[http://dx.doi.org/10.1016/j.radonc.2011.12.028] [PMID: 22280806]
[3]
Bloom, B.R.; Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 1966, 153(3731), 80-82.
[http://dx.doi.org/10.1126/science.153.3731.80] [PMID: 5938421]
[4]
Ding, J.; Wu, W.; Yang, J.; Wu, M. Long non-coding RNA MIF-AS1 promotes breast cancer cell proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis. Pathol. Res. Pract., 2019, 215(7), 152376.
[http://dx.doi.org/10.1016/j.prp.2019.03.005] [PMID: 31097355]
[5]
Zhang, M.; Li, Z.F.; Wang, H.F.; Wang, S.S.; Yu, X.H.; Wu, J.B.; Pang, X.; Wu, J.S.; Yang, X.; Tang, Y.J.; Li, L.; Liang, X.H.; Zheng, M.; Tang, Y.L. MIF promotes perineural invasion through EMT in salivary adenoid cystic carcinoma. Mol. Carcinog., 2019, 58(6), 898-912.
[http://dx.doi.org/10.1002/mc.22979] [PMID: 30667094]
[6]
Jäger, B.; Klatt, D.; Plappert, L.; Golpon, H.; Lienenklaus, S.; Barbosa, P.D.; Schambach, A.; Prasse, A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell. Signal., 2020, 73, 109672.
[http://dx.doi.org/10.1016/j.cellsig.2020.109672] [PMID: 32428553]
[7]
Funamizu, N.; Hu, C.; Lacy, C.; Schetter, A.; Zhang, G.; He, P.; Gaedcke, J.; Ghadimi, M.B.; Ried, T.; Yfantis, H.G.; Lee, D.H.; Subleski, J.; Chan, T.; Weiss, J.M.; Back, T.C.; Yanaga, K.; Hanna, N.; Alexander, H.R.; Maitra, A.; Hussain, S.P. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma. Int. J. Cancer, 2013, 132(4), 785-794.
[http://dx.doi.org/10.1002/ijc.27736] [PMID: 22821831]
[8]
Mamoori, A.; Wahab, R.; Vider, J.; Gopalan, V.; Lam, A.K. The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer. Gene, 2019, 697, 165-174.
[http://dx.doi.org/10.1016/j.gene.2019.02.046] [PMID: 30802541]
[9]
Keshamouni, V.G.; Jagtap, P.; Michailidis, G.; Strahler, J.R.; Kuick, R.; Reka, A.K.; Papoulias, P.; Krishnapuram, R.; Srirangam, A.; Standiford, T.J.; Andrews, P.C.; Omenn, G.S. Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition. J. Proteome Res., 2009, 8(1), 35-47.
[http://dx.doi.org/10.1021/pr8006478] [PMID: 19118450]
[10]
Oliveira, C.S.; de Bock, C.E.; Molloy, T.J.; Sadeqzadeh, E.; Geng, X.Y.; Hersey, P.; Zhang, X.D.; Thorne, R.F. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer, 2014, 14, 630.
[http://dx.doi.org/10.1186/1471-2407-14-630] [PMID: 25168062]
[11]
Lo, M.C.; Yip, T.C.; Ngan, K.C.; Cheng, W.W.; Law, C.K.; Chan, P.S.; Chan, K.C.; Wong, C.K.; Wong, R.N.; Lo, K.W.; Ng, W.T.; Lee, W.M.; Tsao, S.W.; Kwong, L.W.; Lung, M.L.; Mak, N.K. Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Lett., 2013, 335(1), 81-92.
[http://dx.doi.org/10.1016/j.canlet.2013.01.052] [PMID: 23403077]
[12]
Wang, C.; Zhou, X.; Li, W.; Li, M.; Tu, T.; Ba, X.; Wu, Y.; Huang, Z.; Fan, G.; Zhou, G.; Wu, S.; Zhao, J.; Zhang, J.; Chen, J. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. Cancer Lett., 2017, 403, 271-279.
[http://dx.doi.org/10.1016/j.canlet.2017.06.011] [PMID: 28642171]
[13]
Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; Leach, S.D.; Stanger, B.Z. EMT and dissemination precede pancreatic tumor formation. Cell, 2012, 148(1-2), 349-361.
[http://dx.doi.org/10.1016/j.cell.2011.11.025] [PMID: 22265420]
[14]
Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 2014, 20(17), 2934-2947.
[http://dx.doi.org/10.2174/13816128113199990591] [PMID: 23944366]
[15]
Kindt, N.; Preillon, J.; Kaltner, H.; Gabius, H.J.; Chevalier, D.; Rodriguez, A.; Johnson, B.D.; Megalizzi, V.; Decaestecker, C.; Laurent, G.; Saussez, S. Macrophage migration inhibitory factor in head and neck squamous cell carcinoma: Clinical and experimental studies. J. Cancer Res. Clin. Oncol., 2013, 139(5), 727-737.
[http://dx.doi.org/10.1007/s00432-013-1375-7] [PMID: 23354841]
[16]
He, X.X.; Chen, K.; Yang, J.; Li, X.Y.; Gan, H.Y.; Liu, C.Y.; Coleman, T.R.; Al-Abed, Y. Macrophage migration inhibitory factor promotes colorectal cancer. Mol. Med., 2009, 15(1-2), 1-10.
[http://dx.doi.org/10.2119/molmed.2008.00107] [PMID: 19009023]
[17]
Cheng, B.; Wang, Q.; Song, Y.; Liu, Y.; Liu, Y.; Yang, S.; Li, D.; Zhang, Y.; Zhu, C. MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo. Sci. Rep., 2020, 10(1), 6741.
[http://dx.doi.org/10.1038/s41598-020-63778-y] [PMID: 32317702]
[18]
Chen, P.F.; Luo, Y.L.; Wang, W.; Wang, J.X.; Lai, W.Y.; Hu, S.M.; Cheng, K.F.; Al-Abed, Y. ISO-1, a macrophage migration inhibitory factor antagonist, inhibits airway remodeling in a murine model of chronic asthma. Mol. Med., 2010, 16(9-10), 400-408.
[http://dx.doi.org/10.2119/molmed.2009.00128] [PMID: 20485865]
[19]
Pei, X.J.; Wu, T.T.; Li, B.; Tian, X.Y.; Li, Z.; Yang, Q.X. Increased expression of macrophage migration inhibitory factor and DJ-1 contribute to cell invasion and metastasis of nasopharyngeal carcinoma. Int. J. Med. Sci., 2013, 11(1), 106-115.
[http://dx.doi.org/10.7150/ijms.7264] [PMID: 24396292]
[20]
Yang, X.Y.; Ren, C.P.; Wang, L.; Li, H.; Jiang, C.J.; Zhang, H.B.; Zhao, M.; Yao, K.T. Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell. Oncol., 2005, 27(4), 215-223.
[http://dx.doi.org/10.1155/2005/108490] [PMID: 16308470]
[21]
Peng, Z.; Liu, N.; Huang, D.; Duan, C.; Li, Y.; Tang, X.; Mei, W.; Zhu, F.; Tang, F.N. N′-dinitrosopiperazine--mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma. PLoS One, 2013, 8(5), e62908.
[http://dx.doi.org/10.1371/journal.pone.0062908] [PMID: 23667540]
[22]
Kang, M.H.; Das, J.; Gurunathan, S.; Park, H.W.; Song, H.; Park, C.; Kim, J.H. The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: A mechanistic study. Theranostics, 2017, 7(19), 4735-4752.
[http://dx.doi.org/10.7150/thno.21662] [PMID: 29187900]
[23]
Li, H.; Zhou, Y.; Zhao, A.; Qiu, Y.; Xie, G.; Jiang, Q.; Zheng, X.; Zhong, W.; Sun, X.; Zhou, Z.; Jia, W. Asymmetric dimethylarginine attenuates serum starvation-induced apoptosis via suppression of the Fas (APO-1/CD95)/JNK (SAPK) pathway. Cell Death Dis., 2013, 4, e830.
[http://dx.doi.org/10.1038/cddis.2013.345] [PMID: 24091673]
[24]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. Ualcan: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[25]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[26]
Calandra, T.; Roger, T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat. Rev. Immunol., 2003, 3(10), 791-800.
[http://dx.doi.org/10.1038/nri1200] [PMID: 14502271]
[27]
Schulz, R.; Streller, F.; Scheel, A.H.; Rüschoff, J.; Reinert, M.C.; Dobbelstein, M.; Marchenko, N.D.; Moll, U.M. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis., 2014, 5, e980.
[http://dx.doi.org/10.1038/cddis.2013.508] [PMID: 24384723]
[28]
Figueiredo, C.R.; Azevedo, R.A.; Mousdell, S.; Resende-Lara, P.T.; Ireland, L.; Santos, A.; Girola, N.; Cunha, R.L.O.R.; Schmid, M.C.; Polonelli, L.; Travassos, L.R.; Mielgo, A. Blockade of MIF-CD74 signalling on macrophages and dendritic cells restores the antitumour immune response against metastatic melanoma. Front. Immunol., 2018, 9, 1132.
[http://dx.doi.org/10.3389/fimmu.2018.01132] [PMID: 29875777]
[29]
Ghoochani, A.; Schwarz, M.A.; Yakubov, E.; Engelhorn, T.; Doerfler, A.; Buchfelder, M.; Bucala, R.; Savaskan, N.E.; Eyüpoglu, I.Y. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene, 2016, 35(48), 6246-6261.
[http://dx.doi.org/10.1038/onc.2016.160] [PMID: 27157615]
[30]
Kong, F.; Deng, X.; Kong, X.; Du, Y.; Li, L.; Zhu, H.; Wang, Y.; Xie, D.; Guha, S.; Li, Z.; Guan, M.; Xie, K. ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene, 2018, 37(45), 5982-5996.
[http://dx.doi.org/10.1038/s41388-018-0387-9] [PMID: 29985481]
[31]
Subbannayya, T.; Leal-Rojas, P.; Barbhuiya, M.A.; Raja, R.; Renuse, S.; Sathe, G.; Pinto, S.M.; Syed, N.; Nanjappa, V.; Patil, A.H.; Garcia, P.; Sahasrabuddhe, N.A.; Nair, B.; Guerrero-Preston, R.; Navani, S.; Tiwari, P.K.; Santosh, V.; Sidransky, D.; Prasad, T.S.; Gowda, H.; Roa, J.C.; Pandey, A.; Chatterjee, A. Macrophage migration inhibitory factor - a therapeutic target in gallbladder cancer. BMC Cancer, 2015, 15, 843.
[http://dx.doi.org/10.1186/s12885-015-1855-z] [PMID: 26530123]
[32]
Wang, D.; Wang, R.; Huang, A.; Fang, Z.; Wang, K.; He, M.; Xia, J.T.; Li, W. Upregulation of macrophage migration inhibitory factor promotes tumor metastasis and correlates with poor prognosis of pancreatic ductal adenocarcinoma. Oncol. Rep., 2018, 40(5), 2628-2636.
[http://dx.doi.org/10.3892/or.2018.6703] [PMID: 30226561]
[33]
Zhu, G.; Tang, Y.; Geng, N.; Zheng, M.; Jiang, J.; Li, L.; Li, K.; Lei, Z.; Chen, W.; Fan, Y.; Ma, X.; Li, L.; Wang, X.; Liang, X. HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC. Neoplasia, 2014, 16(2), 168-179.
[http://dx.doi.org/10.1593/neo.132034] [PMID: 24709424]
[34]
de Azevedo, R.A.; Shoshan, E.; Whang, S.; Markel, G.; Jaiswal, A.R.; Liu, A.; Curran, M.A.; Travassos, L.R.; Bar-Eli, M. MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma. OncoImmunology, 2020, 9(1)1846915
[http://dx.doi.org/10.1080/2162402X.2020.1846915] [PMID: 33344042]
[35]
Guda, M.R.; Rashid, M.A.; Asuthkar, S.; Jalasutram, A.; Caniglia, J.L.; Tsung, A.J.; Velpula, K.K. Pleiotropic role of macrophage migration inhibitory factor in cancer. Am. J. Cancer Res., 2019, 9(12), 2760-2773.
[PMID: 31911860]
[36]
Fan, X.; Wang, Y.; Song, J.; Wu, H.; Yang, M.; Lu, L.; Weng, X.; Liu, L.; Nie, G. MDM2 inhibitor RG7388 potently inhibits tumors by activating p53 pathway in nasopharyngeal carcinoma. Cancer Biol. Ther., 2019, 20(10), 1328-1336.
[http://dx.doi.org/10.1080/15384047.2019.1638677] [PMID: 31311404]
[37]
Li, L.; Li, Y.; Huang, Y.; Ouyang, Y.; Zhu, Y.; Wang, Y.; Guo, X.; Yuan, Y.; Gong, K. Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4. Cancer Sci., 2018, 109(12), 3714-3725.
[http://dx.doi.org/10.1111/cas.13801] [PMID: 30238562]
[38]
Singh, A.B.; Sharma, A.; Smith, J.J.; Krishnan, M.; Chen, X.; Eschrich, S.; Washington, M.K.; Yeatman, T.J.; Beauchamp, R.D.; Dhawan, P. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology, 2011, 141(6), 2140-2153.
[http://dx.doi.org/10.1053/j.gastro.2011.08.038] [PMID: 21878201]
[39]
Wang, X.; Dong, B.; Zhang, K.; Ji, Z.; Cheng, C.; Zhao, H.; Sheng, Y.; Li, X.; Fan, L.; Xue, W.; Gao, W.Q.; Zhu, H.H. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet., 2018, 14(8)e1007609
[http://dx.doi.org/10.1371/journal.pgen.1007609] [PMID: 30118484]
[40]
Richardson, A.M.; Havel, L.S.; Koyen, A.E.; Konen, J.M.; Shupe, J.; Wiles, W.G., IV; Martin, W.D.; Grossniklaus, H.E.; Sica, G.; Gilbert-Ross, M.; Marcus, A.I. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin. Cancer Res., 2018, 24(2), 420-432.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1776] [PMID: 29208669]
[41]
Yang, Y.; Xi, L.; Ma, Y.; Zhu, X.; Chen, R.; Luan, L.; Yan, J.; An, R. The lncRNA small nucleolar RNA host gene 5 regulates trophoblast cell proliferation, invasion, and migration via modulating miR-26a-5p/N-cadherin axis. J. Cell. Biochem., 2019, 120(3), 3173-3184.
[http://dx.doi.org/10.1002/jcb.27583] [PMID: 30242892]
[42]
Zhang, C.; Hao, Y.; Wang, Y.; Xu, J.; Teng, Y.; Yang, X. TGF-β/SMAD4-regulated LncRNA-LINP1 inhibits epithelial-mesenchymal transition in lung cancer. Int. J. Biol. Sci., 2018, 14(12), 1715-1723.
[http://dx.doi.org/10.7150/ijbs.27197] [PMID: 30416386]
[43]
Huang, G.; Du, M.Y.; Zhu, H.; Zhang, N.; Lu, Z.W.; Qian, L.X.; Zhang, W.; Tian, X.; He, X.; Yin, L. MiRNA-34a reversed TGF-β-induced epithelial-mesenchymal transition via suppression of SMAD4 in NPC cells. Biomed. Pharmacother., 2018, 106, 217-224.
[http://dx.doi.org/10.1016/j.biopha.2018.06.115] [PMID: 29960168]
[44]
Leung, J.C.; Chan, L.Y.; Tsang, A.W.; Liu, E.W.; Lam, M.F.; Tang, S.C.; Lai, K.N. Anti-macrophage migration inhibitory factor reduces transforming growth factor-beta 1 expression in experimental IgA nephropathy. Nephrol. Dial. Transplant., 2004, 19(8), 1976-1985.
[http://dx.doi.org/10.1093/ndt/gfh323] [PMID: 15187193]
[45]
Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; Xiang, J.; Zhang, T.; Theilen, T.M.; García-Santos, G.; Williams, C.; Ararso, Y.; Huang, Y.; Rodrigues, G.; Shen, T.L.; Labori, K.J.; Lothe, I.M.; Kure, E.H.; Hernandez, J.; Doussot, A.; Ebbesen, S.H.; Grandgenett, P.M.; Hollingsworth, M.A.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Schwartz, R.E.; Matei, I.; Peinado, H.; Stanger, B.Z.; Bromberg, J.; Lyden, D. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol., 2015, 17(6), 816-826.
[http://dx.doi.org/10.1038/ncb3169] [PMID: 25985394]
[46]
Van der Jeught, K.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol., 2018, 24(34), 3834-3848.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[47]
Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K.B. Epigenetic therapy for ovarian cancer: promise and progress. Clin. Epigenetics, 2019, 11(1), 7.
[http://dx.doi.org/10.1186/s13148-018-0602-0] [PMID: 30646939]
[48]
Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[49]
Caudell, J.J.; Torres-Roca, J.F.; Gillies, R.J.; Enderling, H.; Kim, S.; Rishi, A.; Moros, E.G.; Harrison, L.B. The future of personalised radiotherapy for head and neck cancer. Lancet Oncol., 2017, 18(5), e266-e273.
[http://dx.doi.org/10.1016/S1470-2045(17)30252-8] [PMID: 28456586]
[50]
Zheng, Y.X.; Yang, M.; Rong, T.T.; Yuan, X.L.; Ma, Y.H.; Wang, Z.H.; Shen, L.S.; Cui, L. CD74 and macrophage migration inhibitory factor as therapeutic targets in gastric cancer. World J. Gastroenterol., 2012, 18(18), 2253-2261.
[http://dx.doi.org/10.3748/wjg.v18.i18.2253] [PMID: 22611320]
[51]
Jacquelot, N.; Yamazaki, T.; Roberti, M.P.; Duong, C.P.M.; Andrews, M.C.; Verlingue, L.; Ferrere, G.; Becharef, S.; Vétizou, M.; Daillère, R.; Messaoudene, M.; Enot, D.P.; Stoll, G.; Ugel, S.; Marigo, I.; Foong Ngiow, S.; Marabelle, A.; Prevost-Blondel, A.; Gaudreau, P.O.; Gopalakrishnan, V.; Eggermont, A.M.; Opolon, P.; Klein, C.; Madonna, G.; Ascierto, P.A.; Sucker, A.; Schadendorf, D.; Smyth, M.J.; Soria, J.C.; Kroemer, G.; Bronte, V.; Wargo, J.; Zitvogel, L. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res., 2019, 29(10), 846-861.
[http://dx.doi.org/10.1038/s41422-019-0224-x] [PMID: 31481761]
[52]
Song, Y.; Sun, Y.; Lei, Y.; Yang, K.; Tang, R. YAP1 promotes multidrug resistance of small cell lung cancer by CD74-related signaling pathways. Cancer Med., 2020, 9(1), 259-268.
[http://dx.doi.org/10.1002/cam4.2668] [PMID: 31692299]
[53]
Kim, B.; Kusibati, R.; Heisler-Taylor, T.; Mantopoulos, D.; Ding, J.; Abdel-Rahman, M.H.; Satoskar, A.R.; Godbout, J.P.; Bhattacharya, S.K.; Cebulla, C.M. MIF inhibitor ISO-1 protects photoreceptors and reduces gliosis in experimental retinal detachment. Sci. Rep., 2017, 7(1), 14336.
[http://dx.doi.org/10.1038/s41598-017-14298-9] [PMID: 29084983]
[54]
Denz, A.; Pilarsky, C.; Muth, D.; Rückert, F.; Saeger, H.D.; Grützmann, R. Inhibition of MIF leads to cell cycle arrest and apoptosis in pancreatic cancer cells. J. Surg. Res., 2010, 160(1), 29-34.
[http://dx.doi.org/10.1016/j.jss.2009.03.048] [PMID: 19726058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy