Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Evaluation of Chiral Rhodanine Derivatives Bearing Quinoxalinyl Imidazole Moiety as ALK5 Inhibitors

Author(s): Li-Min Zhao, Fang Yan Guo, Hui Min Wang, Tong Dou, Jun Da Qi, Wen Bo Xu, Lianxun Piao, Xuejun Jin, Fen-Er Chen, Hu-Ri Piao, Chang Ji Zheng* and Cheng Hua Jin*

Volume 18, Issue 4, 2022

Published on: 28 June, 2021

Page: [509 - 520] Pages: 12

DOI: 10.2174/1573406417666210628144849

Price: $65

Abstract

Background: TGF-β signaling pathway inhibition is considered an effective way to prevent the development of several diseases. In the design and synthesis of TGF-β inhibitors, a rhodanine compound containing a quinoxalinyl imidazole moiety was found to have strong antimicrobial activity.

Objective: The purpose of this work was to investigate the antimicrobial activity of other chiral rhodanine TGF-β inhibitors synthesized.

Methods: Two series of 3-substituted-5-(5-(6-methylpyridin-2-yl)-4-(quinoxalinyl-6-yl)- 1Himidazol- 2-yl)methylene)-2-thioxothiazolin-4-ones (12a-h and 13a-e) were synthesized and evaluated for their ALK5 inhibitory and antimicrobial activity. The structures were confirmed by their 1H NMR, 13C NMR and HRMS spectra. All the synthesized compounds were screened against Grampositive strains, Gram-negative strains, and fungi.

Results: Among the synthesized compounds, compound 12h showed the highest activity (IC50 = 0.416 μM) against ALK5 kinase. Compound 12h exhibited a good selectivity index of >24 against p38α MAP kinase and was 6.0-fold more selective than the clinical candidate, compound 2 (LY- 2157299). Nearly all the compounds displayed high selectivity toward both Gram-positive and Gram-negative bacteria. They also showed similar or 2.0-fold greater antifungal activity (minimum inhibitory concentration [MIC] = 0.5 μg/mL) compared with the positive control compounds Gatifloxacin (MIC = 0.5 μg/mL) and fluconazole (MIC = 1 μg/mL).

Conclusion: The findings suggest that the synthesized rhodanine compounds have good ALK5 inhibitory activity, and merit further research and development as potential antifungal drugs.

Keywords: Rhodanine, TGF-beta, antimicrobial, antifungal, imidazole, docking.

« Previous
Graphical Abstract

[1]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Rao, K.S.; Subrahmanyam, V.B.; Park, C.Y.; Son, J.Y.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinolin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem., 2011, 19(8), 2633-2640.
[http://dx.doi.org/10.1016/j.bmc.2011.03.008] [PMID: 21435890]
[2]
Amada, H.; Sekiguchi, Y.; Ono, N.; Koami, T.; Takayama, T.; Yabuuchi, T.; Katakai, H.; Ikeda, A.; Aoki, M.; Naruse, T.; Wada, R.; Nozoe, A.; Sato, M. 5-(1,3-Benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazole derivatives as potent and selective transforming growth factor-β type I receptor inhibitors. Bioorg. Med. Chem., 2012, 20(24), 7128-7138.
[http://dx.doi.org/10.1016/j.bmc.2012.09.066] [PMID: 23117174]
[3]
Ciayadi, R.; Kelso, G.F.; Potdar, M.K.; Harris, S.J.; Walton, K.L.; Harrison, C.A.; Hearn, M.T. Identification of protein binding partners of ALK-5 kinase inhibitors. Bioorg. Med. Chem., 2013, 21(21), 6496-6500.
[http://dx.doi.org/10.1016/j.bmc.2013.08.038] [PMID: 24055074]
[4]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Mohan, A.V.N.; Park, C.Y.; Son, J.Y.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(20), 6049-6053.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.064] [PMID: 21911290]
[5]
Amada, H.; Sekiguchi, Y.; Ono, N.; Matsunaga, Y.; Koami, T.; Asanuma, H.; Shiozawa, F.; Endo, M.; Ikeda, A.; Aoki, M.; Fujimoto, N.; Wada, R.; Sato, M. Design, synthesis, and evaluation of novel 4-thiazolylimidazoles as inhibitors of transforming growth factor-β type I receptor kinase. Bioorg. Med. Chem. Lett., 2012, 22(5), 2024-2029.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.066] [PMID: 22325945]
[6]
Li, F.; Park, Y.; Hah, J.M.; Ryu, J.S. Synthesis and biological evaluation of 1-(6-methylpyridin-2-yl)-5-(quinoxalin-6-yl)-1,2,3-triazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(4), 1083-1086.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.008] [PMID: 23294702]
[7]
Guo, C.; Zhang, C.; Li, X.; Li, W.; Xu, Z.; Bao, L.; Ding, Y.; Wang, L.; Li, S. Synthesis and biological evaluation of 1,2,4-trisubstituted imidazoles as inhibitors of transforming growth factor-β type I receptor (ALK5). Bioorg. Med. Chem. Lett., 2013, 23(21), 5850-5854.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.105] [PMID: 24055046]
[8]
Wang, H.; Lawson, J.D.; Scorah, N.; Kamran, R.; Hixon, M.S.; Atienza, J.; Dougan, D.R.; Sabat, M. Design, synthesis and optimization of novel Alk5 (activin-like kinase 5) inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(17), 4334-4339.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.030] [PMID: 27460209]
[9]
Sabat, M.; Wang, H.; Scorah, N.; Lawson, J.D.; Atienza, J.; Kamran, R.; Hixon, M.S.; Dougan, D.R. Design, synthesis and optimization of 7-substituted-pyrazolo[4,3-b]pyridine ALK5 (activin receptor-like kinase 5) inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(9), 1955-1961.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.026] [PMID: 28359790]
[10]
Řezníčková, E.; Tenora, L.; Pospíšilová, P.; Galeta, J.; Jorda, R.; Berka, K.; Majer, P.; Potáček, M.; Kryštof, V. ALK5 kinase inhibitory activity and synthesis of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles. Eur. J. Med. Chem., 2017, 127, 632-642.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.018] [PMID: 28135685]
[11]
Guo, Z.; Song, X.; Zhao, L.M.; Piao, M.G.; Quan, J.; Piao, H.R.; Jin, C.H. Synthesis and biological evaluation of novel benzo[c][1,2,5]thiadiazol-5-yl and thieno[3,2-c]- pyridin-2-yl imidazole derivatives as ALK5 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2070-2075.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.015] [PMID: 31303386]
[12]
Mohedas, A.H.; Wang, Y.; Sanvitale, C.E.; Canning, P.; Choi, S.; Xing, X.; Bullock, A.N.; Cuny, G.D.; Yu, P.B. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants. J. Med. Chem., 2014, 57(19), 7900-7915.
[http://dx.doi.org/10.1021/jm501177w] [PMID: 25101911]
[13]
Tan, B.; Zhang, X.; Quan, X.; Zheng, G.; Li, X.; Zhao, L.; Li, W.; Li, B. Design, synthesis and biological activity evaluation of novel 4-((1-cyclopropyl-3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl) oxy) pyridine-2-yl) amino derivatives as potent transforming growth factor-β (TGF-β) type I receptor inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(16), 127339.
[http://dx.doi.org/10.1016/j.bmcl.2020.127339] [PMID: 32631540]
[14]
Yingling, J.M.; Blanchard, K.L.; Sawyer, J.S. Development of TGF-beta signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov., 2004, 3(12), 1011-1022.
[http://dx.doi.org/10.1038/nrd1580] [PMID: 15573100]
[15]
Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Med. Chem., 2012, 57, 29-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.039] [PMID: 23043766]
[16]
Zhu, S.L.; Wu, Y.; Liu, C.J.; Wei, C.Y.; Tao, J.C.; Liu, H.M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem., 2013, 65, 70-82.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.044] [PMID: 23693151]
[17]
Cankara Pirol, Ş.; Çalışkan, B.; Durmaz, I.; Atalay, R.; Banoglu, E. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur. J. Med. Chem., 2014, 87, 140-149.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.056] [PMID: 25247770]
[18]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[19]
Li, Y.W.; Li, X.Y.; Li, S.; Zhao, L.M.; Ma, J.; Piao, H.R.; Jiang, Z.; Jin, C.H.; Jin, X. Synthesis and evaluation of the HIF-1α inhibitory activity of 3(5)-substituted-4-(quinolin-4-yl)- and 4-(2-phenylpyridin-4-yl)pyrazoles as inhibitors of ALK5. Bioorg. Med. Chem. Lett., 2020, 30(2), 126822.
[http://dx.doi.org/10.1016/j.bmcl.2019.126822] [PMID: 31810777]
[20]
Hanke, T.; Wong, J.F.; Berger, B.T.; Abdi, I.; Berger, L.M.; Tesch, R.; Tredup, C.; Bullock, A.N.; Müller, S.; Knapp, S. A highly selective chemical probe for activin receptor-like kinases alk4 and alk5. ACS Chem. Biol., 2020, 15(4), 862-870.
[http://dx.doi.org/10.1021/acschembio.0c00076] [PMID: 32176847]
[21]
Zhang, Y.; Zhao, Y.; Tebben, A.J.; Sheriff, S.; Ruzanov, M.; Fereshteh, M.P.; Fan, Y.; Lippy, J.; Swanson, J.; Ho, C.P.; Wautlet, B.S.; Rose, A.; Parrish, K.; Yang, Z.; Donnell, A.F.; Zhang, L.; Fink, B.E.; Vite, G.D.; Augustine-Rauch, K.; Fargnoli, J.; Borzilleri, R.M. Discovery of 4-azaindole inhibitors of tgfβri as immuno-oncology agents. ACS Med. Chem. Lett., 2018, 9(11), 1117-1122.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00357] [PMID: 30429955]
[22]
Lou, Z.; Wang, A.P.; Duan, X.M.; Hu, G.H.; Song, G.L.; Zuo, M.L.; Yang, Z.B. Upregulation of nox2 and nox4 mediated by tgf-β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell. Physiol. Biochem., 2018, 46(5), 2103-2113.
[http://dx.doi.org/10.1159/000489450] [PMID: 29723859]
[23]
Bordignon, P.; Bottoni, G.; Xu, X.; Popescu, A.S.; Truan, Z.; Guenova, E.; Kofler, L.; Jafari, P.; Ostano, P.; Röcken, M.; Neel, V.; Dotto, G.P. Dualism of fgf and tgf-β signaling in heterogeneous cancer-associated fibroblast activation with etv1 as a critical determinant. Cell Rep., 2019, 28(9), 2358-2372.
[http://dx.doi.org/10.1016/j.celrep.2019.07.092] [PMID: 31461652]
[24]
Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958), 577-584.
[http://dx.doi.org/10.1038/nature02006] [PMID: 14534577]
[25]
Kim, B.H.; Guardia Clausi, M.; Frondelli, M.; Nnah, I.C.; Saqcena, C.; Dobrowolski, R.; Levison, S.W. Age-dependent effects of alk5 inhibition and mechanism of neuroprotection in neonatal hypoxic-ischemic brain injury. Dev. Neurosci., 2017, 39(1-4), 338-351.
[http://dx.doi.org/10.1159/000477490] [PMID: 28628913]
[26]
Yuan, X.; Wu, H.; Bu, H.; Zhou, J.; Zhang, H. Targeting the immunity protein kinases for immuno-oncology. Eur. J. Med. Chem., 2019, 163, 413-427.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.072] [PMID: 30530193]
[27]
Wang, H.; Chen, M.; Sang, X.; You, X.; Wang, Y.; Paterson, I.C.; Hong, W.; Yang, X. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur. J. Med. Chem., 2020, 191, 112154.
[http://dx.doi.org/10.1016/j.ejmech.2020.112154] [PMID: 32092587]
[28]
Han, Z.H.; Wang, F.; Wang, F.L.; Liu, Q.; Zhou, J. Regulation of transforming growth factor β-mediated epithelial-mesenchymal transition of lens epithelial cells by c-Src kinase under high glucose conditions. Exp. Ther. Med., 2018, 16(2), 1520-1528.
[http://dx.doi.org/10.3892/etm.2018.6348] [PMID: 30116401]
[29]
Shinriki, S.; Jono, H.; Maeshiro, M.; Nakamura, T.; Guo, J.; Li, J.D.; Ueda, M.; Yoshida, R.; Shinohara, M.; Nakayama, H.; Matsui, H.; Ando, Y. Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. J. Pathol., 2018, 244(3), 367-379.
[http://dx.doi.org/10.1002/path.5019] [PMID: 29235674]
[30]
Park, M.S.; Park, H.J.; An, Y.J.; Choi, J.H.; Cha, G.; Lee, H.J.; Park, S.J.; Dewang, P.M.; Kim, D.K. Synthesis, biological evaluation and molecular modelling of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1H-imidazoles as ALK5 inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 702-712.
[http://dx.doi.org/10.1080/14756366.2020.1734799] [PMID: 32164459]
[31]
Dituri, F.; Mancarella, S.; Cigliano, A.; Chieti, A.; Giannelli, G. TGF-β as multifaceted orchestrator in hcc progression: Signaling, emt, immune microenvironment, and novel therapeutic perspectives. Semin. Liver Dis., 2019, 39(1), 53-69.
[http://dx.doi.org/10.1055/s-0038-1676121] [PMID: 30586675]
[32]
Ma, J.; Mi, C.; Wang, K.S.; Lee, J.J.; Jin, X. 4′,6-Dihydroxy-4-methoxyisoaurone inhibits TNF-α-induced NF-κB activation and expressions of NF-κB-regulated target gene products. J. Pharmacol. Sci., 2016, 130(2), 43-50.
[http://dx.doi.org/10.1016/j.jphs.2015.10.002] [PMID: 26654829]
[33]
Zhang, Z.H.; Mi, C.; Wang, K.S.; Wang, Z.; Li, M.Y.; Zuo, H.X.; Xu, G.H.; Li, X.; Piao, L.X.; Ma, J.; Jin, X. Chelidonine inhibits TNF-α-induced inflammation by suppressing the NF-κB pathways in HCT116 cells. Phytother. Res., 2018, 32(1), 65-75.
[http://dx.doi.org/10.1002/ptr.5948] [PMID: 29044876]
[34]
Jiang, S.; Zhang, Y.; Zheng, J.H.; Li, X.; Yao, Y.L.; Wu, Y.L.; Song, S.Z.; Sun, P.; Nan, J.X.; Lian, L.H. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol. Res., 2017, 117, 82-93.
[http://dx.doi.org/10.1016/j.phrs.2016.11.040] [PMID: 27940204]
[35]
Jiang, M.; Wu, Y.L.; Li, X.; Zhang, Y.; Xia, K.L.; Cui, B.W.; Lian, L.H.; Nan, J.X. Oligomeric proanthocyanidin derived from grape seeds inhibited NF-κB signaling in activated HSC: Involvement of JNK/ERK MAPK and PI3K/Akt pathways. Biomed. Pharmacother., 2017, 93, 674-680.
[http://dx.doi.org/10.1016/j.biopha.2017.06.105] [PMID: 28692939]
[36]
Mi, C.; Wang, Z.; Li, M.Y.; Zhang, Z.H.; Ma, J.; Jin, X. Zinc finger protein 91 positively regulates the production of IL-1β in macrophages by activation of MAPKs and non-canonical caspase-8 inflammasome. Br. J. Pharmacol., 2018, 175(23), 4338-4352.
[http://dx.doi.org/10.1111/bph.14493] [PMID: 30182366]
[37]
Diao, S.; Jin, M.; Sun, J.; Zhou, Y.; Ye, C.; Jin, Y.; Zhou, W.; Li, G. A new diarylheptanoid and a new diarylheptanoid glycoside isolated from the roots of Juglans mandshurica and their anti-inflammatory activities. Nat. Prod. Res., 2019, 33(5), 701-707.
[http://dx.doi.org/10.1080/14786419.2017.1408100] [PMID: 29202597]
[38]
Wang, S.; Wang, Y.; Liu, X.; Guan, L.; Yu, L.; Zhang, X. Anti-inflammatory and anti-arthritic effects of taraxasterol on adjuvant-induced arthritis in rats. J. Ethnopharmacol., 2016, 187, 42-48.
[http://dx.doi.org/10.1016/j.jep.2016.04.031] [PMID: 27109342]
[39]
Wu, Y.L.; Zhang, Y.J.; Yao, Y.L.; Li, Z.M.; Han, X.; Lian, L.H.; Zhao, Y.Q.; Nan, J.X. Cucurbitacin E ameliorates hepatic fibrosis in vivo and in vitro through activation of AMPK and blocking mTOR-dependent signaling pathway. Toxicol. Lett., 2016, 258, 147-158.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.2102] [PMID: 27363783]
[40]
Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-[c][1,2,5]thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-[3,2,-c]pyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.013] [PMID: 31299584]
[41]
Fu, S.H.; Wang, H.Y.; Zhang, J.Y.; Shi, H.M.; Zhang, N.; Ye, W.; Xiao, Y.Q. Overexpression of ALK5 induces human tenon’s capsule fibroblasts transdifferentiation and fibrosis in vitro. Curr. Eye Res., 2017, 42(7), 1018-1028.
[http://dx.doi.org/10.1080/02713683.2016.1276198] [PMID: 28632033]
[42]
Koh, R.Y.; Lim, C.L.; Uhal, B.D.; Abdullah, M.; Vidyadaran, S.; Ho, C.C.; Seow, H.F. Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol. Med. Rep., 2015, 11(5), 3808-3813.
[http://dx.doi.org/10.3892/mmr.2015.3193] [PMID: 25585520]
[43]
Zhang, Y.; Jiang, M.; Cui, B.W.; Jin, C.H.; Wu, Y.L.; Shang, Y.; Yang, H.X.; Wu, M.; Liu, J.; Qiao, C.Y.; Zhan, Z.Y.; Ye, H.; Zheng, G.H.; Jin, Q.; Lian, L.H.; Nan, J.X. P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: A new strategy towards macrophage-hepatocyte crosstalk. Br. J. Pharmacol., 2020, 177(12), 2793-2811.
[http://dx.doi.org/10.1111/bph.15007] [PMID: 32022249]
[44]
Li, X.; Zhang, Y.; Jin, Q.; Xia, K.L.; Jiang, M.; Cui, B.W.; Wu, Y.L.; Song, S.Z.; Lian, L.H.; Nan, J.X. Liver kinase B1/AMP-activated protein kinase-mediated regulation by gentiopicroside ameliorates P2X7 receptor-dependent alcoholic hepatosteatosis. Br. J. Pharmacol., 2018, 175(9), 1451-1470.
[http://dx.doi.org/10.1111/bph.14145] [PMID: 29338075]
[45]
Song, J.; Han, X.; Yao, Y.L.; Li, Y.M.; Zhang, J.; Shao, D.Y.; Hou, L.S.; Fan, Y.; Song, S.Z.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Acanthoic acid suppresses lipin1/2 via TLR4 and IRAK4 signalling pathways in EtOH- and lipopolysaccharide-induced hepatic lipogenesis. J. Pharm. Pharmacol., 2018, 70(3), 393-403.
[http://dx.doi.org/10.1111/jphp.12877] [PMID: 29341132]
[46]
Xing, Y.; Mi, C.; Wang, Z.; Zhang, Z.H.; Li, M.Y.; Zuo, H.X.; Wang, J.Y.; Jin, X.; Ma, J. Fraxinellone has anticancer activity in vivo by inhibiting programmed cell death-ligand 1 expression by reducing hypoxia-inducible factor-1α and STAT3. Pharmacol. Res., 2018, 135, 166-180.
[http://dx.doi.org/10.1016/j.phrs.2018.08.004] [PMID: 30103001]
[47]
Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155, 104727.
[http://dx.doi.org/10.1016/j.phrs.2020.104727] [PMID: 32113874]
[48]
Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; Ma, J.; Jin, X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine, 2020, 68, 153172.
[http://dx.doi.org/10.1016/j.phymed.2020.153172] [PMID: 32004989]
[49]
Wang, J.Y.; Wang, Z.; Li, M.Y.; Zhang, Z.; Mi, C.; Zuo, H.X.; Xing, Y.; Wu, Y.L.; Lian, L.H.; Xu, G.H.; Piao, L.X.; Ma, J.; Jin, X. Dictamnine promotes apoptosis and inhibits epithelial-mesenchymal transition, migration, invasion and proliferation by downregulating the HIF-1α and Slug signaling pathways. Chem. Biol. Interact., 2018, 296, 134-144.
[http://dx.doi.org/10.1016/j.cbi.2018.09.014] [PMID: 30266538]
[50]
Mi, C.; Ma, J.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Piao, L.X.; Xu, G.H.; Li, X.; Quan, Z.S.; Jin, X. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. J. Ethnopharmacol., 2017, 203, 27-38.
[http://dx.doi.org/10.1016/j.jep.2017.03.033] [PMID: 28341244]
[51]
Li, M.Y.; Mi, C.; Wang, K.S.; Wang, Z.; Zuo, H.X.; Piao, L.X.; Xu, G.H.; Li, X.; Ma, J.; Jin, X. Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling. Chem. Biol. Interact., 2017, 274, 58-67.
[http://dx.doi.org/10.1016/j.cbi.2017.06.029] [PMID: 28684144]
[52]
Jiang, W.J.; Hu, L.L.; Ren, Y.P.; Lu, X.; Luo, X.Q.; Li, Y.H.; Xu, Y.N. Podophyllotoxin affects porcine oocyte maturation by inducing oxidative stress-mediated early apoptosis. Toxicon, 2020, 176, 15-20.
[http://dx.doi.org/10.1016/j.toxicon.2020.01.006] [PMID: 31965969]
[53]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Park, H.J.; Park, S.J.; Sheen, Y.Y.; Kim, D.K. 4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole and -pyrazole derivatives as potent and selective inhibitors of transforming growth factor-β type I receptor kinase. Bioorg. Med. Chem., 2014, 22(9), 2724-2732.
[http://dx.doi.org/10.1016/j.bmc.2014.03.022] [PMID: 24704197]
[54]
Lee, G.T.; Hong, J.H.; Mueller, T.J.; Watson, J.A.; Kwak, C.; Sheen, Y.Y.; Kim, D.K.; Kim, S.J.; Kim, I.Y. Effect of IN-1130, a small molecule inhibitor of transforming growth factor-β type I receptor/activin receptor-like kinase-5, on prostate cancer cells. J. Urol., 2008, 180(6), 2660-2667.
[http://dx.doi.org/10.1016/j.juro.2008.08.008] [PMID: 18951571]
[55]
Brandes, A.A.; Carpentier, A.F.; Kesari, S.; Sepulveda-Sanchez, J.M.; Wheeler, H.R.; Chinot, O.; Cher, L.; Steinbach, J.P.; Capper, D.; Specenier, P.; Rodon, J.; Cleverly, A.; Smith, C.; Gueorguieva, I.; Miles, C.; Guba, S.C.; Desaiah, D.; Lahn, M.M.; Wick, W. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-oncol., 2016, 18(8), 1146-1156.
[http://dx.doi.org/10.1093/neuonc/now009] [PMID: 26902851]
[56]
Cassidy, K.C.; Gueorguieva, I.; Miles, C.; Rehmel, J.; Yi, P.; Ehlhardt, W.J. Disposition and metabolism of [14C]-galunisertib, a TGF-βRI kinase/ALK5 inhibitor, following oral administration in healthy subjects and mechanistic prediction of the effect of itraconazole on galunisertib pharmacokinetics. Xenobiotica, 2018, 48(4), 382-399.
[http://dx.doi.org/10.1080/00498254.2017.1323137] [PMID: 28436712]
[57]
Bueno, L.; de Alwis, D.P.; Pitou, C.; Yingling, J.; Lahn, M.; Glatt, S.; Trocóniz, I.F. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur. J. Cancer, 2008, 44(1), 142-150.
[http://dx.doi.org/10.1016/j.ejca.2007.10.008] [PMID: 18039567]
[58]
Herbertz, S.; Sawyer, J.S.; Stauber, A.J.; Gueorguieva, I.; Driscoll, K.E.; Estrem, S.T.; Cleverly, A.L.; Desaiah, D.; Guba, S.C.; Benhadji, K.A.; Slapak, C.A.; Lahn, M.M. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Devel. Ther., 2015, 9, 4479-4499.
[PMID: 26309397]
[59]
Fujiwara, Y.; Nokihara, H.; Yamada, Y.; Yamamoto, N.; Sunami, K.; Utsumi, H.; Asou, H.; Takahash, I. O.; Ogasawara, K.; Gueorguieva, I.; Tamura, T. Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2015, 76(6), 1143-1152.
[http://dx.doi.org/10.1007/s00280-015-2895-4] [PMID: 26526984]
[60]
Batlle, E.; Massagué, J. Transforming growth factor-beta signaling in immunity and cancer. Immunity, 2019, 50(4), 924-940.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[61]
Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): A highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem., 2014, 57(10), 4213-4238.
[http://dx.doi.org/10.1021/jm500115w] [PMID: 24786585]
[62]
Kim, M.J.; Park, S.A.; Kim, C.H.; Park, S.Y.; Kim, J.S.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell. Physiol. Biochem., 2016, 38(2), 571-588.
[http://dx.doi.org/10.1159/000438651] [PMID: 26845171]
[63]
Patel, H.M.; Sing, B.; Bhardwaj, V.; Palkar, M.; Shaikh, M.S.; Rane, R.; Alwan, W.S.; Gadad, A.K.; Noolvi, M.N.; Karpoormath, R. Design, synthesis and evaluation of small molecule imidazo[2,1-b][1,3,4]thiadiazoles as inhibitors of transforming growth factor-β type-I receptor kinase (ALK5). Eur. J. Med. Chem., 2015, 93, 599-613.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.002] [PMID: 25234355]
[64]
Jin, C.H.; Sreenu, D.; Krishnaiah, M.; Subrahmanyam, V.B.; Rao, K.S.; Nagendra Mohan, A.V.; Park, C.Y.; Son, J.Y.; Son, D.H.; Park, H.J.; Sheen, Y.Y.; Kim, D.K. Synthesis and biological evaluation of 1-substituted-3(5)-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 3917-3925.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.063] [PMID: 21696866]
[65]
Zhao, L.M.; Guo, Z.; Xue, Y.J.; Min, J.Z.; Zhu, W.J.; Li, X.Y.; Piao, H.R.; Jin, C.H. Synthesis and evaluation of 3-substituted-4-(quinoxalin-6-yl)pyrzoles as TGF-β type I receptor kinase inhibitors. Molecules, 2018, 23(12), 3369.
[http://dx.doi.org/10.3390/molecules23123369]
[66]
Liu, X.F.; Zheng, C.J.; Sun, L.P.; Liu, X.K.; Piao, H.R. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur. J. Med. Chem., 2011, 46(8), 3469-3473.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.012] [PMID: 21624712]
[67]
Hardej, D.; Ashby, C.R., Jr; Khadtare, N.S.; Kulkarni, S.S.; Singh, S.; Talele, T.T. The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains. Eur. J. Med. Chem., 2010, 45(12), 5827-5832.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.045] [PMID: 20947220]
[68]
Xu, G.; Zhang, Y.; Wang, H.; Guo, Z.; Wang, X.; Li, X.; Chang, S.; Sun, T.; Yu, Z.; Xu, T.; Zhao, L.; Wang, Y.; Yu, W. Synthesis and biological evaluation of 4-(pyridin-4-oxy)-3-(3,3-difluorocyclobutyl)-pyrazole derivatives as novel potent transforming growth factor-β type 1 receptor inhibitors. Eur. J. Med. Chem., 2020, 198, 112354.
[http://dx.doi.org/10.1016/j.ejmech.2020.112354] [PMID: 32387837]
[69]
Chen, Z.H.; Zheng, C.J.; Sun, L.P.; Piao, H.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem., 2010, 45(12), 5739-5743.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.031] [PMID: 20889240]
[70]
Song, M.X.; Zheng, C.J.; Deng, X.Q.; Wang, Q.; Hou, S.P.; Liu, T.T.; Xing, X.L.; Piao, H.R. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents. Eur. J. Med. Chem., 2012, 54, 403-412.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.023] [PMID: 22703706]
[71]
Guo, M.; Zheng, C.J.; Song, M.X.; Wu, Y.; Sun, L.P.; Li, Y.J.; Liu, Y.; Piao, H.R. Synthesis and biological evaluation of rhodanine derivatives bearing a quinoline moiety as potent antimicrobial agents. Bioorg. Med. Chem. Lett., 2013, 23(15), 4358-4361.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.082] [PMID: 23787100]
[72]
Song, M.X.; Zheng, C.J.; Deng, X.Q.; Sun, L.P.; Wu, Y.; Hong, L.; Li, Y.J.; Liu, Y.; Wei, Z.Y.; Jin, M.J.; Piao, H.R. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA). Eur. J. Med. Chem., 2013, 60, 376-385.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.007] [PMID: 23314051]
[73]
Wei, Z.Y.; Liu, J.C.; Zhang, W.; Li, Y.R.; Li, C.; Zheng, C.J.; Piao, H.R. Synthesis and antimicrobial evaluation of (z)-5-((3-phenyl-1h-pyrazol-4- yl)methylene)-2-thioxothiazolidin-4-one derivatives. Med. Chem., 2016, 12(8), 751-759.
[http://dx.doi.org/10.2174/1573406412666160822160156] [PMID: 27550428]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy