Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanotechnology-based Approaches and Investigational Therapeutics against COVID-19

Author(s): Md. Mominur Rahman, Muniruddin Ahmed, Mohammad Touhidul Islam, Md. Robin Khan, Sharifa Sultana, Saila Kabir Maeesa, Sakib Hasan, Md. Abid Hossain, Kazi Sayma Ferdous, Bijo Mathew, Abdur Rauf and Md. Sahab Uddin*

Volume 28, Issue 12, 2022

Published on: 04 March, 2022

Page: [948 - 968] Pages: 21

DOI: 10.2174/1381612827666210701150315

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the current global pandemic, which first emerged in December 2019. This coronavirus has affected 217 countries worldwide, most of which have enacted non-remedial preventive measures, such as nationwide lockdowns, work from home, travel bans, and social isolation. Pharmacists, doctors, nurses, technologists, and other healthcare professionals have played pivotal roles during this pandemic. Unfortunately, confirmed drugs have not been identified for the treatment of patients with coronavirus disease 2019 (COVID-19) caused by SARSCoV2; however, favipiravir and remdesivir have been reported as promising antiviral drugs. Some vaccines have already been developed, and vaccination is ongoing globally. Various nanotechnologies are currently being developed in many countries for preventing SARS-CoV-2 spread and treating COVID-19 infections. In this article, we present an overview of the COVID-19 pandemic situation and discuss nanotechnology-based approaches and investigational therapeutics for COVID-19.

Keywords: COVID-19, SARS-COV-2, antiviral drugs, nanotechnology, vaccines, immunomodulation.

[1]
Hasana S, Hossain MF, Jalouli M, et al. Genetic diversity of sars-cov2 and environmental settings: Possible association with neurological disorders. Mol Neurobiol 2021; 58(5): 1917-31.
[http://dx.doi.org/10.1007/s12035-020-02239-z] [PMID: 33404977]
[2]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[3]
Kumar R, Srivastava JK, Singh R, et al. Available compounds with therapeutic potential against COVID-19: Antimicrobial therapies, supportive care, and probable vaccines. Front Pharmacol 2020; 11: 582025.
[http://dx.doi.org/10.3389/fphar.2020.582025] [PMID: 33123014]
[4]
Zalinger ZB, Elliott R, Weiss SR. Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol 2017; 23(6): 845-54.
[http://dx.doi.org/10.1007/s13365-017-0574-4] [PMID: 28895072]
[5]
Qaseem A, Etxeandia-Ikobaltzeta I, Yost J, et al. Use of N95, surgical, and cloth masks to prevent COVID-19 in health care and community settings: Living practice points from the American college of physicians (version 1). Ann Intern Med 2020; 173(8): 642-9.
[http://dx.doi.org/10.7326/M20-3234] [PMID: 32551813]
[6]
Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA 2020; 117(22): 11875-7.
[http://dx.doi.org/10.1073/pnas.2006874117] [PMID: 32404416]
[7]
Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med 2020; 26(4): 459-61.
[http://dx.doi.org/10.1038/s41591-020-0824-5] [PMID: 32284618]
[8]
Shahriar S, Rana MS, Hossain MS, et al. COVID-19: Epidemiology, pathology, diagnosis, treatment, and impact. Curr Pharm Des 2021; 27(33): 3502-25.
[http://dx.doi.org/10.2174/1381612827666210224142446] [PMID: 33655825]
[9]
Coronavirus Update (Live). 126,727,456 cases and 2,780,162 deaths from COVID-19 virus pandemic - worldometer. Available from: https://www.worldometers.info/coronavirus/ (accessed on 2021).
[10]
Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. J Biomol Struct Dyn 2021; 39(9): 3263-76.
[http://dx.doi.org/10.1080/07391102.2020.1763199] [PMID: 32362217]
[11]
Song Z, Hu Y, Zheng S, Yang L, Zhao R. Hospital pharmacists’ pharmaceutical care for hospitalized patients with COVID-19: Recommendations and guidance from clinical experience. Res Social Adm Pharm 2021; 17(1): 2027-31.
[http://dx.doi.org/10.1016/j.sapharm.2020.03.027] [PMID: 32273253]
[12]
Lin K, Yee-Tak Fong D, Zhu B, Karlberg J. Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection. Epidemiol Infect 2006; 134(2): 223-30.
[http://dx.doi.org/10.1017/S0950268805005054] [PMID: 16490124]
[13]
Shams SA, Haleem A, Javaid M. Analyzing COVID-19 pandemic for unequal distribution of tests, identified cases, deaths, and fatality rates in the top 18 countries. Diabetes Metab Syndr 2020; 14(5): 953-61.
[http://dx.doi.org/10.1016/j.dsx.2020.06.051] [PMID: 32604014]
[14]
CDC. COVID-19 employer information for office buildings Develop hazard controls using the hierarchy of controls to reduce transmission among workers Include a combination of controls noted below 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/office-buildings.html
[15]
Abbas SN, Naushad A. Covid-19 pandemic: A remedial measure through convalescent serum. Int J Innov Sci Technol 2020; 2(2): 46-50.
[16]
Lawand NM, Al Tabbah S. Coronavirus disease 2019 (COVID-19). Prevention and disinfection 2020.
[17]
UNESCO. COVID-19 Educational Disruption and Response. 2020. Available from: https://en.unesco.org/news/covid-19-educational-disruption-and-response
[18]
Valdiglesias V, Laffon B. The impact of nanotechnology in the current universal COVID-19 crisis. Let’s not forget nanosafety! Nanotoxicology 2020; 14(8): 1013-6.
[http://dx.doi.org/10.1080/17435390.2020.1780332] [PMID: 32552140]
[19]
Goldsmith CS, Tatti KM, Ksiazek TG, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis 2004; 10(2): 320-6.
[http://dx.doi.org/10.3201/eid1002.030913] [PMID: 15030705]
[20]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[21]
de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 2013; 87(14): 7790-2.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[22]
Chang CK, Hou M-H, Chang C-F, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res 2014; 103: 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[23]
Timani KA, Ye L, Ye L, Zhu Y, Wu Z, Gong Z. Cloning, sequencing, expression, and purification of SARS-associated coronavirus nucleocapsid protein for serodiagnosis of SARS. J Clin Virol 2004; 30(4): 309-12.
[http://dx.doi.org/10.1016/j.jcv.2004.01.001] [PMID: 15163419]
[24]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[25]
Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10(12)(Suppl.): S88-97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[26]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[27]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[28]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[29]
Wang H, Yang P, Liu K, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008; 18(2): 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[30]
Novak JE, Kirkegaard K. Coupling between genome translation and replication in an RNA virus. Genes Dev 1994; 8(14): 1726-37.
[http://dx.doi.org/10.1101/gad.8.14.1726] [PMID: 7958852]
[31]
Taanman J-W. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999; 1410(2): 103-23.
[http://dx.doi.org/10.1016/S0005-2728(98)00161-3] [PMID: 10076021]
[32]
Tijms MA, van Dinten LC, Gorbalenya AE, Snijder EJ. A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci USA 2001; 98(4): 1889-94.
[http://dx.doi.org/10.1073/pnas.98.4.1889] [PMID: 11172046]
[33]
Liu T, Hu J, Xiao J, et al. Time-varying transmission dynamics of novel coronavirus pneumonia in china. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.25.919787]
[34]
Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2003; 100(7): 3889-94.
[http://dx.doi.org/10.1073/pnas.0635171100] [PMID: 12660367]
[35]
Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250: 117583.
[http://dx.doi.org/10.1016/j.lfs.2020.117583] [PMID: 32217117]
[36]
Chan JF-W, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (covid-19) in golden Syrian hamster model: Implications for disease pathogenesis and transmissibility. Clin Infect Dis 2020; 71(9): 2428-46.
[http://dx.doi.org/10.1093/cid/ciaa325] [PMID: 32215622]
[37]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[38]
Chu H, Chan JF-W, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; 71(6): 1400-9.
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[39]
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383(2): 120-8.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[40]
Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020; 27(5): 1451-4.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[41]
Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med 2020; 288(3): 335-44.
[http://dx.doi.org/10.1111/joim.13089] [PMID: 32352202]
[42]
ISARIC. International severe acute respiratory and emerging infections consortium (ISARIC) 2021. Available from: https://isaric.tghn.org/
[43]
Zhang JJY, Lee KS, Ang LW, Leo YS, Young BE. Risk factors for severe disease and efficacy of treatment in patients infected with COVID-19: A systematic review, meta-analysis, and meta-regression analysis. Clin Infect Dis 2020; 71(16): 2199-206.
[http://dx.doi.org/10.1093/cid/ciaa576] [PMID: 32407459]
[44]
Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: A systematic review and meta-analysis. Otolaryngol Head Neck Surg 2020; 163(1): 3-11.
[http://dx.doi.org/10.1177/0194599820926473] [PMID: 32369429]
[45]
Aziz M, Perisetti A, Lee-Smith WM, Gajendran M, Bansal P, Goyal H. Taste changes (dysgeusia) in COVID-19: A systematic review and meta-analysis. Gastroenterology 2020; 159(3): 1132-3.
[http://dx.doi.org/10.1053/j.gastro.2020.05.003] [PMID: 32387496]
[46]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[47]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[48]
Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020; 95(8): e1060-70.
[http://dx.doi.org/10.1212/WNL.0000000000009937] [PMID: 32482845]
[49]
Liotta EM, Batra A, Clark JR, et al. Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Transl Neurol 2020; 7(11): 2221-30.
[http://dx.doi.org/10.1002/acn3.51210] [PMID: 33016619]
[50]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[51]
Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020; 18(6): 1421-4.
[http://dx.doi.org/10.1111/jth.14830] [PMID: 32271988]
[52]
Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020; 395(10237): 1607-8.
[http://dx.doi.org/10.1016/S0140-6736(20)31094-1] [PMID: 32386565]
[53]
Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 2020; 395(10239): 1771-8.
[http://dx.doi.org/10.1016/S0140-6736(20)31103-X] [PMID: 32410760]
[54]
Denise A, Anne-Sophie B, Fanny C, et al. COVID-19 chez l’enfant: état des connaissances en amont de la réouverture desécoles. Paris: Santé publique France 2020.
[55]
Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. Available from: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 [Cited 2020].
[56]
Steinberg J, Schiller HJ, Halter JM, et al. Tidal volume increases do not affect alveolar mechanics in normal lung but cause alveolar overdistension and exacerbate alveolar instability after surfactant deactivation. Crit Care Med 2002; 30(12): 2675-83.
[http://dx.doi.org/10.1097/00003246-200212000-00011] [PMID: 12483058]
[57]
Ramirez J, Harlan WR Jr. Pulmonary alveolar proteinosis. Nature and origin of alveolar lipid. Am J Med 1968; 45(4): 502-12.
[http://dx.doi.org/10.1016/0002-9343(68)90166-6] [PMID: 5678094]
[58]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[59]
Hanson KE, Caliendo AM, Arias CA, et al. Infectious diseases society of America guidelines on the diagnosis of covid-19. Clin Infect Dis 2020.: ciaa1343. Online ahead of print.
[http://dx.doi.org/10.1093/cid/ciaa1343] [PMID: 32918466]
[60]
CDC. Serology Testing for COVID-19 at CDC 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/serology-testing.html [Cited 2021]
[61]
Alam SZ, Muid SA, Akhter A, et al. HRCT chest evaluation of covid-19 patients: Experience in combined military hospital Dhaka, Bangladesh. J Bangladesh Coll Phys Surg 2020; 38: 21-8.
[http://dx.doi.org/10.3329/jbcps.v38i0.47441]
[62]
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[63]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[64]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[65]
Meyer B, Drosten C, Müller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res 2014; 194: 175-83.
[http://dx.doi.org/10.1016/j.virusres.2014.03.018] [PMID: 24670324]
[66]
Ward S, Lindsley A, Courter J, Assa’ad A. Clinical testing for COVID-19. J Allergy Clin Immunol 2020; 146(1): 23-34.
[http://dx.doi.org/10.1016/j.jaci.2020.05.012] [PMID: 32445839]
[67]
Okba NMA, Müller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 2020; 26(7): 1478-88.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[68]
Lv H, Wu NC, Tsang OTY, et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. bioRxiv 2020.
[http://dx.doi.org/10.1016/j.celrep.2020.107725]
[69]
Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovsens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of ncovid-19 antigen, a spike protein domain 1 of sars-cov-2. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.24.059204]
[70]
Diao B, Wen K, Chen J, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.07.20032524]
[71]
Weitzel T, Legarraga P, Iruretagoyena M, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.27.119255]
[72]
Kohmer N, Westhaus S, Rühl C, Ciesek S, Rabenau HF. Clinical performance of different SARS-CoV-2 IgG antibody tests. J Med Virol 2020; 92(10): 2243-7.
[http://dx.doi.org/10.1002/jmv.26145] [PMID: 32510168]
[73]
Liu W, Liu L, Kou G, et al. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J Clin Microbiol 2020; 58(6): e00461-20.
[http://dx.doi.org/10.1128/JCM.00461-20] [PMID: 32229605]
[74]
Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B. Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clin Chim Acta 2020; 510: 35-46.
[http://dx.doi.org/10.1016/j.cca.2020.06.045] [PMID: 32621814]
[75]
Long Q, Deng H, Chen J, et al. Antibody responses to SARS-CoV-2 in COVID-19 patients: The perspective application of serological tests in clinical practice. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.18.20038018]
[76]
Zhang J, Zhang X, Liu J, et al. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing. Int Immunopharmacol 2020; 88: 106861.
[http://dx.doi.org/10.1016/j.intimp.2020.106861] [PMID: 32771946]
[77]
Cai XF, Chen J, Li Hu J, et al. A Peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019. J Infect Dis 2020; 222(2): 189-93.
[http://dx.doi.org/10.1093/infdis/jiaa243] [PMID: 32382737]
[78]
Montesinos I, Gruson D, Kabamba B, et al. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol 2020; 128: 104413.
[http://dx.doi.org/10.1016/j.jcv.2020.104413] [PMID: 32403010]
[79]
Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020; 92(9): 1518-24.
[http://dx.doi.org/10.1002/jmv.25727] [PMID: 32104917]
[80]
Huang WE, Lim B, Hsu C-C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol 2020; 13(4): 950-61.
[http://dx.doi.org/10.1111/1751-7915.13586] [PMID: 32333644]
[81]
Russo A, Minichini C, Starace M, Astorri R, Calò F, Coppola N. Current status of laboratory diagnosis for covid-19: A narrative review. Infect Drug Resist 2020; 13: 2657-65.
[http://dx.doi.org/10.2147/IDR.S264020] [PMID: 32801804]
[82]
Martin TR, Mathison JC, Tobias PS, et al. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. J Clin Invest 1992; 90(6): 2209-19.
[http://dx.doi.org/10.1172/JCI116106] [PMID: 1281827]
[83]
Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, Williams MC. T1α a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003; 256(1): 61-72.
[http://dx.doi.org/10.1016/S0012-1606(02)00098-2] [PMID: 12654292]
[84]
Kabir MT, Uddin MS, Hossain MF, et al. nCOVID-19 pandemic: From molecular pathogenesis to potential investigational therapeutics. Front Cell Dev Biol 2020; 8: 616.
[http://dx.doi.org/10.3389/fcell.2020.00616] [PMID: 32754599]
[85]
Cavanaugh KJ Jr, Oswari J, Margulies SS. Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol 2001; 25(5): 584-91.
[http://dx.doi.org/10.1165/ajrcmb.25.5.4486] [PMID: 11713100]
[86]
Massaro GD, Massaro D, Chambon P. Retinoic acid receptor-α regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 2003; 284(2): L431-3.
[http://dx.doi.org/10.1152/ajplung.00245.2002] [PMID: 12533315]
[87]
Hislop A, Reid L. Persistent hypoplasia of the lung after repair of congenital diaphragmatic hernia. Thorax 1976; 31(4): 450-5.
[http://dx.doi.org/10.1136/thx.31.4.450] [PMID: 968803]
[88]
Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: Current issues and challenges. J Clin Microbiol 2020; 58(6): e00512-20.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[89]
Lippi G, Simundic A-M, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2020; 58(7): 1070-6.
[http://dx.doi.org/10.1515/cclm-2020-0285] [PMID: 32172228]
[90]
Chan JF-W, Yip CC-Y, To KK-W, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol 2020; 58(5): e00310-20.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[91]
Hong KH, Lee SW, Kim TS, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann Lab Med 2020; 40(5): 351-60.
[http://dx.doi.org/10.3343/alm.2020.40.5.351] [PMID: 32237288]
[92]
Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig 2020; 24(4): 1619-21.
[http://dx.doi.org/10.1007/s00784-020-03248-x] [PMID: 32078048]
[93]
Gandhi RT, Lynch JB, Del Rio C. Mild or moderate COVID-19. N Engl J Med 2020; 383(18): 1757-66.
[http://dx.doi.org/10.1056/NEJMcp2009249] [PMID: 32329974]
[94]
Cascella M, Rajnik M, Aleem A, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). In: In: StatPerals Publishing Treasure Island (FL). 2020.
[PMID: 32150360]
[95]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006-11.
[http://dx.doi.org/10.26355/eurrev_202002_20378] [PMID: 32141569]
[96]
Liang T, Ed. Handbook of COVID-19 prevention and treatment. Zhejiang Province 2020.
[97]
Pradhan D, Biswasroy P, Kumar Naik P, Ghosh G, Rath G. A review of current interventions for COVID-19 prevention. Arch Med Res 2020; 51(5): 363-74.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.020] [PMID: 32409144]
[98]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[99]
Sivasankarapillai VS, Pillai AM, Rahdar A, et al. On facing the sars-cov-2 (covid-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials (Basel) 2020; 10(5): 852.
[http://dx.doi.org/10.3390/nano10050852] [PMID: 32354113]
[100]
Ding S, Liang TJ. Is SARS-CoV-2 also an enteric pathogen with potential Fecal-Oral transmission: A covid-19 virological and clinical review. Gastroenterology 2020; 159(1): 53-61.
[http://dx.doi.org/10.1053/j.gastro.2020.04.052] [PMID: 32353371]
[101]
Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 2020; 15(4): 247-9.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[102]
Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the covid-19 pandemic. ACS Nano ACS Publications 2020.
[http://dx.doi.org/10.1021/acsnano.0c03697]
[103]
Vazquez-Munoz R, Lopez-Ribot JL. Nanotechnology as an alternative to reduce the spread of COVID-19. Challenges 2020; 11(2): 15.
[http://dx.doi.org/10.3390/challe11020015]
[104]
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel) 2020; 10(6): 1072.
[http://dx.doi.org/10.3390/nano10061072] [PMID: 32486364]
[105]
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020; 14(5): 5268-77.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[106]
Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[107]
Rabiee N, Bagherzadeh M, Ghasemi A, et al. Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic. Int J Mol Sci 2020; 21(14): 5126.
[http://dx.doi.org/10.3390/ijms21145126] [PMID: 32698479]
[108]
Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol 2020; 15(8): 646-55.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[109]
Gupta R, Misra A. Contentious issues and evolving concepts in the clinical presentation and management of patients with COVID-19 infectionwith reference to use of therapeutic and other drugs used in Co-morbid diseases (Hypertension, diabetes etc). Diabetes Metab Syndr 2020; 14(3): 251-4.
[http://dx.doi.org/10.1016/j.dsx.2020.03.012] [PMID: 32247213]
[110]
Chan WCW. Nano Research for COVID-19. ACS Nano 2020; 14(4): 3719-20.
[http://dx.doi.org/10.1021/acsnano.0c02540] [PMID: 32227916]
[111]
Barar J. COVID-19 clinical implications: the significance of nanomedicine. Bioimpacts 2020; 10(3): 137-8.
[http://dx.doi.org/10.34172/bi.2020.16] [PMID: 32793434]
[112]
Waris A, Ali M, Khan AU, Ali A, Bangash AK, Baset A. COVID-19 incidence in Pakistan: Gender disparity. Iran J Psychiatry Behav Sci Kowsar 2020; 14(3): e105990.
[http://dx.doi.org/10.5812/ijpbs.105990]
[113]
Couper K, Taylor-Phillips S, Grove A, et al. COVID-19 in cardiac arrest and infection risk to rescuers: A systematic review. Resuscitation 2020; 151: 59-66.
[http://dx.doi.org/10.1016/j.resuscitation.2020.04.022] [PMID: 32325096]
[114]
Vafea MT, Atalla E, Georgakas J, et al. Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cell Mol Bioeng 2020; 13: 249-57.
[http://dx.doi.org/10.1007/s12195-020-00629-w]
[115]
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11(1): 305.
[http://dx.doi.org/10.1186/s13287-020-01804-6] [PMID: 32698898]
[116]
Pillarsetty N, Carter LM, Lewis JS, Reiner T. Oncology-inspired treatment options for COVID-19. J Nucl Med 2020; 61(12): 1720-3.
[http://dx.doi.org/10.2967/jnumed.120.249748] [PMID: 32680924]
[117]
Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics 2020; 10(13): 5932-42.
[http://dx.doi.org/10.7150/thno.46691] [PMID: 32483428]
[118]
Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv 2016; 13(4): 547-59.
[http://dx.doi.org/10.1517/17425247.2016.1134486] [PMID: 26735861]
[119]
Lytton-Jean AKR, Langer R, Anderson DG. Five years of siRNA delivery: spotlight on gold nanoparticles. Small 2011; 7(14): 1932-7.
[http://dx.doi.org/10.1002/smll.201100761] [PMID: 21681985]
[120]
Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8(4): e61135.
[http://dx.doi.org/10.1371/journal.pone.0061135] [PMID: 23637790]
[121]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[122]
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20(8): 14051-81.
[http://dx.doi.org/10.3390/molecules200814051] [PMID: 26247927]
[123]
Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci USA 2012; 109(4): 1080-5.
[http://dx.doi.org/10.1073/pnas.1112648109] [PMID: 22247289]
[124]
Coleman CM, Venkataraman T, Liu YV, et al. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 2017; 35(12): 1586-9.
[http://dx.doi.org/10.1016/j.vaccine.2017.02.012] [PMID: 28237499]
[125]
Palestino G, García-Silva I, González-Ortega O, Rosales-Mendoza S. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti Infect Ther 2020; 18(9): 849-64.
[http://dx.doi.org/10.1080/14787210.2020.1776115] [PMID: 32574081]
[126]
Yetisen AK, Qu H, Manbachi A, et al. Nanotechnology in Textiles. ACS Nano 2016; 10(3): 3042-68.
[http://dx.doi.org/10.1021/acsnano.5b08176] [PMID: 26918485]
[127]
Springer. Commercialization of nanotechnologies-a case study approach Available from: https://www.springerprofessional.de/en/commercialization-of-nanotechnologies-a-case-study-approach/15032310
[128]
Sim W, Barnard RT, Blaskovich MAT, Ziora ZM. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade. Antibiotics (Basel) 2018; 7(4): 93.
[http://dx.doi.org/10.3390/antibiotics7040093] [PMID: 30373130]
[129]
Suryaprabha T, Sethuraman MG. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose 2017; 24(1): 395-407.
[http://dx.doi.org/10.1007/s10570-016-1110-z]
[130]
Mao N. Textile Materials for Protective Textiles. High Performance Technical Textiles. In: Paul R, Ed. NewYork: John Wiley & Sons, Ltd 2019; pp. 107-57.
[http://dx.doi.org/10.1002/9781119325062.ch5]
[131]
Duintjer Tebbens RJ, Pallansch MA, Thompson KM. Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infect Dis 2015; 15(1): 379.
[http://dx.doi.org/10.1186/s12879-015-1115-5] [PMID: 26382043]
[132]
Heimfarth L, Serafini MR, Martins-Filho PRS, Quintans JSS, Quintans-Júnior LJ. Drug repurposing and cytokine management in response to COVID-19: A review. Int Immunopharmacol 2020; 88: 106947.
[http://dx.doi.org/10.1016/j.intimp.2020.106947] [PMID: 32919216]
[133]
Marashi SM, Raeiszadeh M, Workman S, et al. Inflammation in common variable immunodeficiency is associated with a distinct CD8(+) response to cytomegalovirus. J Allergy Clin Immunol 2011; 127(6): 1385-93.e4.
[http://dx.doi.org/10.1016/j.jaci.2011.04.001] [PMID: 21536322]
[134]
Ali N. Relationship between COVID-19 infection and liver injury: A review of recent data. Front Med (Lausanne) 2020; 7: 458.
[http://dx.doi.org/10.3389/fmed.2020.00458] [PMID: 32793619]
[135]
Tarr PE, Sneller MC, Mechanic LJ, et al. Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine (Baltimore) 2001; 80(2): 123-33.
[http://dx.doi.org/10.1097/00005792-200103000-00005] [PMID: 11307588]
[136]
Hussain A, do Vale Moreira NC. Clinical considerations for patients with diabetes in times of COVID-19 pandemic. Diabetes Metab Syndr 2020; 14(4): 451-3.
[http://dx.doi.org/10.1016/j.dsx.2020.03.005] [PMID: 32388324]
[137]
Hui DSC, Zumla A. Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infect Dis Clin North Am 2019; 33(4): 869-89.
[http://dx.doi.org/10.1016/j.idc.2019.07.001] [PMID: 31668196]
[138]
Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med 2020; 383(10): 994.
[http://dx.doi.org/10.1056/NEJMc2022236] [PMID: 32649078]
[139]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[140]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[141]
Hendaus MA. Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): a simplified summary. J Biomol Struct Dyn 2021; 39(10): 3787-92.
[http://dx.doi.org/10.1080/07391102.2020.1767691] [PMID: 32396771]
[142]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of covid-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[143]
Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020; 34: 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[144]
Tsang K, Zhong NS. SARS: pharmacotherapy. Respirology 2003; 8(Suppl.): S25-30.
[http://dx.doi.org/10.1046/j.1440-1843.2003.00525.x] [PMID: 15018130]
[145]
Arabi YM, Alothman A, Balkhy HH, et al. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials 2018; 19(1): 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[146]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[147]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[148]
Hossain MF, Hasana S, Mamun AA, et al. COVID-19 outbreak: pathogenesis, current therapies, and potentials for future management. Front Pharmacol 2020; 11: 563478.
[http://dx.doi.org/10.3389/fphar.2020.563478] [PMID: 33178016]
[149]
Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003; 289(21): 2801-9.
[http://dx.doi.org/10.1001/jama.289.21.JOC30885] [PMID: 12734147]
[150]
Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J Jr. Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun 2005; 326(4): 905-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[151]
Blaising J, Polyak SJ, Pécheur E-I. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res 2014; 107: 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[152]
Boriskin YS, Leneva IA, Pécheur E-I, Polyak SJ. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 2008; 15(10): 997-1005.
[http://dx.doi.org/10.2174/092986708784049658] [PMID: 18393857]
[153]
Pécheur E-I, Borisevich V, Halfmann P, et al. The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J Virol 2016; 90(6): 3086-92.
[http://dx.doi.org/10.1128/JVI.02077-15] [PMID: 26739045]
[154]
Khamitov RA, Loginova SIa, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008; 53(4): 9-13.
[PMID: 18756809]
[155]
Ling JX, Wei F, Li N, et al. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol Sin 2012; 33(12): 1533-41.
[http://dx.doi.org/10.1038/aps.2012.80] [PMID: 22941291]
[156]
Weber JM, Ruzindana-Umunyana A, Imbeault L, Sircar S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res 2003; 58(2): 167-73.
[http://dx.doi.org/10.1016/S0166-3542(02)00212-7] [PMID: 12742577]
[157]
Shiha G, Soliman R, Elbasiony M, Darwish NHE, Mousa SA. Addition of epigallocatechin gallate 400mg to sofosbuvir 400mg+ daclatisvir 60mg with or without ribavirin in treatment of patients with chronic hepatitis c improves the safety profile: A pilot study. Sci Rep 2019; 9(1): 13593.
[http://dx.doi.org/10.1038/s41598-019-49973-6] [PMID: 31537880]
[158]
González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans--a mini-review. AAPS J 2008; 10(1): 42-6.
[http://dx.doi.org/10.1208/s12248-007-9000-9] [PMID: 18446504]
[159]
Götz V, Magar L, Dornfeld D, et al. Corrigendum: Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci Rep 2016; 6: 25428.
[http://dx.doi.org/10.1038/srep25428] [PMID: 27156930]
[160]
Lundberg L, Pinkham C, Baer A, et al. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res 2013; 100(3): 662-72.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.004] [PMID: 24161512]
[161]
Tay MYF, Fraser JE, Chan WKK, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res 2013; 99(3): 301-6.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[162]
Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443(3): 851-6.
[http://dx.doi.org/10.1042/BJ20120150] [PMID: 22417684]
[163]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[164]
Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo) 2020; 73(9): 593-602.
[http://dx.doi.org/10.1038/s41429-020-0336-z] [PMID: 32533071]
[165]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[166]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[167]
Kumar R, Sharma A, Srivastava JK, Siddiqui MH, Uddin MS, Aleya L. Hydroxychloroquine in COVID-19: therapeutic promises, current status, and environmental implications. Environ Sci Pollut Res Int 2021; 28(30): 40431-44.
[http://dx.doi.org/10.1007/s11356-020-12200-1] [PMID: 33447984]
[168]
Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J 2020; 96(1139): 550-5.
[http://dx.doi.org/10.1136/postgradmedj-2020-137785] [PMID: 32295814]
[169]
Yao T-T, Qian J-D, Zhu W-Y, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[170]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[171]
Kuri T, Zhang X, Habjan M, et al. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J Gen Virol 2009; 90(Pt 11): 2686-94.
[http://dx.doi.org/10.1099/vir.0.013599-0] [PMID: 19625461]
[172]
Tan EL, Ooi EE, Lin C-Y, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[173]
Bijlenga G. Proposal for vaccination against SARS coronavirus using avian infectious bronchitis virus strain H from The Netherlands. J Infect 2005; 51(3): 263-5.
[http://dx.doi.org/10.1016/j.jinf.2005.04.010] [PMID: 16045996]
[174]
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27(6): 992-1000.e3.
[http://dx.doi.org/10.1016/j.chom.2020.04.009] [PMID: 32320677]
[175]
Messina G, Polito R, Monda V, et al. Functional role of dietary intervention to improve the outcome of COVID-19: A hypothesis of work. Int J Mol Sci 2020; 21(9): 3104.
[http://dx.doi.org/10.3390/ijms21093104] [PMID: 32354030]
[176]
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020; 92(7): 814-8.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[177]
Matteucci C, Grelli S, Balestrieri E, et al. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol 2017; 12(2): 141-55.
[http://dx.doi.org/10.2217/fmb-2016-0125] [PMID: 28106477]
[178]
Baumann CA, Badamchian M, Goldstein AL. Thymosin α 1 antagonizes dexamethasone and CD3-induced apoptosis of CD4+ CD8+ thymocytes through the activation of cAMP and protein kinase C dependent second messenger pathways. Mech Ageing Dev 1997; 94(1-3): 85-101.
[http://dx.doi.org/10.1016/S0047-6374(96)01860-X] [PMID: 9147362]
[179]
Kumar V, Jung Y-S, Liang P-H. Anti-SARS coronavirus agents: a patent review (2008 - present). Expert Opin Ther Pat 2013; 23(10): 1337-48.
[http://dx.doi.org/10.1517/13543776.2013.823159] [PMID: 23905913]
[180]
Ziaei M, Ziaei F, Manzouri B. Systemic cyclosporine and corneal transplantation. Int Ophthalmol 2016; 36(1): 139-46.
[http://dx.doi.org/10.1007/s10792-015-0137-8] [PMID: 26463642]
[181]
Pfefferle S, Schöpf J, Kögl M, et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011; 7(10): e1002331.
[http://dx.doi.org/10.1371/journal.ppat.1002331] [PMID: 22046132]
[182]
Renoux G. The general immunopharmacology of levamisole. Drugs 1980; 20(2): 89-99.
[http://dx.doi.org/10.2165/00003495-198020020-00001] [PMID: 6995097]
[183]
Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr 2020; 109(6): 1088-95.
[http://dx.doi.org/10.1111/apa.15270] [PMID: 32202343]
[184]
Oladele OA, Emikpe BO, Adeyefa CAO, et al. Effects of levamisole hydrochloride on cellular immune response and flock performance of commercial broilers. Braz J Poult Sci SciELO Brasil 2012; 14(4): 259-65.
[http://dx.doi.org/10.1590/S1516-635X2012000400005]
[185]
Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016; 9(3): 227-30.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[186]
CytoDyn. Treatment with Cytodyn’s Leronlimab Indicates Significant Trend Toward Immunological Restoration in Severely Ill Covid-19 patients. Available from: https://www.cytodyn.com/newsroom/press-releases/detail/405/treatment-with-cytodyns-leronlimab-indicates-significant [Cited 2020]
[187]
Zhang L, Pang R, Xue X, et al. Anti-SARS-CoV-2 virus antibody levels in convalescent plasma of six donors who have recovered from COVID-19. Aging (Albany NY) 2020; 12(8): 6536-42.
[http://dx.doi.org/10.18632/aging.103102] [PMID: 32320384]
[188]
Lu C-L, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 2016; 352(6288): 1001-4.
[http://dx.doi.org/10.1126/science.aaf1279] [PMID: 27199430]
[189]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[190]
Jean S-S, Lee P-I, Hsueh P-R. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[191]
Chou C-C, Shen C-F, Chen S-J, et al. Recommendations and guidelines for the treatment of pneumonia in Taiwan. J Microbiol Immunol Infect 2019; 52(1): 172-99.
[http://dx.doi.org/10.1016/j.jmii.2018.11.004] [PMID: 30612923]
[192]
Jean S-S, Chang Y-C, Lin W-C, Lee WS, Hsueh PR, Hsu CW. Epidemiology, treatment, and prevention of nosocomial bacterial pneumonia. J Clin Med 2020; 9(1): 275.
[http://dx.doi.org/10.3390/jcm9010275] [PMID: 31963877]
[193]
Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3(9): e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[194]
Chen RC, Tang XP, Tan SY, et al. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest 2006; 129(6): 1441-52.
[http://dx.doi.org/10.1378/chest.129.6.1441] [PMID: 16778260]
[195]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[196]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[197]
Wösten-van Asperen RM, Bos AP, Bem RA, et al. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr Crit Care Med 2013; 14(9): e438-41.
[http://dx.doi.org/10.1097/PCC.0b013e3182a55735] [PMID: 24226567]
[198]
UBC. Acetaminophen vs NSAIDs during COVID-19 pandemic Available from: https://www.ti.ubc.ca/2020/03/18/acetaminophen-vs-nsaids-during-covid-19-pandemic/ [Cited 2020]
[199]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[200]
Acute Care. Available from: https://www.ismp.org/newsletters/acute-care [Cited 2020]
[201]
Feng W-X, Yang Y, Wen J, Liu YX, Liu L, Feng C. Implication of inhaled nitric oxide for the treatment of critically ill COVID-19 patients with pulmonary hypertension. ESC Heart Fail 2021; 8(1): 714-8.
[http://dx.doi.org/10.1002/ehf2.13023] [PMID: 33205620]
[202]
Kańtoch M, Litwińska B, Szkoda M, Siennicka J. [Importance of vitamin A deficiency in pathology and immunology of viral infections]. Rocz Panstw Zakl Hig 2002; 53(4): 385-92.
[PMID: 12664666]
[203]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[204]
Villamor E, Mbise R, Spiegelman D, et al. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics 2002; 109(1): E6.
[http://dx.doi.org/10.1542/peds.109.1.e6] [PMID: 11773574]
[205]
Ford TC, Downey LA, Simpson T, McPhee G, Oliver C, Stough C. The effect of a high-dose vitamin b multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: A randomized control trial. Nutrients 2018; 10(12): 1860.
[http://dx.doi.org/10.3390/nu10121860] [PMID: 30513795]
[206]
Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12(4): 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[207]
Kim Y, Kim H, Bae S, et al. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infection. Immune Netw 2013; 13(2): 70-4.
[http://dx.doi.org/10.4110/in.2013.13.2.70] [PMID: 23700397]
[208]
Moriguchi S, Muraga M. Vitamin E and immunity. Elsevier 2000.
[http://dx.doi.org/10.1016/S0083-6729(00)59011-6]
[209]
Andreone P, Fiorino S, Cursaro C, et al. Vitamin E as treatment for chronic hepatitis B: results of a randomized controlled pilot trial. Antiviral Res 2001; 49(2): 75-81.
[http://dx.doi.org/10.1016/S0166-3542(00)00141-8] [PMID: 11248360]
[210]
Fiorino S, Bacchi-Reggiani ML, Leandri P, Loggi E, Andreone P. Vitamin E for the treatment of children with hepatitis B e antigen-positive chronic hepatitis: A systematic review and meta-analysis. World J Hepatol 2017; 9(6): 333-42.
[http://dx.doi.org/10.4254/wjh.v9.i6.333] [PMID: 28293383]
[211]
Parolini C. Effects of fish n-3 PUFAs on intestinal microbiota and immune system. Mar Drugs 2019; 17(6): 374.
[http://dx.doi.org/10.3390/md17060374] [PMID: 31234533]
[212]
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, et al. The influence of dietary fatty acids on immune responses. Nutrients 2019; 11(12): 2990.
[http://dx.doi.org/10.3390/nu11122990] [PMID: 31817726]
[213]
Luo C, Luo H, Zheng S, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 2004; 321(3): 557-65.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.003] [PMID: 15358143]
[214]
Langlois PL, D’Aragon F, Hardy G, Manzanares W. Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Nutrition 2019; 61: 84-92.
[http://dx.doi.org/10.1016/j.nut.2018.10.026] [PMID: 30703574]
[215]
Rayman MP. Selenium and human health. Lancet 2012; 379(9822): 1256-68.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[216]
Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J 2001; 15(8): 1481-3.
[http://dx.doi.org/10.1096/fj.00-0721fje] [PMID: 11387264]
[217]
Beck MA, Shi Q, Morris VC, Levander OA. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1995; 1(5): 433-6.
[http://dx.doi.org/10.1038/nm0595-433] [PMID: 7585090]
[218]
Ma X, Bi S, Wang Y, Chi X, Hu S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult Sci 2019; 98(9): 3548-56.
[http://dx.doi.org/10.3382/ps/pez207] [PMID: 31220864]
[219]
Kabir MT, Uddin MS, Zaman S, et al. Molecular mechanisms of metal toxicity in the pathogenesis of Alzheimer’s disease. Mol Neurobiol 2021; 58(1): 1-20.
[http://dx.doi.org/10.1007/s12035-020-02096-w] [PMID: 32889653]
[220]
Fraker PJ, Gershwin ME, Good RA, Prasad A. Interrelationships between zinc and immune function. Fed Proc 1986; 45(5): 1474-9.
[PMID: 3485544]
[221]
Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing 2009; 6(1): 9.
[http://dx.doi.org/10.1186/1742-4933-6-9] [PMID: 19523191]
[222]
Kruse-Jarres JD. The significance of zinc for humoral and cellular immunity. J Trace Elem Electrolytes Health Dis 1989; 3(1): 1-8.
[PMID: 2535314]
[223]
Tuerk MJ, Fazel N. Zinc deficiency. Curr Opin Gastroenterol 2009; 25(2): 136-43.
[http://dx.doi.org/10.1097/MOG.0b013e328321b395] [PMID: 19528881]
[224]
Wessling-Resnick M. Crossing the iron gate: Why and how transferrin receptors mediate viral entry. Annu Rev Nutr 2018; 38: 431-58.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051749] [PMID: 29852086]
[225]
Jayaweera JAAS, Reyes M, Joseph A. Childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis. Sci Rep 2019; 9(1): 12637.
[http://dx.doi.org/10.1038/s41598-019-49122-z] [PMID: 31477792]
[226]
Kemahli AS, Babacan E, Çavdar AO. Cell mediated immune responses in children with iron deficiency and combined iron and zinc deficiency. Nutr Res Elsevier 1988; 8(2): 129-36.
[http://dx.doi.org/10.1016/S0271-5317(88)80016-2]
[227]
Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: From bacteria to fungi. Int J Mol Sci 2019; 20(1): 175.
[http://dx.doi.org/10.3390/ijms20010175] [PMID: 30621285]
[228]
Rupp JC, Locatelli M, Grieser A, et al. Host Cell Copper Transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J 2017; 14(1): 11.
[http://dx.doi.org/10.1186/s12985-016-0671-7] [PMID: 28115001]
[229]
Miyamoto D, Kusagaya Y, Endo N, et al. Thujaplicin-copper chelates inhibit replication of human influenza viruses. Antiviral Res 1998; 39(2): 89-100.
[http://dx.doi.org/10.1016/S0166-3542(98)00034-5] [PMID: 9806486]
[230]
Turnlund JR, Jacob RA, Keen CL, et al. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am J Clin Nutr 2004; 79(6): 1037-44.
[http://dx.doi.org/10.1093/ajcn/79.6.1037] [PMID: 15159234]
[231]
Liang RY, Wu W, Huang J, Jiang SP, Lin Y. Magnesium affects the cytokine secretion of CD4⁺ T lymphocytes in acute asthma. J Asthma 2012; 49(10): 1012-5.
[http://dx.doi.org/10.3109/02770903.2012.739240] [PMID: 23134345]
[232]
Chaigne-Delalande B, Li F-Y, O’Connor GM, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 2013; 341(6142): 186-91.
[http://dx.doi.org/10.1126/science.1240094] [PMID: 23846901]
[233]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[234]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[235]
Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol 2005; 79(11): 7095-103.
[http://dx.doi.org/10.1128/JVI.79.11.7095-7103.2005] [PMID: 15890949]
[236]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[237]
Park J-Y, Jeong HJ, Kim JH, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[238]
Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci 2004; 61(21): 2704-13.
[http://dx.doi.org/10.1007/s00018-004-4240-7] [PMID: 15549171]
[239]
Dimitrov DS. The secret life of ACE2 as a receptor for the SARS virus. Cell 2003; 115(6): 652-3.
[http://dx.doi.org/10.1016/S0092-8674(03)00976-0] [PMID: 14675530]
[240]
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the reninangiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125(Pt A): 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005]
[241]
Italiana S, dell’Ipertensione A. Phase IV Observational Study to Associate Hypertension and Hypertensinon Treatment to COVID19. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04331574
[242]
Yeung K-S, Yamanaka GA, Meanwell NA. Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Med Res Rev 2006; 26(4): 414-33.
[http://dx.doi.org/10.1002/med.20055] [PMID: 16521129]
[243]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[244]
Ho T-Y, Wu S-L, Chen J-C, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[245]
Trampczynska A, Böttcher C, Clemens S. The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Lett 2006; 580(13): 3173-8.
[http://dx.doi.org/10.1016/j.febslet.2006.04.073] [PMID: 16684531]
[246]
Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res 2015; 36(3): 219-24.
[http://dx.doi.org/10.2220/biomedres.36.219] [PMID: 26106051]
[247]
Repurposing of chlorpromazine in covid-19 treatment - full text view. Available from: https://clinicaltrials.gov/ct2/show/NCT04366739 [Cited 2020]
[248]
Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell 2020; 181(4): 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[249]
Jódar L, Feavers IM, Salisbury D, Granoff DM. Development of vaccines against meningococcal disease. Lancet 2002; 359(9316): 1499-508.
[http://dx.doi.org/10.1016/S0140-6736(02)08416-7] [PMID: 11988262]
[250]
Byrne MP, Smith LA. Development of vaccines for prevention of botulism. Biochimie 2000; 82(9-10): 955-66.
[http://dx.doi.org/10.1016/S0300-9084(00)01173-1] [PMID: 11086225]
[251]
Poland GA, Kennedy RB, Ovsyannikova IG, Palacios R, Ho PL, Kalil J. Development of vaccines against Zika virus. Lancet Infect Dis 2018; 18(7): e211-9.
[http://dx.doi.org/10.1016/S1473-3099(18)30063-X] [PMID: 29396004]
[252]
de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol 2006; 28(7): 275-83.
[http://dx.doi.org/10.1111/j.1365-3024.2006.00828.x] [PMID: 16842264]
[253]
Chan JF-W, Yao Y, Yeung M-L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015; 212(12): 1904-13.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[254]
Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[255]
Antrobus RD, Coughlan L, Berthoud TK, et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens. Mol Ther 2014; 22(3): 668-74.
[http://dx.doi.org/10.1038/mt.2013.284] [PMID: 24374965]
[256]
Alharbi NK, Padron-Regalado E, Thompson CP, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 2017; 35(30): 3780-8.
[http://dx.doi.org/10.1016/j.vaccine.2017.05.032] [PMID: 28579232]
[257]
Jadhav S, Gautam M, Gairola S. Role of vaccine manufacturers in developing countries towards global healthcare by providing quality vaccines at affordable prices. Clin Microbiol Infect 2014; 20(Suppl. 5): 37-44.
[http://dx.doi.org/10.1111/1469-0691.12568] [PMID: 24476201]
[258]
Sohag AAM, Hannan MA, Rahman S, et al. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020; 21709.
[http://dx.doi.org/10.1002/ddr.21709] [PMID: 32632960]
[259]
Li Y, Liu X, Guo L, et al. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst Rev 2020; 9(1): 75.
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[260]
Ang L, Lee HW, Choi JY, Zhang J, Soo Lee M. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integr Med Res 2020; 9(2): 100407.
[http://dx.doi.org/10.1016/j.imr.2020.100407] [PMID: 32289016]
[261]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[262]
Luo H, Tang QL, Shang YX, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[263]
Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing J Med Virol. Wiley Online Library 2020.
[http://dx.doi.org/10.1002/jmv.25783]
[264]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[265]
Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA 2020; 323(16): 1545-6.
[http://dx.doi.org/10.1001/jama.2020.4031] [PMID: 32167538]
[266]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[267]
Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med 2020; 46(5): 837-40.
[http://dx.doi.org/10.1007/s00134-020-05979-7] [PMID: 32123994]
[268]
Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy