Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

SARS-Cov-2 Damage on the Nervous System and Mental Health

Author(s): Mohamed Said Boulkrane, Victoria Ilina, Roman Melchakov, Mikhail Arisov, Julia Fedotova*, Lucia Gozzo, Filippo Drago , Weihong Lu, Alexey Sarapultsev, Vadim Tseilikman and Denis Baranenko

Volume 20, Issue 2, 2022

Published on: 07 February, 2022

Page: [412 - 431] Pages: 20

DOI: 10.2174/1570159X19666210629151303

Price: $65

Abstract

The World Health Organization declared the pandemic situation caused by SARSCoV- 2 (Severe Acute Respiratory Syndrome Coronavirus-2) in March 2020, but the detailed pathophysiological mechanisms of Coronavirus disease 2019 (COVID-19) are not yet completely understood. Therefore, to date, few therapeutic options are available for patients with mildmoderate or serious disease. In addition to systemic and respiratory symptoms, several reports have documented various neurological symptoms and impairments of mental health. The current review aims to provide the available evidence about the effects of SARS-CoV-2 infection on mental health. The present data suggest that SARS-CoV-2 produces a wide range of impairments and disorders of the brain. However, a limited number of studies investigated the neuroinvasive potential of SARS-CoV-2. Although the main features and outcomes of COVID-19 are linked to severe acute respiratory illness, the possible damages on the brain should be considered, too.

Keywords: SARS-CoV-2, COVID-19, mental health, neurological diseases, brain disorders, neuroinvasive potential.

Graphical Abstract

[1]
Deng, S-Q.; Peng, H-J.J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J. Clin. Med., 2020, 9(2)E575
[http://dx.doi.org/10.3390/jcm9020575] [PMID: 32093211]
[3]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesevir in adults with severe COVID-19: a randomized, double-blind, placebo-controlled, multicenter trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[4]
Mao, L.; Wang, M.D.; Chen, S.H.; He, Q.W.; Chang, J.; Hong, C.D.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol., 2020, 77(6), 1-9.
[PMID: 32275288]
[5]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[6]
Mak, I.W.; Chu, C.M.; Pan, P.C.; Yiu, M.G.; Chan, V.L. Long-term psychiatric morbidities among SARS survivors. Gen. Hosp. Psychiatry, 2009, 31(4), 318-326.
[http://dx.doi.org/10.1016/j.genhosppsych.2009.03.001] [PMID: 19555791]
[7]
Xiang, P.; Xu, X.M.; Gao, L.L.; Wang, H.Z.; Xiong, H.F.; Li, R.H. First case of 2019 novel coronavirus disease with encephalitis. China Xiv. T, 2020, 202003, 00015.
[8]
Hossain, M.; Tasnim, S.; Sultana, A.; McKyer, E.L.J.; Ma, P. COVID-19 and suicide of an army soldier in India: perspectives on psychosocial epidemiology of suicidal behavior. SocArXiv, 2020.
[9]
Mamun, M.A.; Griffiths, M.D. First COVID-19 suicide case in Bangladesh due to fear of COVID-19 and xenophobia: Possible suicide prevention strategies. Asian J. Psychiatr., 2020, 51102073
[http://dx.doi.org/10.1016/j.ajp.2020.102073] [PMID: 32278889]
[10]
Mamun, M.A.; Ullah, I. COVID-19 suicides in Pakistan, dying off not COVID-19 fear but poverty? The forthcoming economic challenges for a developing country. Brain Behav. Immun., 2020, 87, 163-166.
[http://dx.doi.org/10.1016/j.bbi.2020.05.028] [PMID: 32407859]
[11]
Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health, 2020, 17(5), 1729.
[http://dx.doi.org/10.3390/ijerph17051729] [PMID: 32155789]
[12]
Lei, L.; Huang, X.; Zhang, S.; Yang, J.; Yang, L.; Xu, M. Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the covid-19 epidemic in Southwestern China. Med. Sci. Monit., 2020, 26e924609
[http://dx.doi.org/10.12659/MSM.924609] [PMID: 32335579]
[13]
Roy, D.; Tripathy, S.; Kar, S.K.; Sharma, N.; Verma, S.K.; Kaushal, V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J. Psychiatr., 2020, 51102083
[http://dx.doi.org/10.1016/j.ajp.2020.102083] [PMID: 32283510]
[14]
Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The Impact of COVID-19 epidemic declaration on psychological consequences: a study on active weibo users. Int. J. Environ. Res. Public Health, 2020, 17(6), 2032.
[http://dx.doi.org/10.3390/ijerph17062032] [PMID: 32204411]
[15]
Huarcaya-Victoria, J.; Herrera, D.; Castillo, C. Psychosis in a patient with anxiety related to COVID-19: A case report. Psychiatry Res., 2020, 289113052
[http://dx.doi.org/10.1016/j.psychres.2020.113052] [PMID: 32388178]
[16]
Kar, S.K.; Yasir Arafat, S.M.; Kabir, R.; Sharma, P.; Saxena, S.K. Coping with mental health challenges during COVID-19. Coronavirus disease 2019 (COVID-19). Medical Virology: From pathogenesis to disease control; Saxena, S., Ed.; Springer: Singapore, 2020, pp. 199-213.
[http://dx.doi.org/10.1007/978-981-15-4814-7_16]
[17]
Guo, Q.; Zheng, Y.; Shi, J.; Wang, J.; Li, G.; Li, C.; Fromson, J.A.; Xu, Y.; Liu, X.; Xu, H.; Zhang, T.; Lu, Y.; Chen, X.; Hu, H.; Tang, Y.; Yang, S.; Zhou, H.; Wang, X.; Chen, H.; Wang, Z.; Yang, Z. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav. Immun., 2020, 88, 17-27.
[http://dx.doi.org/10.1016/j.bbi.2020.05.038] [PMID: 32416290]
[18]
Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), 611-627.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[19]
Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; Wang, T.; Guo, W.; Chen, J.; Ding, C.; Zhang, X.; Huang, J.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ, 2020, 368, m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[20]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[21]
Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry, 2021, 8(5), 416-427.
[http://dx.doi.org/10.1016/S2215-0366(21)00084-5] [PMID: 33836148]
[22]
Alsaad, K.O.; Hajeer, A.H.; Al Balwi, M.; Al Moaiqel, M.; Al Oudah, N.; Al Ajlan, A.; AlJohani, S.; Alsolamy, S.; Gmati, G.E.; Balkhy, H.; Al-Jahdali, H.H.; Baharoon, S.A.; Arabi, Y.M. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study. Histopathology, 2018, 72(3), 516-524.
[http://dx.doi.org/10.1111/his.13379] [PMID: 28858401]
[23]
Arabi, Y.M.; Harthi, A.; Hussein, J.; Bouchama, A.; Johani, S.; Hajeer, A.H.; Saeed, B.T.; Wahbi, A.; Saedy, A.; AlDabbagh, T.; Okaili, R.; Sadat, M.; Balkhy, H. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection, 2015, 43(4), 495-501.
[http://dx.doi.org/10.1007/s15010-015-0720-y] [PMID: 25600929]
[24]
Gu, J.; Gong, E.; Zhang, B.; Zheng, J.; Gao, Z.; Zhong, Y.; Zou, W.; Zhan, J.; Wang, S.; Xie, Z.; Zhuang, H.; Wu, B.; Zhong, H.; Shao, H.; Fang, W.; Gao, D.; Pei, F.; Li, X.; He, Z.; Xu, D.; Shi, X.; Anderson, V.M.; Leong, A.S-Y. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med., 2005, 202(3), 415-424.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[25]
Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol., 2020, 92(7), 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[26]
Zhang, Q.L.; Ding, Y.Q.; Hou, J.L.; He, L.; Huang, Z.X.; Wang, H.J.; Cai, J.J.; Zhang, J.H.; Zhang, W.L.; Geng, J.; Li, X.; Kang, W.; Yang, L.; Shen, H.; Li, Z.G.; Han, H.X.; Lu, Y.D. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. J. First Mil. Med. Univ., 2003, 23(11), 1125-1127.
[PMID: 14625166]
[27]
Bostancıklıoğlu, M. SARS-CoV2 entry and spread in the lymphatic drainage system of the brain. Brain Behav. Immun., 2020, 87, 122-123 a.
[http://dx.doi.org/10.1016/j.bbi.2020.04.080] [PMID: 32360606]
[28]
Lima, M.; Siokas, V.; Aloizou, A-M.; Liampas, I.; Mentis, A.A.; Tsouris, Z.; Papadimitriou, A.; Mitsias, P.D.; Tsatsakis, A.; Bogdanos, D.P.; Baloyannis, S.J.; Dardiotis, E. Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system. Curr. Treat. Options Neurol., 2020, 22(11), 37.
[http://dx.doi.org/10.1007/s11940-020-00647-z] [PMID: 32994698]
[29]
Reza-Zaldívar, E.E.; Hernández-Sapiéns, M.A.; Minjarez, B.; Gómez-Pinedo, U.; Márquez-Aguirre, A.L.; Mateos-Díaz, J.C.; Matias-Guiu, J.; Canales-Aguirre, A.A. Infection mechanism of SARS-Cov-2 and its implication on the nervous system. Front. Immunol., 2021, 11621735
[http://dx.doi.org/10.3389/fimmu.2020.621735] [PMID: 33584720]
[30]
Yavarpour-Bali, H.; Ghasemi-Kasman, M. Update on neurological manifestations of COVID-19. Life Sci., 2020, 257118063
[http://dx.doi.org/10.1016/j.lfs.2020.118063] [PMID: 32652139]
[31]
Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses, 2019, 12(1), 14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]
[32]
Zhou, Z.; Kang, H.; Li, S.; Zhao, X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol., 2020, 267(8), 2179-2184.
[http://dx.doi.org/10.1007/s00415-020-09929-7] [PMID: 32458193]
[33]
Fenrich, M.; Mrdenovic, S.; Balog, M.; Tomic, S.; Zjalic, M.; Roncevic, A.; Mandic, D.; Debeljak, Z.; Heffer, M. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury. Front. Cell. Neurosci., 2020, 14, 229.
[http://dx.doi.org/10.3389/fncel.2020.00229] [PMID: 32848621]
[34]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[35]
Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O-E.; Liu, F.; Dai, Y.; Szigeti-Buck, K.; Yasumoto, Y.; Wang, G.; Castaldi, C.; Heltke, J.; Ng, E.; Wheeler, J.; Alfajaro, M.M.; Levavasseur, E.; Fontes, B.; Ravindra, N.G.; Van Dijk, D.; Mane, S.; Gunel, M.; Ring, A.; Kazmi, S.A.J.; Zhang, K.; Wilen, C.B.; Horvath, T.L.; Plu, I.; Haik, S.; Thomas, J-L.; Louvi, A.; Farhadian, S.F.; Huttner, A.; Seilhean, D.; Renier, N.; Bilguvar, K.; Iwasaki, A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med., 2021, 218(3)e20202135
[http://dx.doi.org/10.1084/jem.20202135] [PMID: 33433624]
[36]
Bulfamante, G.; Chiumello, D.; Canevini, M.P.; Priori, A.; Mazzanti, M.; Centanni, S.; Felisati, G. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol., 2020, 86(6), 678-679.
[http://dx.doi.org/10.23736/S0375-9393.20.14772-2] [PMID: 32401000]
[37]
Xu, J.; Zhong, S.; Liu, J.; Li, L.; Li, Y.; Wu, X.; Li, Z.; Deng, P.; Zhang, J.; Zhong, N.; Ding, Y.; Jiang, Y. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis., 2005, 41(8), 1089-1096.
[http://dx.doi.org/10.1086/444461] [PMID: 16163626]
[38]
Kumari, P.; Rothan, H.A.; Natekar, J.P.; Stone, S.; Pathak, H.; Strate, P.G.; Arora, K.; Brinton, M.A.; Kumar, M. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-HACE2 Mice. Viruses, 2021, 13(1), 132.
[http://dx.doi.org/10.3390/v13010132] [PMID: 33477869]
[39]
Ding, Y.; Wang, H.; Shen, H.; Li, Z.; Geng, J.; Han, H.; Cai, J.; Li, X.; Kang, W.; Weng, D.; Lu, Y.; Wu, D.; He, L.; Yao, K. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol., 2003, 200(3), 282-289.
[http://dx.doi.org/10.1002/path.1440] [PMID: 12845623]
[40]
Diez-Porras, L.; Vergés, E.; Gil, F.; Vidal, M.J.; Massons, J.; Arboix, A. Guillain-Barré-Strohl syndrome and COVID-19: Case report and literature review. Neuromuscul. Disord., 2020, 30(10), 859-861.
[http://dx.doi.org/10.1016/j.nmd.2020.08.354] [PMID: 32912716]
[41]
Kirschenbaum, D.; Imbach, L.L.; Rushing, E.J.; Frauenknecht, K.B.M.; Gascho, D.; Ineichen, B.V.; Keller, E.; Kohler, S.; Lichtblau, M.; Reimann, R.R.; Schreib, K.; Ulrich, S.; Steiger, P.; Aguzzi, A.; Frontzek, K. Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19. Neuropathol. Appl. Neurobiol., 2021, 47(3), 454-459.
[http://dx.doi.org/10.1111/nan.12677] [PMID: 33249605]
[42]
Li, K.; Wohlford-Lenane, C.; Perlman, S.; Zhao, J.; Jewell, A.K.; Reznikov, L.R.; Gibson-Corley, K.N.; Meyerholz, D.K.; McCray, P.B. Jr Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis., 2016, 213(5), 712-722.
[http://dx.doi.org/10.1093/infdis/jiv499] [PMID: 26486634]
[43]
Yamashita, M.; Yamate, M.; Li, G-M.; Ikuta, K. Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem. Biophys. Res. Commun., 2005, 334(1), 79-85.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.061] [PMID: 15992768]
[44]
Chan, J.F-W.; Chan, K-H.; Choi, G.K-Y.; To, K.K-W.; Tse, H.; Cai, J-P.; Yeung, M.L.; Cheng, V.C-C.; Chen, H.; Che, X-Y.; Lau, S.K-P.; Woo, P.C-Y.; Yuen, K-Y. Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J. Infect. Dis., 2013, 207(11), 1743-1752.
[http://dx.doi.org/10.1093/infdis/jit123] [PMID: 23532101]
[45]
Nagata, N.; Iwata, N.; Hasegawa, H.; Sato, Y.; Morikawa, S.; Saijo, M.; Itamura, S.; Saito, T.; Ami, Y.; Odagiri, T.; Tashiro, M.; Sata, T. Pathology and virus dispersion in cynomolgus monkeys experimentally infected with severe acute respiratory syndrome coronavirus via different inoculation routes. Int. J. Exp. Pathol., 2007, 88(6), 403-414.
[http://dx.doi.org/10.1111/j.1365-2613.2007.00567.x] [PMID: 18039277]
[46]
Bostancıklıoğlu, M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm. Bowel Dis., 2020, 26(8), e89-e91.
[PMID: 32440692]
[47]
Lau, K-K.; Yu, W-C.; Chu, C-M.; Lau, S-T.; Sheng, B.; Yuen, K-Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis., 2004, 10(2), 342-344.
[http://dx.doi.org/10.3201/eid1002.030638] [PMID: 15030709]
[48]
Espíndola, O.M.; Siqueira, M.; Soares, C.N.; Lima, M.A.S.D.; Leite, A.C.C.B.; Araujo, A.Q.C.; Brandão, C.O.; Silva, M.T.T. Patients with COVID-19 and neurological manifestations show undetectable SARS-CoV-2 RNA levels in the cerebrospinal fluid. Int. J. Infect. Dis., 2020, 96, 567-569.
[http://dx.doi.org/10.1016/j.ijid.2020.05.123] [PMID: 32505878]
[49]
Hung, E.C.W.; Chim, S.S.C.; Chan, P.K.S.; Tong, Y.K.; Ng, E.K.O.; Chiu, R.W.K.; Leung, C-B.; Sung, J.J.Y.; Tam, J.S.; Lo, Y.M.D. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin. Chem., 2003, 49(12), 2108-2109.
[http://dx.doi.org/10.1373/clinchem.2003.025437] [PMID: 14633896]
[50]
Lewis, A.; Frontera, J.; Placantonakis, D.G.; Lighter, J.; Galetta, S.; Balcer, L.; Melmed, K.R. Cerebrospinal fluid in COVID-19: A systematic review of the literature. J. Neurol. Sci., 2021, 421117316
[http://dx.doi.org/10.1016/j.jns.2021.117316] [PMID: 33561753]
[51]
Virhammar, J.; Kumlien, E.; Fällmar, D.; Frithiof, R.; Jackmann, S.; Sköld, M.K.; Kadir, M.; Frick, J.; Lindeberg, J.; Olivero-Reinius, H.; Ryttlefors, M.; Cunningham, J.L.; Wikström, J.; Grabowska, A.; Bondeson, K.; Bergquist, J.; Zetterberg, H.; Rostami, E. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology, 2020, 95(10), 445-449.
[http://dx.doi.org/10.1212/WNL.0000000000010250] [PMID: 32586897]
[52]
Netland, J.; Meyerholz, D.K.; Moore, S.; Cassell, M.; Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol., 2008, 82(15), 7264-7275.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[53]
Serrano, G.E.; Walker, J.E.; Arce, R.; Glass, M.J.; Vargas, D.; Sue, L.I.; Intorcia, A.J.; Nelson, C.M.; Oliver, J.; Papa, J.; Russell, A.; Suszczewicz, K.E.; Borja, C.I.; Belden, C.; Goldfarb, D.; Shprecher, D.; Atri, A.; Adler, C.H.; Shill, H.A.; Driver-Dunckley, E.; Mehta, S.H.; Readhead, B.; Huentelman, M.J.; Peters, J.L.; Alevritis, E.; Bimi, C.; Mizgerd, J.P.; Reiman, E.M.; Montine, T.J.; Desforges, M.; Zehnder, J.L.; Sahoo, M.K.; Zhang, H.; Solis, D.; Pinsky, B.A.; Deture, M.; Dickson, D.W.; Beach, T. G Mapping of SARS-CoV-2 brain invasion and histopathology in COVID-19 disease; MedRxiv, 2021.
[54]
Harberts, E.; Yao, K.; Wohler, J.E.; Maric, D.; Ohayon, J.; Henkin, R.; Jacobson, S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc. Natl. Acad. Sci. USA, 2011, 108(33), 13734-13739.
[http://dx.doi.org/10.1073/pnas.1105143108] [PMID: 21825120]
[55]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[56]
Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[57]
Uversky, V.N.; Elrashdy, F.; Aljadawi, A.; Ali, S.M.; Khan, R.H.; Redwan, E.M. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J. Neurosci. Res., 2021, 99(3), 750-777.
[http://dx.doi.org/10.1002/jnr.24752] [PMID: 33217763]
[58]
Li, H.; Liu, S-M.; Yu, X-H.; Tang, S-L.; Tang, C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int. J. Antimicrob. Agents, 2020, 55(5)105951
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[59]
Nicholls, J.M.; Butany, J.; Poon, L.L.M.; Chan, K.H.; Beh, S.L.; Poutanen, S.; Peiris, J.S.M.; Wong, M. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med., 2006, 3(2)e27
[http://dx.doi.org/10.1371/journal.pmed.0030027] [PMID: 16379499]
[60]
Spiegel, M.; Schneider, K.; Weber, F.; Weidmann, M.; Hufert, F.T. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J. Gen. Virol., 2006, 87(Pt 7), 1953-1960.
[http://dx.doi.org/10.1099/vir.0.81624-0] [PMID: 16760397]
[61]
Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell, 2020, 183(1), 16-27.e1.
[http://dx.doi.org/10.1016/j.cell.2020.08.028] [PMID: 32882182]
[62]
Nampoothiri, S.; Sauve, F.; Ternier, G.; Fernandois, D.; Coelho, C.; Imbernon, M.; Deligia, E.; Perbet, R.; Florent, V.; Baroncini, M.; Pasquier, F.; Trottein, F.; Maurage, C-A.; Mattot, V.; Giacobini, P.; Rasika, S.; Prevot, V. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.08.139329]
[63]
Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; Dottermusch, M.; Heinemann, A.; Pfefferle, S.; Schwabenland, M.; Sumner, M.D.; Bonn, S.; Prinz, M.; Gerloff, C.; Püschel, K.; Krasemann, S.; Aepfelbacher, M.; Glatzel, M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol., 2020, 19(11), 919-929.
[http://dx.doi.org/10.1016/S1474-4422(20)30308-2] [PMID: 33031735]
[64]
Ragab, D.; Salah, E.H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What we know so far. Front. Immunol., 2020, 11, 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[65]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[66]
Murta, V.; Villarreal, A.; Ramos, A.J. Severe acute respiratory syndrome coronavirus 2 impact on the central nervous system: are astrocytes and microglia main players or merely bystanders? ASN Neuro, 2020, 121759091420954960
[http://dx.doi.org/10.1177/1759091420954960] [PMID: 32878468]
[67]
Pilotto, A.; Masciocchi, S.; Volonghi, I.; De Giuli, V.; Caprioli, F.; Mariotto, S.; Ferrari, S.; Bozzetti, S.; Imarisio, A.; Risi, B.; Premi, E.; Benussi, A.; Focà, E.; Castelli, F.; Zanusso, G.; Monaco, S.; Stefanelli, P.; Gasparotti, R.; Zekeridou, A.; McKeon, A.; Ashton, N. J.; Blennov, K.; Zetterberg, H.; Padovani, A. SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clin. Infect. Dis., 2021. ciaa1933.
[68]
Quincozes-Santos, A.; Rosa, R.L.; Tureta, E.F.; Bobermin, L.D.; Berger, M.; Guimarães, J.A.; Santi, L.; Beys-da-Silva, W.O. COVID-19 impacts the expression of molecular markers associated with neuropsychiatric disorders. Brain Behav. Immun. Health, 2021, 11100196
[http://dx.doi.org/10.1016/j.bbih.2020.100196] [PMID: 33521688]
[69]
Lavi, E.; Cong, L.; Type, I. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp. Mol. Pathol., 2020, 115104474
[http://dx.doi.org/10.1016/j.yexmp.2020.104474] [PMID: 32454103]
[70]
Hopkins, R.O.; Weaver, L.K.; Collingridge, D.; Parkinson, R.B.; Chan, K.J.; Orme, J.F. Jr Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2005, 171(4), 340-347.
[http://dx.doi.org/10.1164/rccm.200406-763OC] [PMID: 15542793]
[71]
Rogers, J.P.; David, A.S. A longer look at COVID-19 and neuropsychiatric outcomes. Lancet Psychiatry, 2021, 8(5), 351-352.
[http://dx.doi.org/10.1016/S2215-0366(21)00120-6] [PMID: 33836149]
[72]
Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; D’Arminio Monforte, A.; Priori, A. Long-lasting cognitive abnormalities after COVID-19. Brain Sci., 2021, 11(2), 235.
[http://dx.doi.org/10.3390/brainsci11020235] [PMID: 33668456]
[73]
Mikkelsen, M.E.; Shull, W.H.; Biester, R.C.; Taichman, D.B.; Lynch, S.; Demissie, E.; Hansen-Flaschen, J.; Christie, J.D. Cognitive, mood and quality of life impairments in a select population of ARDS survivors. Respirology, 2009, 14(1), 76-82.
[http://dx.doi.org/10.1111/j.1440-1843.2008.01419.x] [PMID: 19144052]
[74]
Wilcox, M.E.; Herridge, M.S. Long-term outcomes in patients surviving acute respiratory distress syndrome. Semin. Respir. Crit. Care Med., 2010, 31(1), 55-65.
[http://dx.doi.org/10.1055/s-0029-1246285] [PMID: 20101548]
[75]
Delamarre, L.; Gollion, C.; Grouteau, G.; Rousset, D.; Jimena, G.; Roustan, J.; Gaussiat, F.; Aldigé, E.; Gaffard, C.; Duplantier, J.; Martin, C.; Fourcade, O.; Bost, C.; Fortenfant, F.; Delobel, P.; Martin-Blondel, G.; Pariente, J.; Bonneville, F.; Geeraerts, T. COVID-19-associated acute necrotising encephalopathy successfully treated with steroids and polyvalent immunoglobulin with unusual IgG targeting the cerebral fibre network. J. Neurol. Neurosurg. Psychiatry, 2020, 91(9), 1004-1006.
[http://dx.doi.org/10.1136/jnnp-2020-323678] [PMID: 32651243]
[76]
Franke, C.; Ferse, C.; Kreye, J.; Reincke, S.M.; Sanchez-Sendin, E.; Rocco, A.; Steinbrenner, M.; Angermair, S.; Treskatsch, S.; Zickler, D.; Eckardt, K-U.; Dersch, R.; Hosp, J.; Audebert, H.J.; Endres, M.; Ploner, J.C.; Prüß, H. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav. Immun., 2021, 93, 415-419.
[http://dx.doi.org/10.1016/j.bbi.2020.12.022] [PMID: 33359380]
[77]
Khera, D.; Didel, S.; Panda, S.; Tiwari, S.; Singh, K. Concurrent longitudinally extensive transverse myelitis and guillain-barré syndrome in a child secondary to covid-19 infection: A severe neuroimmunologic complication of covid-19. Pediatr. Infect. Dis. J., 2021, 40(6), e236-e239.
[http://dx.doi.org/10.1097/INF.0000000000003124] [PMID: 33902076]
[78]
Mantefardo, B.; Gube, A.A.; Awlachew, E.; Sisay, G. Novel coronavirus (COVID-19)-associated Guillain-Barre’ syndrome: Case report. Int. Med. Case Rep. J., 2021, 14, 251-253.
[http://dx.doi.org/10.2147/IMCRJ.S305693] [PMID: 33907474]
[79]
Papri, N.; Hayat, S.; Mohammed, A.; Afsar, M.N.A.; Hasan, I.; Rahman, A.; Jahan, I.; Islam, Z. Guillain-Barré syndrome associated with SARS-CoV-2 infection: A case report with long term follow up. J. Neuroimmunol., 2021, 356577590
[http://dx.doi.org/10.1016/j.jneuroim.2021.577590] [PMID: 33957540]
[80]
Finsterer, J.; Scorza, F.A. Guillain-Barre syndrome in 220 patients with COVID-19. Egypt. J. Neurol. Psychiat. Neurosurg., 2021, 57(1), 55.
[http://dx.doi.org/10.1186/s41983-021-00310-7] [PMID: 33967575]
[81]
Abdelnasser, A.; Mostafa, M.; Hasanin, A.; El-Sakka, A.; Hassanein, H. Guillain-Barré syndrome in the early post-partum period following COVID-19 infection. Int. J. Obstet. Anesth., 2021.103172
[http://dx.doi.org/10.1016/j.ijoa.2021.103172] [PMID: 33994275]
[82]
Araújo, N.M.; Ferreira, L.C.; Dantas, D.P.; Silva, D.S.; Dos Santos, C.A.; Cipolotti, R.; Martins-Filho, P.R. First report of SARS-CoV-2 detection in cerebrospinal fluid in a child with Guillain-Barré syndrome. Pediatr. Infect. Dis. J., 2021, 40(7), e274-e276.
[http://dx.doi.org/10.1097/INF.0000000000003146] [PMID: 33990525]
[83]
Gagarkin, D.A.; Dombrowski, K.E.; Thakar, K.B.; DePetrillo, J.C. Acute inflammatory demyelinating polyneuropathy or Guillain-Barré syndrome associated with COVID-19: a case report. J. Med. Case Reports, 2021, 15(1), 219.
[http://dx.doi.org/10.1186/s13256-021-02831-4] [PMID: 33910640]
[84]
(a) Singh, R.; Shiza, S.T.; Saadat, R.; Dawe, M.; Rehman, U. Association of guillain-barre syndrome with COVID-19: A case report and literature review. Cureus, 2021, 13(3) e13828.
[http://dx.doi.org/10.7759/cureus.13828] [PMID: 33854850]
(b) Mokhashi, N.; Narla, G.; Marchionni, C. Guillain-Barre syndrome in a patient with asymptomatic coronavirus disease 2019 infection and major depressive disorder. Cureus, 2021, 13(3)e14161
[85]
Sheikh, A.B.; Chourasia, P.K.; Javed, N.; Chourasia, M.K.; Suriya, S.S.; Upadhyay, S.; Ijaz, F.; Pal, S.; Moghimi, N.; Shekhar, R. Association of Guillain-Barre syndrome with COVID-19 infection: An updated systematic review. J. Neuroimmunol., 2021, 355577577
[http://dx.doi.org/10.1016/j.jneuroim.2021.577577] [PMID: 33895700]
[86]
Bennett, F.C.; Molofsky, A.V. The immune system and psychiatric disease: a basic science perspective. Clin. Exp. Immunol., 2019, 197(3), 294-307.
[http://dx.doi.org/10.1111/cei.13334] [PMID: 31125426]
[87]
Meyer, U.; Schwarz, M.J.; Müller, N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol. Ther., 2011, 132(1), 96-110.
[http://dx.doi.org/10.1016/j.pharmthera.2011.06.003] [PMID: 21704074]
[88]
Lloyd, A.F.; Davies, C.L.; Miron, V.E. Microglia: origins, homeostasis, and roles in myelin repair. Curr. Opin. Neurobiol., 2017, 47, 113-120.
[http://dx.doi.org/10.1016/j.conb.2017.10.001] [PMID: 29073528]
[89]
Monji, A.; Kato, T.A.; Mizoguchi, Y.; Horikawa, H.; Seki, Y.; Kasai, M.; Yamauchi, Y.; Yamada, S.; Kanba, S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 115-121.
[http://dx.doi.org/10.1016/j.pnpbp.2011.12.002] [PMID: 22192886]
[90]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Samini, M.; Farkhondeh, T. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complement. Altern. Med., 2017, 17(1), 249.
[http://dx.doi.org/10.1186/s12906-017-1753-9] [PMID: 28472953]
[91]
Bohmwald, K.; Andrade, C.A.; Kalergis, A.M. Contribution of pro-inflammatory molecules induced by respiratory virus infections to neurological disorders. Pharmaceuticals (Basel), 2021, 14(4), 340.
[http://dx.doi.org/10.3390/ph14040340] [PMID: 33917837]
[92]
Deng, S.Y.; Zhang, L.M.; Ai, Y.H.; Pan, P.H.; Zhao, S.P.; Su, X.L.; Wu, D.D.; Tan, H.Y.; Zhang, L.N.; Tsung, A. Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages. Int. J. Mol. Med., 2017, 40(4), 1261-1269.
[http://dx.doi.org/10.3892/ijmm.2017.3110] [PMID: 28849179]
[93]
Hepgul, N.; Cattaneo, A.; Agarwal, K.; Baraldi, S.; Borsini, A.; Bufalino, C.; Forton, D.M.; Mondelli, V.; Nikkheslat, N.; Lopizzo, N.; Riva, M.A.; Russell, A.; Hotopf, M.; Pariante, C.M. Transcriptomics in interferon-α-treated patients identifies inflammation neuroplasticity- and oxidative stress-related signatures as predictors and correlates of depression. Neuropsychopharmacology, 2016, 41(10), 2502-2511.
[http://dx.doi.org/10.1038/npp.2016.50] [PMID: 27067128]
[94]
Kang, Y.M.; Wang, Y.; Yang, L.M.; Elks, C.; Cardinale, J.; Yu, X.J.; Zhao, X.F.; Zhang, J.; Zhang, L.H.; Yang, Z.M.; Francis, J. TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku J. Exp. Med., 2010, 222(4), 251-263.
[http://dx.doi.org/10.1620/tjem.222.251] [PMID: 21135513]
[95]
Karrenbauer, B.D.; Müller, C.P.; Ho, Y.J.; Spanagel, R.; Huston, J.P.; Schwarting, R.K.; Pawlak, C.R. Time-dependent in-vivo effects of interleukin-2 on neurotransmitters in various cortices: relationships with depressive-related and anxiety-like behaviour. J. Neuroimmunol., 2011, 237(1-2), 23-32.
[http://dx.doi.org/10.1016/j.jneuroim.2011.05.011] [PMID: 21726905]
[96]
Bueno-Notivol, J.; Gracia-García, P.; Olaya, B.; Lasheras, I.; López-Antón, R.; Santabárbara, J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int. J. Clin. Health Psychol., 2021, 21(1)100196
[http://dx.doi.org/10.1016/j.ijchp.2020.07.007] [PMID: 32904715]
[97]
Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; Yuan, Z.; Feng, Z.; Zhang, Y.; Wu, Y.; Chen, Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol., 2020, 11(11), 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[98]
Del Guerra, F.B.; Fonseca, J.L.; Figueiredo, V.M.; Ziff, E.B.; Konkiewitz, E.C. Human immunodeficiency virus-associated depression: contributions of immuno-inflammatory, monoaminergic, neurodegenerative, and neurotrophic pathways. J. Neurovirol., 2013, 19(4), 314-327.
[http://dx.doi.org/10.1007/s13365-013-0177-7] [PMID: 23868513]
[99]
Lisi, L.; Tramutola, A.; De Luca, A.; Navarra, P.; Dello Russo, C. Modulatory effects of the CCR5 antagonist maraviroc on microglial pro-inflammatory activation elicited by gp120. J. Neurochem., 2012, 120(1), 106-114.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07549.x] [PMID: 22017448]
[100]
de Witte, L.; Tomasik, J.; Schwarz, E.; Guest, P.C.; Rahmoune, H.; Kahn, R.S.; Bahn, S. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr. Res., 2014, 154(1-3), 23-29.
[http://dx.doi.org/10.1016/j.schres.2014.02.005] [PMID: 24582037]
[101]
Delaney, S.; Fallon, B.; Alaedini, A.; Yolken, R.; Indart, A.; Feng, T.; Wang, Y.; Javitt, D. Inflammatory biomarkers in psychosis and clinical high risk populations. Schizophr. Res., 2019, 206, 440-443.
[http://dx.doi.org/10.1016/j.schres.2018.10.017] [PMID: 30414721]
[102]
Yuan, N.; Chen, Y.; Xia, Y.; Dai, J.; Liu, C. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl. Psychiatry, 2019, 9(1), 233.
[http://dx.doi.org/10.1038/s41398-019-0570-y] [PMID: 31534116]
[103]
Hou, R.; Garner, M.; Holmes, C.; Osmond, C.; Teeling, J.; Lau, L.; Baldwin, D.S. Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: Case-controlled study. Brain Behav. Immun., 2017, 62, 212-218.
[http://dx.doi.org/10.1016/j.bbi.2017.01.021] [PMID: 28161475]
[104]
Wang, W.; Wang, L.; Xu, H.; Cao, C.; Liu, P.; Luo, S.; Duan, Q.; Ellenbroek, B.; Zhang, X. Characteristics of pro- and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. J. Affect. Disord., 2019, 248, 52-58.
[http://dx.doi.org/10.1016/j.jad.2019.01.029] [PMID: 30711869]
[105]
Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; Rosain, J.; Bilguvar, K.; Ye, J.; Bolze, A.; Bigio, B.; Yang, R.; Arias, A.A.; Zhou, Q.; Zhang, Y.; Onodi, F.; Korniotis, S.; Karpf, L.; Philippot, Q.; Chbihi, M.; Bonnet-Madin, L.; Dorgham, K.; Smith, N.; Schneider, W.M.; Razooky, B.S.; Hoffmann, H.H.; Michailidis, E.; Moens, L.; Han, J.E.; Lorenzo, L.; Bizien, L.; Meade, P.; Neehus, A.L.; Ugurbil, A.C.; Corneau, A.; Kerner, G.; Zhang, P.; Rapaport, F.; Seeleuthner, Y.; Manry, J.; Masson, C.; Schmitt, Y.; Schlüter, A.; Le Voyer, T.; Khan, T.; Li, J.; Fellay, J.; Roussel, L.; Shahrooei, M.; Alosaimi, M.F.; Mansouri, D.; Al-Saud, H.; Al-Mulla, F.; Almourfi, F.; Al-Muhsen, S.Z.; Alsohime, F.; Al Turki, S.; Hasanato, R.; van de Beek, D.; Biondi, A.; Bettini, L.R.; D’Angio’, M.; Bonfanti, P.; Imberti, L.; Sottini, A.; Paghera, S.; Quiros-Roldan, E.; Rossi, C.; Oler, A.J.; Tompkins, M.F.; Alba, C.; Vandernoot, I.; Goffard, J.C.; Smits, G.; Migeotte, I.; Haerynck, F.; Soler-Palacin, P.; Martin-Nalda, A.; Colobran, R.; Morange, P.E.; Keles, S.; Çölkesen, F.; Ozcelik, T.; Yasar, K.K.; Senoglu, S.; Karabela, Ş.N.; Rodríguez-Gallego, C.; Novelli, G.; Hraiech, S.; Tandjaoui-Lambiotte, Y.; Duval, X.; Laouénan, C.; Snow, A.L.; Dalgard, C.L.; Milner, J.D.; Vinh, D.C.; Mogensen, T.H.; Marr, N.; Spaan, A.N.; Boisson, B.; Boisson-Dupuis, S.; Bustamante, J.; Puel, A.; Ciancanelli, M.J.; Meyts, I.; Maniatis, T.; Soumelis, V.; Amara, A.; Nussenzweig, M.; García-Sastre, A.; Krammer, F.; Pujol, A.; Duffy, D.; Lifton, R.P.; Zhang, S.Y.; Gorochov, G.; Béziat, V.; Jouanguy, E.; Sancho-Shimizu, V.; Rice, C.M.; Abel, L.; Notarangelo, L.D.; Cobat, A.; Su, H.C.; Casanova, J.L. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370(6515)eabd4570
[http://dx.doi.org/10.1126/science.abd4570] [PMID: 32972995]
[106]
Kępińska, A.P.; Iyegbe, C.O.; Vernon, A.C.; Yolken, R.; Murray, R.M.; Pollak, T.A. Schizophrenia and influenza at the centenary of the 1918-1919 Spanish influenza pandemic: mechanisms of psychosis risk. Front. Psychiatry, 2020, 11, 72.
[http://dx.doi.org/10.3389/fpsyt.2020.00072] [PMID: 32174851]
[107]
Olsen, L.K.; Dowd, E.; McKernan, D.P. A role for viral infections in Parkinson’s etiology? Neurosignals, 2018, 2(2)NS20170166
[http://dx.doi.org/10.1042/NS20170166] [PMID: 32714585]
[108]
Bohmwald, K.; Gálvez, N.M.S.; Ríos, M.; Kalergis, A.M. Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci., 2018, 12, 386.
[http://dx.doi.org/10.3389/fncel.2018.00386] [PMID: 30416428]
[109]
Szechtman, H.; Harvey, B.H.; Woody, E.Z.; Hoffman, K.L. The psychopharmacology of obsessive-compulsive disorder: a preclinical roadmap. Pharmacol. Rev., 2020, 72(1), 80-151.
[http://dx.doi.org/10.1124/pr.119.017772] [PMID: 31826934]
[110]
Huang, W.; Li, S.; Hu, Y.; Yu, H.; Luo, F.; Zhang, Q.; Zhu, F. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr. Bull., 2011, 37(5), 988-1000.
[http://dx.doi.org/10.1093/schbul/sbp166] [PMID: 20100784]
[111]
Xiao, R.; Li, S.; Cao, Q.; Wang, X.; Yan, Q.; Tu, X.; Zhu, Y.; Zhu, F. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase. Virol. Sin., 2017, 32(3), 216-225.
[http://dx.doi.org/10.1007/s12250-017-3997-4] [PMID: 28656540]
[112]
Möller, M.; Du Preez, J.L.; Emsley, R.; Harvey, B.H. Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. Eur. Neuropsychopharmacol., 2011, 21(6), 471-483.
[http://dx.doi.org/10.1016/j.euroneuro.2010.09.006] [PMID: 20965701]
[113]
Möller, M.; Du Preez, J.L.; Viljoen, F.P.; Berk, M.; Harvey, B.H. N-Acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab. Brain Dis., 2013, 28(4), 687-696.
[http://dx.doi.org/10.1007/s11011-013-9433-z] [PMID: 24000072]
[114]
Markkula, N.; Lindgren, M.; Yolken, R.H.; Suvisaari, J. Association of exposure to Toxoplasma gondii, Epstein-Barr Virus, Herpes Simplex virus Type 1 and Cytomegalovirus with new-onset depressive and anxiety disorders: An 11-year follow-up study. Brain Behav. Immun., 2020, 87, 238-242.
[http://dx.doi.org/10.1016/j.bbi.2019.12.001] [PMID: 31809804]
[115]
Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw. Open, 2020, 3(9), e2019686-e2019686.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.19686] [PMID: 32876685]
[116]
Hyland, P.; Shevlin, M.; McBride, O.; Murphy, J.; Karatzias, T.; Bentall, R.P.; Martinez, A.; Vallières, F. Anxiety and depression in the Republic of Ireland during the COVID-19 pandemic. Acta Psychiatr. Scand., 2020, 142(3), 249-256.
[http://dx.doi.org/10.1111/acps.13219] [PMID: 32716520]
[117]
Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry Res., 2020, 288112954
[http://dx.doi.org/10.1016/j.psychres.2020.112954] [PMID: 32325383]
[118]
Coughlin, S.S. Anxiety and depression: linkages with viral diseases. Public Health Rev., 2012, 34(2), 1-17.
[http://dx.doi.org/10.1007/BF03391675] [PMID: 25264396]
[119]
Ciesla, J.A.; Roberts, J.E. Meta-analysis of the relationship between HIV infection and risk for depressive disorders. Am. J. Psychiatry, 2001, 158(5), 725-730.
[http://dx.doi.org/10.1176/appi.ajp.158.5.725] [PMID: 11329393]
[120]
Hao, F.; Tan, W.; Jiang, L.; Zhang, L.; Zhao, X.; Zou, Y.; Hu, Y.; Luo, X.; Jiang, X.; McIntyre, R.S.; Tran, B.; Sun, J.; Zhang, Z.; Ho, R.; Ho, C.; Tam, W. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav. Immun., 2020, 87, 100-106.
[http://dx.doi.org/10.1016/j.bbi.2020.04.069] [PMID: 32353518]
[121]
Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet, 2020, 395(10227), 912-920.
[http://dx.doi.org/10.1016/S0140-6736(20)30460-8] [PMID: 32112714]
[122]
Lee, A.M.; Wong, J.G.W.S.; McAlonan, G.M.; Cheung, V.; Cheung, C.; Sham, P.C.; Chu, C.M.; Wong, P.C.; Tsang, K.W.T.; Chua, S.E. Stress and psychological distress among SARS survivors 1 year after the outbreak. Can. J. Psychiatry, 2007, 52(4), 233-240.
[http://dx.doi.org/10.1177/070674370705200405] [PMID: 17500304]
[123]
Caulfield, K.A.; George, M.S. Treating the mental health effects of COVID-19: The need for at-home neurotherapeutics is now. Brain Stimul., 2020, 13(4), 939-940.
[http://dx.doi.org/10.1016/j.brs.2020.04.005] [PMID: 32283246]
[124]
Tian, F.; Li, H.; Tian, S.; Yang, J.; Shao, J.; Tian, C. Psychological symptoms of ordinary Chinese citizens based on SCL-90 during the level I emergency response to COVID-19. Psychiatry Res., 2020, 288112992
[http://dx.doi.org/10.1016/j.psychres.2020.112992] [PMID: 32302816]
[125]
Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; Ho, C. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav. Immun., 2020, 87, 40-48.
[http://dx.doi.org/10.1016/j.bbi.2020.04.028] [PMID: 32298802]
[126]
Matthews, T.; Danese, A.; Wertz, J.; Odgers, C.L.; Ambler, A.; Moffitt, T.E.; Arseneault, L. Social isolation, loneliness and depression in young adulthood: a behavioural genetic analysis. Soc. Psychiatry Psychiatr. Epidemiol., 2016, 51(3), 339-348.
[http://dx.doi.org/10.1007/s00127-016-1178-7] [PMID: 26843197]
[127]
Grippo, A.J.; Gerena, D.; Huang, J.; Kumar, N.; Shah, M.; Ughreja, R.; Carter, C.S. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology, 2007, 32(8-10), 966-980.
[http://dx.doi.org/10.1016/j.psyneuen.2007.07.004] [PMID: 17825994]
[128]
Wang, Y.; Di, Y.; Ye, J.; Wei, W. Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. Psychol. Health Med., 2020, 1-10.
[http://dx.doi.org/10.1080/13548506.2020.1746817] [PMID: 32223317]
[129]
Li, X.; Dai, T.; Wang, H.; Shi, J.; Yuan, W.; Li, J.; Chen, L.; Zhang, T.; Zhang, S.; Kong, Y.; Yue, N.; Shi, H.; He, Y.; Hu, H.; Liu, F.; Yang, C. Clinical analysis of suspected COVID-19 patients with anxiety and depression. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 203-208.
[PMID: 32391665]
[130]
Zhang, C.; Yang, L.; Liu, S.; Ma, S.; Wang, Y.; Cai, Z.; Du, H.; Li, R.; Kang, L.; Su, M.; Zhang, J.; Liu, Z.; Zhang, B. Survey of insomnia and related social psychological factors among medical staff involved in the 2019 novel coronavirus disease outbreak. Front. Psychiatry, 2020, 11, 306.
[http://dx.doi.org/10.3389/fpsyt.2020.00306] [PMID: 32346373]
[131]
Özdin, S.; Bayrak Özdin, Ş. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender. Int. J. Soc. Psychiatr., 2020, 20764020927051.
[132]
Lai, J.; Ma, S.; Wang, Y.; Cai, Z.; Hu, J.; Wei, N.; Wu, J.; Du, H.; Chen, T.; Li, R.; Tan, H.; Kang, L.; Yao, L.; Huang, M.; Wang, H.; Wang, G.; Liu, Z.; Hu, S. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw. Open, 2020, 3(3)e203976
[http://dx.doi.org/10.1001/jamanetworkopen.2020.3976] [PMID: 32202646]
[133]
Styra, R.; Hawryluck, L.; Robinson, S.; Kasapinovic, S.; Fones, C.; Gold, W.L. Impact on health care workers employed in high-risk areas during the Toronto SARS outbreak. J. Psychosom. Res., 2008, 64(2), 177-183.
[http://dx.doi.org/10.1016/j.jpsychores.2007.07.015] [PMID: 18222131]
[134]
Xiao, H.; Zhang, Y.; Kong, D.; Li, S.; Yang, N. The effects of social support on sleep quality of medical staff treating patients with coronavirus disease 2019 (COVID-19) in January and February 2020 in China. Med. Sci. Monit., 2020, 26e923549
[PMID: 32132521]
[135]
Rambaldini, G.; Wilson, K.; Rath, D.; Lin, Y.; Gold, W.L.; Kapral, M.K.; Straus, S.E. The impact of severe acute respiratory syndrome on medical house staff: a qualitative study. J. Gen. Intern. Med., 2005, 20(5), 381-385.
[http://dx.doi.org/10.1111/j.1525-1497.2005.0099.x] [PMID: 15963157]
[136]
Li, Z.; Ge, J.; Yang, M.; Feng, J.; Qiao, M.; Jiang, R.; Bi, J.; Zhan, G.; Xu, X.; Wang, L.; Zhou, Q.; Zhou, C.; Pan, Y.; Liu, S.; Zhang, H.; Yang, J.; Zhu, B.; Hu, Y.; Hashimoto, K.; Jia, Y.; Wang, H.; Wang, R.; Liu, C.; Yang, C. Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav. Immun. 2020. S0889-1591(20), 30303-30309.
[http://dx.doi.org/10.1016/j.bbi.2020.03.007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy