Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics

Author(s): Rui Wang, Lufang Wang, Yihan Chen, Yuji Xie, Mengrong He, Ye Zhu, Lingling Xu, Zhengyang Han, Dandan Chen, Qiaofeng Jin*, Li Zhang* and Mingxing Xie*

Volume 29, Issue 8, 2022

Published on: 05 July, 2021

Page: [1316 - 1330] Pages: 15

DOI: 10.2174/0929867328666210705145642

Price: $65

Abstract

Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable and low-cost merits, but also a promising targeted drug/gene delivery technique by producing a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, which present some unique characteristics beyond the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agent with innovative imaging methods such as cross-amplitude modulation harmonic imaging, but also can further be adjusted and optimized via genetic engineered techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carrier for therapeutic purpose. We focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also give a brief introduction to the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve making more efforts to promote their development.

Keywords: Ultrasound imaging, gas vesicles, acoustic reporter gene, genetic engineering, cavitation, drug delivery.

[1]
Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov., 2005, 4(3), 255-260.
[http://dx.doi.org/10.1038/nrd1662] [PMID: 15738980]
[2]
Liu, J.; Levine, A.L.; Mattoon, J.S.; Yamaguchi, M.; Lee, R.J.; Pan, X.; Rosol, T.J. Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol., 2006, 51(9), 2179-2189.
[http://dx.doi.org/10.1088/0031-9155/51/9/004] [PMID: 16625034]
[3]
Mulvagh, S.L.; DeMaria, A.N.; Feinstein, S.B.; Burns, P.N.; Kaul, S.; Miller, J.G.; Monaghan, M.; Porter, T.R.; Shaw, L.J.; Villanueva, F.S. Contrast echocardiography: Current and future applications. J. Am. Soc. Echocardiogr., 2000, 13(4), 331-342.
[http://dx.doi.org/10.1067/mje.2000.105462] [PMID: 10756254]
[4]
Gao, Z.; Kennedy, A.M.; Christensen, D.A.; Rapoport, N.Y. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 2008, 48(4), 260-270.
[http://dx.doi.org/10.1016/j.ultras.2007.11.002] [PMID: 18096196]
[5]
Nahire, R.; Haldar, M.K.; Paul, S.; Mergoum, A.; Ambre, A.H.; Katti, K.S.; Gange, K.N.; Srivastava, D.K.; Sarkar, K.; Mallik, S. Polymer-coated echogenic lipid nanoparticles with dual release triggers. Biomacromolecules, 2013, 14(3), 841-853.
[http://dx.doi.org/10.1021/bm301894z] [PMID: 23394107]
[6]
Paul, S.; Nahire, R.; Mallik, S.; Sarkar, K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Comput. Mech., 2014, 53(3), 413-435.
[http://dx.doi.org/10.1007/s00466-013-0962-4] [PMID: 26097272]
[7]
Blaurock, A.E.; Wober, W. Structure of the wall of Halobacterium halobium gas vesicles. J. Mol. Biol., 1976, 106(3), 871-878.
[http://dx.doi.org/10.1016/0022-2836(76)90270-9] [PMID: 978738]
[8]
Walsby, A.E. Gas vesicles. Microbiol. Rev., 1994, 58(1), 94-144.
[http://dx.doi.org/10.1128/MR.58.1.94-144.1994] [PMID: 8177173]
[9]
Klebahn, H. Gasvakuolen, ein Bastendteil der Zellen der wasserblutenbildenden Phycochromaceen.Flora oder Allgemeine Botanische Zeitung, 1895, 80, 241-82.Available at:. https://www.zobodat.at/pdf/Flora_80_0241-0282.pdf
[10]
Bowen, C.C.; Jensen, T.E. Blue-green algae. Science, 1965, 147(3664), 1460-1462.
[http://dx.doi.org/10.1126/science.147.3664.1460] [PMID: 17776627]
[11]
Gosink, J.J.; Herwig, R.P.; Staley, J.T. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst. Appl. Microbiol., 1997, 20(3), 356-365.
[http://dx.doi.org/10.1016/S0723-2020(97)80003-3]
[12]
Ramsay, J. P.; Williamson, N. R.; Spring, D. R.; Salmond, G. P. C. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium., 2011, 108(36), 14932-14937.
[http://dx.doi.org/10.1073/pnas.1109169108]
[13]
Li, N.; Cannon, M.C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol., 1998, 180(9), 2450-2458.
[http://dx.doi.org/10.1128/JB.180.9.2450-2458.1998] [PMID: 9573198]
[14]
Huang, R.; Lin, J.; Gao, D.; Zhang, F.; Yi, L.; Huang, Y.; Yan, X.; Duan, Y.; Zhu, X. Discovery of gas vesicles in Streptomyces sp. CB03234-S and potential effects of gas vesicle gene overexpression on morphological and metabolic changes in streptomycetes. Appl. Microbiol. Biotechnol., 2019, 103(14), 5751-5761.
[http://dx.doi.org/10.1007/s00253-019-09891-z] [PMID: 31115635]
[15]
Houwink, A.L. Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J. Gen. Microbiol., 1956, 15(1), 146-150.
[http://dx.doi.org/10.1099/00221287-15-1-146] [PMID: 13357722]
[16]
Englert, C.; Horne, M.; Pfeifer, F. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet., 1990, 222(2-3), 225-232.
[http://dx.doi.org/10.1007/BF00633822] [PMID: 1703266]
[17]
Walsby, A.E. A square bacterium. Nature, 1980, 283(5742), 69-71.
[http://dx.doi.org/10.1038/283069a0]
[18]
Tashiro, Y.; Monson, R.E.; Ramsay, J.P.; Salmond, G.P.C. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria. Environ. Microbiol., 2016, 18(4), 1264-1276.
[http://dx.doi.org/10.1111/1462-2920.13203] [PMID: 26743231]
[19]
Walsby, A.E. The mechanical properties of the Microcystis gas vesicle. J. Gen. Microbiol., 1991, 137(10), 2401-2408.
[http://dx.doi.org/10.1099/00221287-137-10-2401]
[20]
Lakshmanan, A.; Lu, G.J.; Farhadi, A.; Nety, S.P.; Kunth, M.; Lee-Gosselin, A.; Maresca, D.; Bourdeau, R.W.; Yin, M.; Yan, J.; Witte, C.; Malounda, D.; Foster, F.S.; Schröder, L.; Shapiro, M.G. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc., 2017, 12(10), 2050-2080.
[http://dx.doi.org/10.1038/nprot.2017.081] [PMID: 28880278]
[21]
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol., 2012, 10(10), 705-715.
[http://dx.doi.org/10.1038/nrmicro2834] [PMID: 22941504]
[22]
Hill, A.M.; Salmond, G.P.C. Microbial gas vesicles as nanotechnology tools: Exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment. Microbiology (Reading), 2020, 166(6), 501-509.
[http://dx.doi.org/10.1099/mic.0.000912] [PMID: 32324529]
[23]
Cai, K.; Xu, B.Y.; Jiang, Y.L.; Wang, Y.; Chen, Y.; Zhou, C.Z.; Li, Q. The model cyanobacteria Anabaena sp. PCC 7120 possess an intact but partially degenerated gene cluster encoding gas vesicles. BMC Microbiol., 2020, 20(1), 110.
[http://dx.doi.org/10.1186/s12866-020-01805-8] [PMID: 32375647]
[24]
Leclercq, D.J.J.; Hobson, C.Q.H. P.; Dickson, S.; Zander M. Burch, A.C. Controlling cyanobacteria with ultrasound. Inter-noise and noise-con congress and conference proceedings, 2014, pp. 4457-4466.
[25]
Belenky, M.; Meyers, R.; Herzfeld, J. Subunit structure of gas vesicles: a MALDI-TOF mass spectrometry study. Biophys. J., 2004, 86(1 Pt 1), 499-505.
[http://dx.doi.org/10.1016/S0006-3495(04)74128-4] [PMID: 14695294]
[26]
R. D. WIFFEN, M. J. H. Isolation and purification of intact gas vesicles from a blue-green alga.. 1969, 224, 716-717.
[27]
Sonja Offner, U.Z. Gerhard, Wanner; Dieter, Typke; Felicitas, Pfeiferl Structural characteristics of halobacterial gas vesicles. Microbiology, 1998, 144, 1331-1342.
[http://dx.doi.org/10.1099/00221287-144-5-1331]
[28]
Shapiro, M.G.; Goodwill, P.W.; Neogy, A.; Yin, M.; Foster, F.S.; Schaffer, D.V.; Conolly, S.M. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol., 2014, 9(4), 311-316.
[http://dx.doi.org/10.1038/nnano.2014.32] [PMID: 24633522]
[29]
Timbie, K.F.; Mead, B.P.; Price, R.J. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J. Control. Release, 2015, 219, 61-75.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.059] [PMID: 26362698]
[30]
Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng., 2007, 9, 415-447.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095852] [PMID: 17651012]
[31]
Qin, S.; Ferrara, K.W. Acoustic response of compliable microvessels containing ultrasound contrast agents. Phys. Med. Biol., 2006, 51(20), 5065-5088.
[http://dx.doi.org/10.1088/0031-9155/51/20/001] [PMID: 17019026]
[32]
Walsby, A.E. The pressure relationships of gas vacuoles. Proc. R. Soc. Lond. B Biol. Sci., 1971, 178(1052), 301-326.
[http://dx.doi.org/10.1098/rspb.1971.0067]
[33]
Cherin, E.; Melis, J.M.; Bourdeau, R.W.; Yin, M.; Kochmann, D.M.; Foster, F.S.; Shapiro, M.G. Acoustic behavior of halobacterium salinarum gas vesicles in the high-frequency range: Experiments and modeling. Ultrasound Med. Biol., 2017, 43(5), 1016-1030.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.12.020] [PMID: 28258771]
[34]
Lakshmanan, A.; Farhadi, A.; Nety, S.P.; Lee-Gosselin, A.; Bourdeau, R.W.; Maresca, D.; Shapiro, M.G. Molecular engineering of acoustic protein nanostructures. ACS Nano, 2016, 10(8), 7314-7322.
[http://dx.doi.org/10.1021/acsnano.6b03364] [PMID: 27351374]
[35]
Vliegenthart, G.A.; Gompper, G. Compression, crumpling and collapse of spherical shells and capsules. New J. Phys., 2011, 13, 045020.
[http://dx.doi.org/10.1088/1367-2630/13/4/045020]]
[36]
Maresca, D.; Lakshmanan, A.; Lee-Gosselin, A.; Melis, J.M.; Ni, Y.L.; Bourdeau, R.W.; Kochmann, D.M.; Shapiro, M.G. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl. Phys. Lett., 2017, 110(7), 073704.
[http://dx.doi.org/10.1063/1.4976105] [PMID: 28289314]
[37]
Maresca, D.; Sawyer, D.P.; Renaud, G.; Lee-Gosselin, A.; Shapiro, M.G. Nonlinear x-wave ultrasound imaging of acoustic biomolecules. Phys. Rev. X, 2018, 8, 041002.
[http://dx.doi.org/10.1103/PhysRevX.8.041002]
[38]
Wang, G.; Song, L.; Hou, X.; Kala, S.; Wong, K.F.; Tang, L.; Dai, Y.; Sun, L. Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials, 2020, 236, 119803.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119803] [PMID: 32028170]
[39]
Bourdeau, R.W.; Lee-Gosselin, A.; Lakshmanan, A.; Farhadi, A.; Kumar, S.R.; Nety, S.P.; Shapiro, M.G. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature, 2018, 553(7686), 86-90.
[http://dx.doi.org/10.1038/nature25021] [PMID: 29300010]
[40]
Farhadi, A.; Ho, G.H.; Sawyer, D.P.; Bourdeau, R.W.; Shapiro, M.G. Ultrasound imaging of gene expression in mammalian cells. Science, 2019, 365(6460), 1469-1475.
[http://dx.doi.org/10.1126/science.aax4804] [PMID: 31604277]
[41]
Hayes, P.K.; Buchholz, B.; Walsby, A.E. Gas vesicles are strengthened by the outer-surface protein. GvpC. Arch. Microbiol., 1992, 157(3), 229-234.
[http://dx.doi.org/10.1007/BF00245155] [PMID: 1510555]
[42]
Kinsman, R.; Walsby, A.E.; Hayes, P.K. GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol. Microbiol., 1995, 17(1), 147-154.
[http://dx.doi.org/10.1111/j.1365-2958.1995.mmi17010147.x] [PMID: 7476201]
[43]
Tsien, R.Y. Imagining imaging’s future. Nat. Rev. Mol. Cell Biol., 2003, SS16-SS21.
[PMID: 14587522]
[44]
Ozbakir, H.F.; Anderson, N.T.; Fan, K.C.; Mukherjee, A. Beyond the green fluorescent protein: Biomolecular reporters for anaerobic and deep-tissue imaging. Bioconjug. Chem., 2020, 31(2), 293-302.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00688] [PMID: 31794658]
[45]
Heim, R.; Prasher, D.C.; Tsien, R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA, 1994, 91(26), 12501-12504.
[http://dx.doi.org/10.1073/pnas.91.26.12501] [PMID: 7809066]
[46]
Mukherjee, A.; Walker, J.; Weyant, K.B.; Schroeder, C.M. Characterization of flavin-based fluorescent proteins: An emerging class of fluorescent reporters. PLoS One, 2013, 8(5), e64753.
[http://dx.doi.org/10.1371/journal.pone.0064753] [PMID: 23741385]
[47]
Chia, H.E.; Marsh, E.N.G.; Biteen, J.S. Extending fluorescence microscopy into anaerobic environments. Curr. Opin. Chem. Biol., 2019, 51, 98-104.
[http://dx.doi.org/10.1016/j.cbpa.2019.05.008] [PMID: 31252372]
[48]
Lakshmanan, A.; Jin, Z.; Nety, S.P.; Sawyer, D.P.; Lee-Gosselin, A.; Malounda, D.; Swift, M.B.; Maresca, D.; Shapiro, M.G. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat. Chem. Biol., 2020, 16(9), 988-996.
[http://dx.doi.org/10.1038/s41589-020-0591-0] [PMID: 32661379]
[49]
Le Floc’h, J.; Zlitni, A.; Bilton, H.A.; Yin, M.; Farhadi, A.; Janzen, N.R.; Shapiro, M.G.; Valliant, J.F.; Foster, F.S. In vivo biodistribution of radiolabeled acoustic protein nanostructures. Mol. Imaging Biol., 2018, 20(2), 230-239.
[http://dx.doi.org/10.1007/s11307-017-1122-6] [PMID: 28956265]
[50]
Maresca, D.; Payen, T.; Lee-Gosselin, A.; Ling, B.; Malounda, D.; Demené, C.; Tanter, M.; Shapiro, M.G. Acoustic biomolecules enhance hemodynamic functional ultrasound imaging of neural activity. Neuroimage, 2020, 209, 116467.
[http://dx.doi.org/10.1016/j.neuroimage.2019.116467] [PMID: 31846757]
[51]
Ling, B.; Lee, J.; Maresca, D.; Lee-Gosselin, A.; Malounda, D.; Swift, M.B.; Shapiro, M.G. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano, 2020, 14(9), 12210-12221.
[http://dx.doi.org/10.1021/acsnano.0c05912] [PMID: 32902951]
[52]
Lu, G.J.; Farhadi, A.; Szablowski, J.O.; Lee-Gosselin, A.; Barnes, S.R.; Lakshmanan, A.; Bourdeau, R.W.; Shapiro, M.G. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater., 2018, 17(5), 456-463.
[http://dx.doi.org/10.1038/s41563-018-0023-7] [PMID: 29483636]
[53]
Bar-Zion, A.; Nourmahnad, A.; Mittelstein, D. R.; Yoo, S.; Malounda, D.; Abedi, M.; Lee-Gosselin, A.; Maresca, D.; Shapiro, M. G. Acoustically detonated biomolecules for genetically encodable inertial cavitation., 2019.62019.567..
[http://dx.doi.org/10.1101/620567]
[54]
Tayier, B.; Deng, Z.; Wang, Y.; Wang, W.; Mu, Y.; Yan, F. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. Nanoscale, 2019, 11(31), 14757-14768.
[http://dx.doi.org/10.1039/C9NR03402A] [PMID: 31348476]
[55]
Song, L.; Wang, G.; Hou, X.; Kala, S.; Qiu, Z.; Wong, K.F.; Cao, F.; Sun, L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater., 2020, 108, 313-325.
[http://dx.doi.org/10.1016/j.actbio.2020.03.034] [PMID: 32268236]
[56]
Fernando, A.; Gariépy, J. Coupling chlorin e6 to the surface of nanoscale gas vesicles strongly enhance their intracellular delivery and photodynamic killing of cancer cells. Sci. Rep., 2020, 10(1), 2802.
[http://dx.doi.org/10.1038/s41598-020-59584-1] [PMID: 32071325]
[57]
Richard, D.E.; Berra, E.; Pouysségur, J. Angiogenesis: How a tumor adapts to hypoxia. Biochem. Biophys. Res. Commun., 1999, 266(3), 718-722.
[http://dx.doi.org/10.1006/bbrc.1999.1889] [PMID: 10603309]
[58]
Rockwell, S.; Dobrucki, I.T.; Kim, E.Y.; Marrison, S.T.; Vu, V.T. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr. Mol. Med., 2009, 9(4), 442-458.
[http://dx.doi.org/10.2174/156652409788167087] [PMID: 19519402]
[59]
Postema, M.; Bouakaz, A.; ten Cate, F.J.; Schmitz, G.; de Jong, N.; van Wamel, A. Nitric oxide delivery by ultrasonic cracking: Some limitations. Ultrasonics, 2006, 44(Suppl. 1), e109-e113.
[http://dx.doi.org/10.1016/j.ultras.2006.06.003] [PMID: 16889810]
[60]
Maresca, D.; Lakshmanan, A.; Abedi, M.; Bar-Zion, A.; Farhadi, A.; Lu, G.J.; Szablowski, J.O.; Wu, D.; Yoo, S.; Shapiro, M.G. Biomolecular ultrasound and sonogenetics. Annu. Rev. Chem. Biomol. Eng., 2018, 9, 229-252.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084034] [PMID: 29579400]
[61]
Yu, J.; Chen, Z.; Yan, F. Advances in mechanism studies on ultrasonic gene delivery at cellular level. Prog. Biophys. Mol. Biol., 2019, 142, 1-9.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.07.012] [PMID: 30031881]
[62]
Katsuro Tachibana, T. U. Koichi, Ogawa; Nobuya, Yamashita; Kazuo, Tamura Induction of cell-membrane porosity by ultrasound. The lancet, 1999, 353(1999), 1049.
[63]
Duvshani-Eshet, M.; Haber, T.; Machluf, M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: Increasing cell membrane permeability or interfering with intracellular pathways? Hum. Gene Ther., 2014, 25(2), 156-164.
[http://dx.doi.org/10.1089/hum.2013.140] [PMID: 24251908]
[64]
Helfield, B.; Chen, X.; Watkins, S.C.; Villanueva, F.S. Biophysical insight into mechanisms of sonoporation. Proc. Natl. Acad. Sci. USA, 2016, 113(36), 9983-9988.
[http://dx.doi.org/10.1073/pnas.1606915113] [PMID: 27551081]
[65]
Furusawa, Y.; Hassan, M.A.; Zhao, Q.L.; Ogawa, R.; Tabuchi, Y.; Kondo, T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason. Sonochem., 2014, 21(6), 2061-2068.
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.028] [PMID: 24657073]
[66]
Guzmán, H.R.; McNamara, A.J.; Nguyen, D.X.; Prausnitz, M.R. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: A unified explanation based on cell-to-bubble ratio and blast radius. Ultrasound Med. Biol., 2003, 29(8), 1211-1222.
[http://dx.doi.org/10.1016/S0301-5629(03)00899-8] [PMID: 12946524]
[67]
Qin, P.; Han, T.; Yu, A.C.H.; Xu, L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J. Control. Release, 2018, 272, 169-181.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.001] [PMID: 29305924]
[68]
Waschke, J.; Curry, F.E.; Adamson, R.H.; Drenckhahn, D. Regulation of actin dynamics is critical for endothelial barrier functions. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(3), H1296-H1305.
[http://dx.doi.org/10.1152/ajpheart.00687.2004] [PMID: 15528228]
[69]
Vercauteren, D.; Vandenbroucke, R.E.; Jones, A.T.; Rejman, J.; Demeester, J.; De Smedt, S.C.; Sanders, N.N.; Braeckmans, K. The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol. Ther., 2010, 18(3), 561-569.
[http://dx.doi.org/10.1038/mt.2009.281] [PMID: 20010917]
[70]
Meijering, B.D.; Juffermans, L.J.; van Wamel, A.; Henning, R.H.; Zuhorn, I.S.; Emmer, M.; Versteilen, A.M.; Paulus, W.J.; van Gilst, W.H.; Kooiman, K.; de Jong, N.; Musters, R.J.; Deelman, L.E.; Kamp, O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res., 2009, 104(5), 679-687.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.183806] [PMID: 19168443]
[71]
Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, 377(Pt 1), 159-169.
[http://dx.doi.org/10.1042/bj20031253] [PMID: 14505488]
[72]
Hynynen, K.; McDannold, N.; Vykhodtseva, N.; Jolesz, F.A. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology, 2001, 220(3), 640-646.
[http://dx.doi.org/10.1148/radiol.2202001804] [PMID: 11526261]
[73]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.; Libutti, S.K.; Li, K.C.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2443] [PMID: 17473205]
[74]
Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release, 2009, 138(3), 268-276.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[75]
Aw, M.S.; Paniwnyk, L.; Overcoming, T. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater. Sci., 2017, 5(10), 1944-1961.
[http://dx.doi.org/10.1039/C7BM00425G] [PMID: 28776612]
[76]
Zhang, S.; Huang, A.; Bar‐Zion, A.; Wang, J.; Mena, O.V.; Shapiro, M.G.; Friend, J. The vibration behavior of sub‐micrometer gas vesicles in response to acoustic excitation determined via laser doppler vibrometry. Adv. Funct. Mater., 2020, 30(13), 2000239.
[http://dx.doi.org/10.1002/adfm.202000239]
[77]
Rayleigh, L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci., 2009, 34(200), 94-98.
[http://dx.doi.org/10.1080/14786440808635681]
[78]
Lo, C.W.; Desjouy, C.; Chen, S.R.; Lee, J.L.; Inserra, C.; Béra, J.C.; Chen, W.S. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation. Ultrason. Sonochem., 2014, 21(2), 833-839.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.017] [PMID: 24216067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy