Abstract
Background: Platelet-activating-factor (PAF) is a lipid inflammatory mediator implicated in liver disease. Its main biosynthetic enzymes are cytidine diphosphate (CDP)-choline: 1-alkyl-2-acetyl-sn-glycerol-cholinephosphotransferase (PAF-CPT) and acetyl-coenzyme A: lyso-PAF-acetyltransferases (Lyso-PAF-AT). At the same time, PAF acetylhydrolase (PAF-AH) and lipoprotein-associated phospholipase A2 (Lp-PLA2) degrade PAF.
Objective: To explore the relation of PAF metabolism with liver diseases and non-alcoholic fatty liver disease, as reflected by the fatty liver index (FLI).
Methods: In 106 healthy volunteers, PAF concentration, the activity of its metabolic enzymes and gamma-glutamyl transferase (GGT) were measured in whole blood, leukocytes and serum, respectively and the FLI was calculated. Partial correlations and linear regression models were used.
Results: In males, serum GGT activity was positively correlated with abdominal fat (as assessed by analysis of a manually defined region of interest in dual-energy X-ray absorptiometry), triacylglycerols, bound-PAF and Lp-PLA2, while the FLI was positively correlated with Lp-PLA2 activity. In females, serum GGT activity was negatively associated with high-density lipoprotein cholesterol (HDL-C) (age adjusted correlations, all p<0.05). Lp-PLA2 was a significant determinant of serum GGT activity in males after controlling for age, low- density lipoprotein cholesterol (LDL-C) and abdominal fat. The addition of bound-PAF in the model significantly increased the explained variance of serum GGT activity (total variance explanation 30%).
Conclusion: Bound-PAF and Lp-PLA2 activity predicted serum GGT activity while Lp-PLA2 was also related to FLI. Our findings shed light on the metabolic pathways linking Lp-PLA2 to other atherosclerosis and/or oxidative markers, such as HDL-C, LDL-C, GGT and FLI and underline the important role of PAF.
Keywords: Platelet-activating-factor, gamma-glutamyl transferase, fatty liver index, lipoprotein associated phospholipase A2 (Lp-PLA2), lyso-PAF-acetyltransferase, PAF acetylhydrolase.
Graphical Abstract
[http://dx.doi.org/10.1002/ejlt.200300845]
[http://dx.doi.org/10.3748/wjg.v12.i23.3695] [PMID: 16773686]
[http://dx.doi.org/10.1186/1476-511X-8-19] [PMID: 19500354]
[http://dx.doi.org/10.1373/clinchem.2007.094821] [PMID: 18089656]
[http://dx.doi.org/10.1007/s10654-007-9181-7] [PMID: 17896181]
[http://dx.doi.org/10.1038/s41598-018-28494-8] [PMID: 29973631]
[http://dx.doi.org/10.1186/1476-511X-13-105] [PMID: 24973921]
[http://dx.doi.org/10.1016/j.jhep.2005.06.018] [PMID: 16168516]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.571919] [PMID: 16203922]
[http://dx.doi.org/10.1093/clinchem/30.5.631] [PMID: 6143627]
[http://dx.doi.org/10.1016/j.cca.2007.06.005] [PMID: 17601521]
[http://dx.doi.org/10.3177/jnsv.59.108] [PMID: 23727640]
[http://dx.doi.org/10.1007/s00125-003-1036-5] [PMID: 12687334]
[http://dx.doi.org/10.1186/1471-230X-6-33] [PMID: 17081293]
[http://dx.doi.org/10.1186/s12933-020-01025-4] [PMID: 32359355]
[PMID: 7921780]
[http://dx.doi.org/10.1186/1476-511X-13-6] [PMID: 24393260]
[http://dx.doi.org/10.1021/pr500422z] [PMID: 24874467]
[http://dx.doi.org/10.3109/09513590.2010.487612] [PMID: 20504094]
[http://dx.doi.org/10.4254/wjh.v12.i8.436] [PMID: 32952872]
[http://dx.doi.org/10.1152/japplphysiol.01234.2003] [PMID: 15075304]
[http://dx.doi.org/10.1016/j.clinbiochem.2008.09.113] [PMID: 18955040]
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[http://dx.doi.org/10.1007/BF02536336] [PMID: 8177023]
[http://dx.doi.org/10.1139/o59-099] [PMID: 13671378]
[http://dx.doi.org/10.1016/j.prostaglandins.2011.10.003] [PMID: 22079887]
[http://dx.doi.org/10.1007/s00204-005-0651-y] [PMID: 15995853]
[http://dx.doi.org/10.1136/gut.2003.024893] [PMID: 15138217]
[PMID: 12845989]
[http://dx.doi.org/10.1007/s10620-006-9728-6] [PMID: 17410443]
[http://dx.doi.org/10.1007/s10620-006-9363-2] [PMID: 17160478]
[http://dx.doi.org/10.1016/j.jnutbio.2015.04.004] [PMID: 26013469]
[http://dx.doi.org/10.3906/sag-2007-298] [PMID: 32979898]
[http://dx.doi.org/10.1016/j.prostaglandins.2003.11.002] [PMID: 15165033]
[http://dx.doi.org/10.1007/s10620-009-0745-0] [PMID: 19242794]
[http://dx.doi.org/10.1016/j.bbadis.2013.07.005] [PMID: 23851051]
[http://dx.doi.org/10.1074/jbc.R800046200] [PMID: 18718904]
[http://dx.doi.org/10.1185/03007990802177150] [PMID: 18513463]
[http://dx.doi.org/10.1080/08941930500248805] [PMID: 16249168]
[http://dx.doi.org/10.1007/s10620-007-9982-2] [PMID: 17934819]
[http://dx.doi.org/10.1007/s11882-004-0029-x] [PMID: 15056404]
[http://dx.doi.org/10.1016/0090-6980(86)90192-9] [PMID: 3103170]
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb13862.x] [PMID: 3345757]
[http://dx.doi.org/10.1080/09537109777195] [PMID: 16793665]
[http://dx.doi.org/10.3109/09537109509078455] [PMID: 21043729]
[http://dx.doi.org/10.1016/j.bcp.2008.09.041] [PMID: 18996094]
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.001] [PMID: 16765356]
[http://dx.doi.org/10.1111/jcmm.13803] [PMID: 30094934]
[http://dx.doi.org/10.1093/eurheartj/ehl565] [PMID: 17314110]
[http://dx.doi.org/10.1093/ajcn/88.3.630] [PMID: 18779277]
[http://dx.doi.org/10.1016/0005-2760(94)90210-0] [PMID: 8199206]
[http://dx.doi.org/10.1093/eurheartj/ehn502] [PMID: 19019993]
[http://dx.doi.org/10.1016/S0378-5122(99)00004-3] [PMID: 10340285]
[http://dx.doi.org/10.1016/j.plefa.2020.102234] [PMID: 33373961]
[http://dx.doi.org/10.1007/s00394-014-0682-3] [PMID: 24639073]