Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

The Application of Peptides in Glioma: A Novel Tool for Therapy

Author(s): Li Li, Jianhong Chen*, Yue Ming, Bin Li, Ruoqiu Fu, Dongyu Duan, Ziwei Li, Rui Ni, Xianfeng Wang, Yueling Zhou and Lin Zhang

Volume 23, Issue 5, 2022

Published on: 28 June, 2021

Page: [620 - 633] Pages: 14

DOI: 10.2174/1389201022666210628114042

Price: $65

conference banner
Abstract

Background: Glioma is the most aggressive and lethal tumor of the central nervous system. Due to the cellular heterogeneity, the invasiveness, and blood-brain barrier (BBB), current therapeutic approaches, such as chemotherapy and radiotherapy, are poorly to obtain great antitumor efficacy. However, peptides, a novel type of therapeutic agent, displayed excellent ability in the tumor, which becomes a new molecule for glioma treatment.

Methods: We review the current knowledge on peptides for the treatment of glioma through a PubMed-based literature search.

Results: In the treatment of glioma, peptides can be used as (i) decoration on the surface of the delivery system, facilitating the distribution and accumulation of the anti-tumor drug in target site; (ii) anti-tumor active molecules, inhibiting the growth of glioma and reducing solid tumor volume; (iii) immune-stimulating factor, and it activating immune cells in the tumor microenvironment or recruiting immune cells to the tumor for breaking out the immunosuppression by glioma cells.

Conclusion: The application of peptides has revolutionized the treatment of glioma, which based on targeting, penetrating, anti-tumor activities and immunostimulatory. Moreover, better outcomes have been discovered in combining different kinds of peptides rather than a single one. Until now, more and more preclinical studies have been developed with multifarious peptides, which shows promising results in vitro or vivo with the model of glioma.

Keywords: Glioma, blood-brain barrier, peptide-based targeting therapy, cell penetrating peptide, anti-tumor activity, peptide vaccines.

Graphical Abstract

[1]
Agarwala, S.S.; Kirkwood, J.M. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist, 2000, 5(2), 144-151.
[http://dx.doi.org/10.1634/theoncologist.5-2-144] [PMID: 10794805]
[2]
Xu, J.; Khan, A.; Fu, M.; Wang, R.; Ji, J.; Zhai, G. Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs. Jour. of control. Rele., 2019, 309, 106-124.
[3]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[4]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[5]
Guidotti, G.; Brambilla, L.; Rossi, D. Exploring novel molecular targets for the treatment of high-grade astrocytomas using peptide therapeutics: An overview. Cells, 2020, 9(2)E490
[http://dx.doi.org/10.3390/cells9020490] [PMID: 32093304]
[6]
Le Joncour, V.; Laakkonen, P. Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg. Med. Chem., 2018, 26(10), 2797-2806.
[http://dx.doi.org/10.1016/j.bmc.2017.08.052] [PMID: 28893601]
[7]
Su, B.C.; Wu, T.H.; Hsu, C.H.; Chen, J.Y. Distribution of positively charged amino acid residues in antimicrobial peptide epinecidin-1 is crucial for in vitro glioblastoma cytotoxicity and its underlying mechanisms. Chem. Biol. Interact., 2020, 315108904
[http://dx.doi.org/10.1016/j.cbi.2019.108904] [PMID: 31758921]
[8]
Kimura, T.; Egawa, S.; Uemura, H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat. Rev. Urol., 2017, 14(8), 501-510.
[http://dx.doi.org/10.1038/nrurol.2017.77] [PMID: 28561807]
[9]
Ribatti, D.; Nico, B.; Crivellato, E.; Artico, M. Development of the blood-brain barrier: A historical point of view. Anat. Rec. B New Anat., 2006, 289(1), 3-8.
[http://dx.doi.org/10.1002/ar.b.20087] [PMID: 16437552]
[10]
Lawther, B.K.; Kumar, S.; Krovvidi, H. Blood–brain barrier. Contin. Educ. Anaesth. Crit. Care Pain, 2011, 11(4), 128-132.
[http://dx.doi.org/10.1093/bjaceaccp/mkr018]
[11]
Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol., 2018, 135(3), 311-336.
[http://dx.doi.org/10.1007/s00401-018-1815-1] [PMID: 29411111]
[12]
Banks, W.A.; Greig, N.H. Small molecules as central nervous system therapeutics: Old challenges, new directions, and a philosophic divide. Future Med. Chem., 2019, 11(6), 489-493.
[http://dx.doi.org/10.4155/fmc-2018-0436] [PMID: 30912980]
[13]
Patkee, W.R.; Carr, G.; Baker, E.H.; Baines, D.L.; Garnett, J.P. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. J. Cell. Mol. Med., 2016, 20(4), 758-764.
[http://dx.doi.org/10.1111/jcmm.12784] [PMID: 26837005]
[14]
Patabendige, A.; Skinner, R.A.; Abbott, N.J. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res., 2013, 1521, 1-15.
[http://dx.doi.org/10.1016/j.brainres.2012.06.057] [PMID: 22789905]
[15]
Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front. Physiol., 2020, 11, 914.
[http://dx.doi.org/10.3389/fphys.2020.00914] [PMID: 32848858]
[16]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 640-665.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[17]
Nitta, T.; Hata, M.; Gotoh, S.; Seo, Y.; Sasaki, H.; Hashimoto, N.; Furuse, M.; Tsukita, S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol., 2003, 161(3), 653-660.
[http://dx.doi.org/10.1083/jcb.200302070] [PMID: 12743111]
[18]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37(1), 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[19]
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J., 2015, 282(21), 4067-4079.
[http://dx.doi.org/10.1111/febs.13412] [PMID: 26277326]
[20]
Singh, N.; Ecker, G.F. Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1. Int. J. Mol. Sci., 2018, 19(5)E1278
[http://dx.doi.org/10.3390/ijms19051278] [PMID: 29695141]
[21]
Mahringer, A.; Ott, M.; Reimold, I.; Reichel, V.; Fricker, G. The ABC of the blood-brain barrier - regulation of drug efflux pumps. Curr. Pharm. Des., 2011, 17(26), 2762-2770.
[http://dx.doi.org/10.2174/138161211797440221] [PMID: 21827407]
[22]
Goulatis, L.I.; Shusta, E.V. Protein engineering approaches for regulating blood-brain barrier transcytosis. Curr. Opin. Struct. Biol., 2017, 45, 109-115.
[http://dx.doi.org/10.1016/j.sbi.2016.12.005] [PMID: 28040636]
[23]
Johnsen, K.B.; Burkhart, A.; Thomsen, L.B.; Andresen, T.L.; Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol., 2019, 181101665
[http://dx.doi.org/10.1016/j.pneurobio.2019.101665] [PMID: 31376426]
[24]
Lu, F.; Pang, Z.; Zhao, J.; Jin, K.; Li, H.; Pang, Q.; Zhang, L.; Pang, Z. Angiopep-2-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int. J. Nanomedicine, 2017, 12, 2117-2127.
[http://dx.doi.org/10.2147/IJN.S123422] [PMID: 28356732]
[25]
Moura, R.P.; Martins, C.; Pinto, S.; Sousa, F.; Sarmento, B. Blood-brain barrier receptors and transporters: An insight on their function and how to exploit them through nanotechnology. Expert Opin. Drug Deliv., 2019, 16(3), 271-285.
[http://dx.doi.org/10.1080/17425247.2019.1583205] [PMID: 30767695]
[26]
Lu, W. Adsorptive-mediated brain delivery systems. Curr. Pharm. Biotechnol., 2012, 13(12), 2340-2348.
[http://dx.doi.org/10.2174/138920112803341851] [PMID: 23016640]
[27]
Jain, S.; Mishra, V.; Singh, P.; Dubey, P.K.; Saraf, D.K.; Vyas, S.P. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm., 2003, 261(1-2), 43-55.
[http://dx.doi.org/10.1016/S0378-5173(03)00269-2] [PMID: 12878394]
[28]
Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro-oncol., 2018, 20(suppl_4), iv1-iv86.,
[http://dx.doi.org/10.1093/neuonc/noy131] [PMID: 30445539]
[29]
Sanai, N.; Alvarez-Buylla, A.; Berger, M.S. Neural stem cells and the origin of gliomas. N. Engl. J. Med., 2005, 353(8), 811-822.
[http://dx.doi.org/10.1056/NEJMra043666] [PMID: 16120861]
[30]
Nayak, S.; Mahenthiran, A.; Yang, Y.; McClendon, M.; Mania-Farnell, B.; James, C.D.; Kessler, J.A.; Tomita, T.; Cheng, S.Y.; Stupp, S.I.; Xi, G. Bone morphogenetic protein 4 targeting glioma stem-like cells for malignant glioma treatment: Latest advances and implications for clinical application. Cancers (Basel), 2020, 12(2)E516
[http://dx.doi.org/10.3390/cancers12020516] [PMID: 32102285]
[31]
Smith, J.; Jenkins, R. Genetic alterations in adult diffuse glioma: Occurrence, significance, and prognostic implications. Front. in biosci., 2000, 5, D213-D231.
[32]
Song, K.S.; Phi, J.H.; Cho, B.K.; Wang, K.C.; Lee, J.Y.; Kim, D.G.; Kim, I.H.; Ahn, H.S.; Park, S.H.; Kim, S.K. Long-term outcomes in children with glioblastoma. J. Neurosurg. Pediatr., 2010, 6(2), 145-149.
[http://dx.doi.org/10.3171/2010.5.PEDS09558] [PMID: 20672935]
[33]
Bush, N.A.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40(1), 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[34]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[35]
Christians, A.; Adel-Horowski, A.; Banan, R.; Lehmann, U.; Bartels, S.; Behling, F.; Barrantes-Freer, A.; Stadelmann, C.; Rohde, V.; Stockhammer, F.; Hartmann, C. The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. Acta Neuropathol. Commun., 2019, 7(1), 156.
[http://dx.doi.org/10.1186/s40478-019-0817-0] [PMID: 31623667]
[36]
Bourne, T.D.; Schiff, D. Update on molecular findings, management and outcome in low-grade gliomas. Nat. Rev. Neurol., 2010, 6(12), 695-701.
[http://dx.doi.org/10.1038/nrneurol.2010.159] [PMID: 21045797]
[37]
Zarco, N.; Norton, E.; Quiñones-Hinojosa, A.; Guerrero-Cázares, H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell. Mol. Life Sci., 2019, 76(18), 3553-3570.
[http://dx.doi.org/10.1007/s00018-019-03149-7] [PMID: 31101934]
[38]
Komori, T. The 2016 who classification of tumours of the central nervous system: The major points of revision. Neurol. Med. Chir. (Tokyo), 2017, 57(7), 301-311.
[http://dx.doi.org/10.2176/nmc.ra.2017-0010] [PMID: 28592714]
[39]
Shi, Y.; Ping, Y.F.; Zhang, X.; Bian, X.W. Hostile takeover: Glioma stem cells recruit TAMs to support tumor progression. Cell Stem Cell, 2015, 16(3), 219-220.
[http://dx.doi.org/10.1016/j.stem.2015.02.008] [PMID: 25748928]
[40]
Svensson, A.; Özen, I.; Genové, G.; Paul, G.; Bengzon, J. Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS One, 2015, 10(4)e0123553
[http://dx.doi.org/10.1371/journal.pone.0123553] [PMID: 25875288]
[41]
Erreni, M.; Solinas, G.; Brescia, P.; Osti, D.; Zunino, F.; Colombo, P.; Destro, A.; Roncalli, M.; Mantovani, A.; Draghi, R.; Levi, D.; Rodriguez, Y; Baena, R.; Gaetani, P.; Pelicci, G.; Allavena, P. Human glioblastoma tumours and neural cancer stem cells express the chemokine CX3CL1 and its receptor CX3CR1. Eur. J. of Cancer (Oxford, England : 1990),, 2010, 46(18), 3383-3392.
[42]
Chae, M.; Peterson, T.E.; Balgeman, A.; Chen, S.; Zhang, L.; Renner, D.N.; Johnson, A.J.; Parney, I.F. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-oncol., 2015, 17(7), 978-991.
[http://dx.doi.org/10.1093/neuonc/nou343] [PMID: 25537019]
[43]
Roszman, T.; Elliott, L.; Brooks, W. Modulation of T-cell function by gliomas. Immunol. Today, 1991, 12(10), 370-374.
[http://dx.doi.org/10.1016/0167-5699(91)90068-5] [PMID: 1958290]
[44]
Bloch, O.; Crane, C.; Kaur, R.; Safaee, M.; Rutkowski, M.; Parsa, A. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin. Cancer Res., 2013, 19(12), 3165-3175.
[45]
Okada, H.; Butterfield, L.; Hamilton, R.; Hoji, A.; Sakaki, M.; Ahn, B.; Kohanbash, G.; Drappatz, J.; Engh, J.; Amankulor, N.; Lively, M.; Chan, M.; Salazar, A.; Shaw, E.; Potter, D.; Lieberman, F. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin. Cancer Res., 2015, 21(2), 286-294.
[46]
Brown, C.E.; Alizadeh, D.; Starr, R.; Weng, L.; Wagner, J.R.; Naranjo, A.; Ostberg, J.R.; Blanchard, M.S.; Kilpatrick, J.; Simpson, J.; Kurien, A.; Priceman, S.J.; Wang, X.; Harshbarger, T.L.; D’Apuzzo, M.; Ressler, J.A.; Jensen, M.C.; Barish, M.E.; Chen, M.; Portnow, J.; Forman, S.J.; Badie, B. Regression of glioblastoma after chimeric antigen receptor t-cell therapy. N. Engl. J. Med., 2016, 375(26), 2561-2569.
[http://dx.doi.org/10.1056/NEJMoa1610497] [PMID: 28029927]
[47]
Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; Keil, M.; Balß, J.; Rauschenbach, K.; Grabowska, A.K.; Vogler, I.; Diekmann, J.; Trautwein, N.; Eichmüller, S.B.; Okun, J.; Stevanović, S.; Riemer, A.B.; Sahin, U.; Friese, M.A.; Beckhove, P.; von Deimling, A.; Wick, W.; Platten, M. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512(7514), 324-327.
[http://dx.doi.org/10.1038/nature13387] [PMID: 25043048]
[48]
Ichimura, K. Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol., 2012, 29(3), 131-139.
[http://dx.doi.org/10.1007/s10014-012-0090-4] [PMID: 22399191]
[49]
Berghoff, A.S.; Kiesel, B.; Widhalm, G.; Wilhelm, D.; Rajky, O.; Kurscheid, S.; Kresl, P.; Wöhrer, A.; Marosi, C.; Hegi, M.E.; Preusser, M. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-oncol., 2017, 19(11), 1460-1468.
[http://dx.doi.org/10.1093/neuonc/nox054] [PMID: 28531337]
[50]
Chongsathidkiet, P.; Jackson, C.; Koyama, S.; Loebel, F.; Cui, X.; Farber, S.H.; Woroniecka, K.; Elsamadicy, A.A.; Dechant, C.A.; Kemeny, H.R.; Sanchez-Perez, L.; Cheema, T.A.; Souders, N.C.; Herndon, J.E.; Coumans, J.V.; Everitt, J.I.; Nahed, B.V.; Sampson, J.H.; Gunn, M.D.; Martuza, R.L.; Dranoff, G.; Curry, W.T.; Fecci, P.E. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med., 2018, 24(9), 1459-1468.
[http://dx.doi.org/10.1038/s41591-018-0135-2] [PMID: 30104766]
[51]
Quail, D.F.; Joyce, J.A. The microenvironmental landscape of brain tumors. Cancer Cell, 2017, 31(3), 326-341.
[http://dx.doi.org/10.1016/j.ccell.2017.02.009] [PMID: 28292436]
[52]
Chen, Z.; Feng, X.; Herting, C.J.; Garcia, V.A.; Nie, K.; Pong, W.W.; Rasmussen, R.; Dwivedi, B.; Seby, S.; Wolf, S.A.; Gutmann, D.H.; Hambardzumyan, D. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res., 2017, 77(9), 2266-2278.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2310] [PMID: 28235764]
[53]
Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol., 2018, 18(4), 225-242.
[http://dx.doi.org/10.1038/nri.2017.125] [PMID: 29151590]
[54]
Massara, M.; Persico, P.; Bonavita, O.; Mollica Poeta, V.; Locati, M.; Simonelli, M.; Bonecchi, R. Neutrophils in gliomas. Front. Immunol., 2017, 8, 1349.
[http://dx.doi.org/10.3389/fimmu.2017.01349] [PMID: 29123517]
[55]
Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, 16(3), 183-194.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[56]
Broz, M.L.; Binnewies, M.; Boldajipour, B.; Nelson, A.E.; Pollack, J.L.; Erle, D.J.; Barczak, A.; Rosenblum, M.D.; Daud, A.; Barber, D.L.; Amigorena, S.; Van’t Veer, L.J.; Sperling, A.I.; Wolf, D.M.; Krummel, M.F. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell, 2014, 26(5), 638-652.
[http://dx.doi.org/10.1016/j.ccell.2014.09.007] [PMID: 25446897]
[57]
Alban, T.J.; Alvarado, A.G.; Sorensen, M.D.; Bayik, D.; Volovetz, J.; Serbinowski, E.; Mulkearns-Hubert, E.E.; Sinyuk, M.; Hale, J.S.; Onzi, G.R.; McGraw, M.; Huang, P.; Grabowski, M.M.; Wathen, C.A.; Ahluwalia, M.S.; Radivoyevitch, T.; Kornblum, H.I.; Kristensen, B.W.; Vogelbaum, M.A.; Lathia, J.D. Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 2018, 3(21)122264
[http://dx.doi.org/10.1172/jci.insight.122264] [PMID: 30385717]
[58]
Platten, M.; Reardon, D.A. Concepts for immunotherapies in gliomas. Semin. Neurol., 2018, 38(1), 62-72.
[http://dx.doi.org/10.1055/s-0037-1620274] [PMID: 29548053]
[59]
Heimberger, A.B.; Sun, W.; Hussain, S.F.; Dey, M.; Crutcher, L.; Aldape, K.; Gilbert, M.; Hassenbusch, S.J.; Sawaya, R.; Schmittling, B.; Archer, G.E.; Mitchell, D.A.; Bigner, D.D.; Sampson, J.H. Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: Case study. Neuro-oncol., 2008, 10(1), 98-103.
[http://dx.doi.org/10.1215/15228517-2007-046] [PMID: 18079360]
[60]
Wang, S.S.; Bandopadhayay, P.; Jenkins, M.R. Towards immunotherapy for pediatric brain tumors. Trends Immunol., 2019, 40(8), 748-761.
[http://dx.doi.org/10.1016/j.it.2019.05.009] [PMID: 31229353]
[61]
Chung, A.S.; Lee, J.; Ferrara, N. Targeting the tumour vasculature: Insights from physiological angiogenesis. Nat. Rev. Cancer, 2010, 10(7), 505-514.
[http://dx.doi.org/10.1038/nrc2868] [PMID: 20574450]
[62]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[63]
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 2005, 438(7070), 932-936.
[http://dx.doi.org/10.1038/nature04478] [PMID: 16355210]
[64]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[65]
Liao, D.; Johnson, R.S. Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev., 2007, 26(2), 281-290.
[http://dx.doi.org/10.1007/s10555-007-9066-y] [PMID: 17603752]
[66]
Lin, J.L.; Wang, M.J.; Lee, D.; Liang, C.C.; Lin, S. Hypoxia-inducible factor-1alpha regulates matrix metalloproteinase-1 activity in human bone marrow-derived mesenchymal stem cells. FEBS Lett., 2008, 582(17), 2615-2619.
[http://dx.doi.org/10.1016/j.febslet.2008.06.033] [PMID: 18588890]
[67]
Petrella, B.L.; Lohi, J.; Brinckerhoff, C.E. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005, 24(6), 1043-1052.
[http://dx.doi.org/10.1038/sj.onc.1208305] [PMID: 15592504]
[68]
Fitsialos, G.; Bourget, I.; Augier, S.; Ginouvès, A.; Rezzonico, R.; Odorisio, T.; Cianfarani, F.; Virolle, T.; Pouysségur, J.; Meneguzzi, G.; Berra, E.; Ponzio, G.; Buscà, R. HIF1 transcription factor regulates laminin-332 expression and keratinocyte migration. J. Cell Sci., 2008, 121(Pt 18), 2992-3001.
[http://dx.doi.org/10.1242/jcs.029256] [PMID: 18713836]
[69]
Wise, D.R.; Ward, P.S.; Shay, J.E.; Cross, J.R.; Gruber, J.J.; Sachdeva, U.M.; Platt, J.M.; DeMatteo, R.G.; Simon, M.C.; Thompson, C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19611-19616.
[http://dx.doi.org/10.1073/pnas.1117773108] [PMID: 22106302]
[70]
Stacker, S.A.; Caesar, C.; Baldwin, M.E.; Thornton, G.E.; Williams, R.A.; Prevo, R.; Jackson, D.G.; Nishikawa, S.; Kubo, H.; Achen, M.G. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med., 2001, 7(2), 186-191.
[http://dx.doi.org/10.1038/84635] [PMID: 11175849]
[71]
Pepper, M.S.; Vassalli, J.D.; Orci, L.; Montesano, R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp. Cell Res., 1993, 204(2), 356-363.
[http://dx.doi.org/10.1006/excr.1993.1043] [PMID: 7679998]
[72]
Rifkin, D.B.; Moscatelli, D. Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol., 1989, 109(1), 1-6.
[http://dx.doi.org/10.1083/jcb.109.1.1] [PMID: 2545723]
[73]
Suri, C.; McClain, J.; Thurston, G.; McDonald, D.M.; Zhou, H.; Oldmixon, E.H.; Sato, T.N.; Yancopoulos, G.D. Increased vascularization in mice overexpressing angiopoietin-1. Science, 1998, 282(5388), 468-471.
[http://dx.doi.org/10.1126/science.282.5388.468] [PMID: 9774272]
[74]
Gleave, M.E.; Hsieh, J.T.; Wu, H.C.; Hong, S.J.; Zhau, H.E.; Guthrie, P.D.; Chung, L.W. Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma. Cancer Res., 1993, 53(21), 5300-5307.
[PMID: 8221665]
[75]
Lakka, S.S.; Rao, J.S. Antiangiogenic therapy in brain tumors. Expert Rev. Neurother., 2008, 8(10), 1457-1473.
[http://dx.doi.org/10.1586/14737175.8.10.1457] [PMID: 18928341]
[76]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[77]
Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427.
[http://dx.doi.org/10.1038/nrd3455] [PMID: 21629292]
[78]
Papetti, M.; Herman, I.M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol., 2002, 282(5), C947-C970.
[http://dx.doi.org/10.1152/ajpcell.00389.2001] [PMID: 11940508]
[79]
Brown, R.C.; Morris, A.P.; O’Neil, R.G. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res., 2007, 1130(1), 17-30.
[http://dx.doi.org/10.1016/j.brainres.2006.10.083] [PMID: 17169347]
[80]
Profaci, C.P.; Munji, R.N.; Pulido, R.S.; Daneman, R. The blood-brain barrier in health and disease: Important unanswered questions. J. Exp. Med., 2020, 217(4)e20190062
[http://dx.doi.org/10.1084/jem.20190062] [PMID: 32211826]
[81]
Zhou, Y.; Peng, Z.; Seven, E.; Leblanc, R. Crossing the blood-brain barrier with nanoparticles. J. of Control. Rel, 2018, 270, 290-303.
[82]
Green, M.; Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6), 1179-1188.
[http://dx.doi.org/10.1016/0092-8674(88)90262-0] [PMID: 2849509]
[83]
Park, J.; Ryu, J.; Kim, K.A.; Lee, H.J.; Bahn, J.H.; Han, K.; Choi, E.Y.; Lee, K.S.; Kwon, H.Y.; Choi, S.Y. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol., 2002, 83(Pt 5), 1173-1181.
[http://dx.doi.org/10.1099/0022-1317-83-5-1173] [PMID: 11961273]
[84]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[http://dx.doi.org/10.1016/S0021-9258(17)34080-2] [PMID: 8144628]
[85]
Ye, J.; Liu, E.; Yu, Z.; Pei, X.; Chen, S.; Zhang, P.; Shin, M.C.; Gong, J.; He, H.; Yang, V.C. CPP-assisted intracellular drug delivery, what is next? Int. J. Mol. Sci., 2016, 17(11)E1892
[http://dx.doi.org/10.3390/ijms17111892] [PMID: 27854260]
[86]
Traub, L.M. Tickets to ride: Selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 583-596.
[http://dx.doi.org/10.1038/nrm2751] [PMID: 19696796]
[87]
De Coupade, C.; Fittipaldi, A.; Chagnas, V.; Michel, M.; Carlier, S.; Tasciotti, E.; Darmon, A.; Ravel, D.; Kearsey, J.; Giacca, M.; Cailler, F. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem. J., 2005, 390(Pt 2), 407-418.
[http://dx.doi.org/10.1042/BJ20050401] [PMID: 15859953]
[88]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[89]
Wender, P.A.; Mitchell, D.J.; Pattabiraman, K.; Pelkey, E.T.; Steinman, L.; Rothbard, J.B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13003-13008.
[http://dx.doi.org/10.1073/pnas.97.24.13003] [PMID: 11087855]
[90]
Cui, Y.; Sui, J.; He, M.; Xu, Z.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X. Reduction-degradable polymeric micelles decorated with parg for improving anticancer drug delivery efficacy. ACS Appl. Mater. Interfaces, 2016, 8(3), 2193-2203.
[http://dx.doi.org/10.1021/acsami.5b10867] [PMID: 26720795]
[91]
Jiao, X.; Yu, Y.; Meng, J.; He, M.; Zhang, C.J.; Geng, W.; Ding, B.; Wang, Z.; Ding, X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm. Sin. B, 2019, 9(2), 381-396.
[http://dx.doi.org/10.1016/j.apsb.2018.12.001] [PMID: 30972284]
[92]
Zaro, J.L.; Shen, W. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front. Chem. Eng. China, 2015, 9(4), 407-427.
[93]
Jiang, Y.; Wang, X.; Liu, X.; Lv, W.; Zhang, H.; Zhang, M.; Li, X.; Xin, H.; Xu, Q. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9(1), 211-217.
[http://dx.doi.org/10.1021/acsami.6b13805] [PMID: 27976583]
[94]
Youn, P.; Chen, Y.; Furgeson, D.Y. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol. Pharm., 2014, 11(2), 486-495.
[http://dx.doi.org/10.1021/mp400446v] [PMID: 24387132]
[95]
Sánchez-Navarro, M.; Teixidó, M.; Giralt, E. Jumping hurdles: Peptides able to overcome biological barriers. Acc. Chem. Res., 2017, 50(8), 1847-1854.
[http://dx.doi.org/10.1021/acs.accounts.7b00204] [PMID: 28715199]
[96]
Rhee, M.; Davis, P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J. Biol. Chem., 2006, 281(2), 1233-1240.
[http://dx.doi.org/10.1074/jbc.M509813200] [PMID: 16272160]
[97]
Lakkadwala, S.; Singh, J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces, 2019, 173, 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[98]
Srinivasarao, M.; Low, P.S. Ligand-targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
[99]
McGregor, D.P. Discovering and improving novel peptide therapeutics. Curr. Opin. Pharmacol., 2008, 8(5), 616-619.
[http://dx.doi.org/10.1016/j.coph.2008.06.002] [PMID: 18602024]
[100]
Carpentier, M.; Descamps, L.; Allain, F.; Denys, A.; Durieux, S.; Fenart, L.; Kieda, C.; Cecchelli, R.; Spik, G. Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier. J. Neurochem., 1999, 73(1), 260-270.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730260.x] [PMID: 10386979]
[101]
Pardridge, W.M. Blood-brain barrier biology and methodology. J. Neurovirol., 1999, 5(6), 556-569.
[http://dx.doi.org/10.3109/13550289909021285] [PMID: 10602397]
[102]
Tsuji, A.; Tamai, I. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 1999, 36(2-3), 277-290.
[http://dx.doi.org/10.1016/S0169-409X(98)00084-2] [PMID: 10837720]
[103]
Demeule, M.; Currie, J.C.; Bertrand, Y.; Ché, C.; Nguyen, T.; Régina, A.; Gabathuler, R.; Castaigne, J.P.; Béliveau, R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J. Neurochem., 2008, 106(4), 1534-1544.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05492.x] [PMID: 18489712]
[104]
Demeule, M.; Régina, A.; Ché, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J.P.; Béliveau, R. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther., 2008, 324(3), 1064-1072.
[http://dx.doi.org/10.1124/jpet.107.131318] [PMID: 18156463]
[105]
Tian, X.; Nyberg, S.; Sharp, S. P.; Madsen, J.; Daneshpour, N.; Armes, S.P.; Berwick, J.; Azzouz, M.; Shaw, P.; Abbott, N.J.; Battaglia, G. LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Sci. Rep., 2015, 5, 11990.
[http://dx.doi.org/10.1038/srep11990] [PMID: 26189707]
[106]
Kim, J.; Shin, D.; Kim, J. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. of Control. Rel, 2018, 269, 245-257.
[107]
Drappatz, J.; Brenner, A.; Wong, E.; Eichler, A.; Schiff, D.; Groves, M.; Mikkelsen, T.; Rosenfeld, S.; Sarantopoulos, J.; Meyers, C.; Fielding, R.; Elian, K.; Wang, X.; Lawrence, B.; Shing, M.; Kelsey, S.; Castaigne, J.; Wen, P. Phase I study of GRN1005 in recurrent malignant glioma. Clin. Cancer Res., 2013, 19(6), 1567-1576.
[108]
Fu, S.; Liang, M.; Wang, Y.; Cui, L.; Gao, C.; Chu, X.; Liu, Q.; Feng, Y.; Gong, W.; Yang, M.; Li, Z.; Yang, C.; Xie, X.; Yang, Y.; Gao, C. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces, 2019, 11(2), 1841-1854.
[http://dx.doi.org/10.1021/acsami.8b18664] [PMID: 30582685]
[109]
Hua, H.; Zhang, X.; Mu, H.; Meng, Q.; Jiang, Y.; Wang, Y.; Lu, X.; Wang, A.; Liu, S.; Zhang, Y.; Wan, Z.; Sun, K. RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy. Int. J. Pharm., 2018, 543(1-2), 179-189.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.028] [PMID: 29555442]
[110]
Zhan, C.; Meng, Q.; Li, Q.; Feng, L.; Zhu, J.; Lu, W. Cyclic RGD-polyethylene glycol-polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem. Asian J., 2012, 7(1), 91-96.
[http://dx.doi.org/10.1002/asia.201100570] [PMID: 22072592]
[111]
Kim, Y.M.; Park, S.C.; Jang, M.K. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr. Polym., 2017, 174, 1059-1068.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.035] [PMID: 28821028]
[112]
Bogdanowich-Knipp, S.; Chakrabarti, S.; Williams, T.; Dillman, R.; Siahaan, T. Solution stability of linear vs cyclic RGD peptides. The J. of Peptide Res, 1999, 53(5), 530-541.
[113]
Lu, Y.; Han, S.; Zheng, H.; Ma, R.; Ping, Y.; Zou, J.; Tang, H.; Zhang, Y.; Xu, X.; Li, F. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. Int. J. Nanomedicine, 2018, 13, 5937-5952.
[http://dx.doi.org/10.2147/IJN.S175418] [PMID: 30323584]
[114]
Huang, N.; Cheng, S.; Zhang, X.; Tian, Q.; Pi, J.; Tang, J.; Huang, Q.; Wang, F.; Chen, J.; Xie, Z.; Xu, Z.; Chen, W.; Zheng, H.; Cheng, Y. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine (Lond.), 2017, 13(1), 83-93.
[http://dx.doi.org/10.1016/j.nano.2016.08.029] [PMID: 27682740]
[115]
Treps, L. EnLIGHTenment of tumor vessel normalization and immunotherapy in glioblastoma. J. Pathol., 2018, 246(1), 3-6.
[http://dx.doi.org/10.1002/path.5103] [PMID: 29876930]
[116]
Zhou, M.; Jiang, N.; Fan, J.; Fu, S.; Luo, H.; Su, P.; Zhang, M.; Shi, H.; Zeng, J.; Huang, Y.; Li, Y.; Shen, H.; Zhang, A.; Li, R.HK (R)-modified pH-sensitive self-assembled nanoparticles delivering small interfering RNA targeting hepatoma-derived growth factor for malignant glioma treatment. J. of Control. Rel, 2019, 310, 24-35.
[117]
Tian, Y.; Mi, G.; Chen, Q.; Chaurasiya, B.; Li, Y.; Shi, D.; Zhang, Y.; Webster, T.J.; Sun, C.; Shen, Y. Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for ph-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl. Mater. Interfaces, 2018, 10(50), 43411-43428.
[http://dx.doi.org/10.1021/acsami.8b15147] [PMID: 30508486]
[118]
Wang, B.; Wu, W.; Lu, H.; Wang, Z.; Xin, H. Enhanced anti-tumor of pep-1 modified superparamagnetic iron oxide/ptx loaded polymer nanoparticles. Front. Pharmacol., 2019, 9, 1556.
[http://dx.doi.org/10.3389/fphar.2018.01556] [PMID: 30723412]
[119]
Säälik, P.; Lingasamy, P.; Toome, K.; Mastandrea, I.; Rousso-Noori, L.; Tobi, A.; Simón-Gracia, L.; Hunt, H.; Paiste, P.; Kotamraju, V.R.; Bergers, G.; Asser, T.; Rätsep, T.; Ruoslahti, E.; Bjerkvig, R.; Friedmann-Morvinski, D.; Teesalu, T. Peptide-guided nanoparticles for glioblastoma targeting. J. Control. Release, 2019, 308, 109-118.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.018] [PMID: 31255690]
[120]
Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med., 2017, 23(10), 1124-1134.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[121]
Wang, X.; Meng, N.; Wang, S.; Zhang, Y.; Lu, L.; Wang, R.; Ruan, H.; Jiang, K.; Wang, H.; Ran, D.; Zhan, C.; Yu, K.; Burgess, D.J.; Lu, W. Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. J. Control. Release, 2019, 316, 381-392.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.005] [PMID: 31730912]
[122]
Ozdemir-Kaynak, E.; Qutub, A.A.; Yesil-Celiktas, O. Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy. Front. Physiol., 2018, 9, 170.
[http://dx.doi.org/10.3389/fphys.2018.00170] [PMID: 29615917]
[123]
Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis., 2016, 3(3), 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[124]
Chamberlain, M.C. Temozolomide: Therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev. Neurother., 2010, 10(10), 1537-1544.
[http://dx.doi.org/10.1586/ern.10.32] [PMID: 20925470]
[125]
Abdel-Salam, M.A.L.; Carvalho-Tavares, J.; Gomes, K.S.; Teixeira-Carvalho, A.; Kitten, G.T.; Nyffeler, J.; Dias, F.F.; Dos Reis, P.V.M.; Pimenta, A.M.C.; Leist, M.; de Lima, M.E.; de Souza-Fagundes, E.M. The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytotoxic to U-87 MG glioblastoma cells. Amino Acids, 2019, 51(3), 433-449.
[http://dx.doi.org/10.1007/s00726-018-2678-4] [PMID: 30449002]
[126]
Su, B.C.; Pan, C.Y.; Chen, J.Y. Antimicrobial peptide tp4 induces ros-mediated necrosis by triggering mitochondrial dysfunction in wild-type and mutant p53 glioblastoma cells. Cancers (Basel), 2019, 11(2)E171
[http://dx.doi.org/10.3390/cancers11020171] [PMID: 30717309]
[127]
Debinski, W.; Gibo, D.M.; Hulet, S.W.; Connor, J.R.; Gillespie, G.Y. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin. Cancer Res., 1999, 5(5), 985-990.
[PMID: 10353730]
[128]
Bernard, J.; Treton, D.; Vermot-Desroches, C.; Boden, C.; Horellou, P.; Angevin, E.; Galanaud, P.; Wijdenes, J.; Richard, Y. Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Ralpha2 as a decoy receptor for IL13. Lab. Invest., 2001, 81(9), 1223-1231.
[http://dx.doi.org/10.1038/labinvest.3780336] [PMID: 11555670]
[129]
Beard, R.E.; Abate-Daga, D.; Rosati, S.F.; Zheng, Z.; Wunderlich, J.R.; Rosenberg, S.A.; Morgan, R.A. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin. Cancer Res., 2013, 19(18), 4941-4950.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1253] [PMID: 24021875]
[130]
Bartolomé, R.A.; Jaén, M.; Casal, J.I. An IL13Rα2 peptide exhibits therapeutic activity against metastatic colorectal cancer. Br. J. Cancer, 2018, 119(8), 940-949.
[http://dx.doi.org/10.1038/s41416-018-0259-7] [PMID: 30318506]
[131]
Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res., 2001, 61(21), 7709-7712.
[PMID: 11691780]
[132]
Javadpour, M.M.; Juban, M.M.; Lo, W.C.J.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; McLaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem., 1996, 39(16), 3107-3113.
[http://dx.doi.org/10.1021/jm9509410] [PMID: 8759631]
[133]
Alves, I. D.; Carré, M.; Montero, M. P.; Castano, S.; Lecomte, S.; Marquant, R.; Lecorché, P.; Burlina, F.; Schatz, C.; Sagan, S. A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. BBA – biomembranes, 2014, 1838(8), 2087-2098.,
[134]
Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; Bredesen, D.E.; Pasqualini, R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med., 1999, 5(9), 1032-1038.
[http://dx.doi.org/10.1038/12469] [PMID: 10470080]
[135]
Agemy, L.; Kotamraju, V.R.; Friedmann-Morvinski, D.; Sharma, S.; Sugahara, K.N.; Ruoslahti, E. Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. Mol. Ther., 2013, 21(12), 2195-2204.
[http://dx.doi.org/10.1038/mt.2013.191] [PMID: 23959073]
[136]
Bocquet, A.; Berges, R.; Frank, R.; Robert, P.; Peterson, A.C.; Eyer, J. Neurofilaments bind tubulin and modulate its polymerization. J. Neurosci., 2009, 29(35), 11043-11054.
[http://dx.doi.org/10.1523/JNEUROSCI.1924-09.2009] [PMID: 19726663]
[137]
Balzeau, J.; Pinier, M.; Berges, R.; Saulnier, P.; Benoit, J.P.; Eyer, J. The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells. Biomaterials, 2013, 34(13), 3381-3389.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.068] [PMID: 23391494]
[138]
Berges, R.; Balzeau, J.; Peterson, A.; Eyer, J. A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis. Mol. Ther., 2012, 20(7), 1367-1377.
[139]
Emens, L.A.; Ascierto, P.A.; Darcy, P.K.; Demaria, S.; Eggermont, A.M.M.; Redmond, W.L.; Seliger, B.; Marincola, F.M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer, 2017, 81, 116-129.
[http://dx.doi.org/10.1016/j.ejca.2017.01.035] [PMID: 28623775]
[140]
Lim, M.; Xia, Y.; Bettegowda, C.; Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol., 2018, 15(7), 422-442.
[http://dx.doi.org/10.1038/s41571-018-0003-5] [PMID: 29643471]
[141]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[142]
Han, S.; Liu, Y.; Cai, S.J.; Qian, M.; Ding, J.; Larion, M.; Gilbert, M.R.; Yang, C. IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. Br. J. Cancer, 2020, 122(11), 1580-1589.
[http://dx.doi.org/10.1038/s41416-020-0814-x] [PMID: 32291392]
[143]
Kwok, D.; Okada, H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J. Neurooncol., 2020, 147(2), 281-295.
[http://dx.doi.org/10.1007/s11060-020-03450-7] [PMID: 32185647]
[144]
Weller, M.; Roth, P.; Preusser, M.; Wick, W.; Reardon, D.A.; Platten, M.; Sampson, J.H. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat. Rev. Neurol., 2017, 13(6), 363-374.
[http://dx.doi.org/10.1038/nrneurol.2017.64] [PMID: 28497804]
[145]
Picca, A.; Berzero, G.; Di Stefano, A.L.; Sanson, M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev. Mol. Diagn., 2018, 18(12), 1041-1051.
[http://dx.doi.org/10.1080/14737159.2018.1548935] [PMID: 30427756]
[146]
Pellegatta, S.; Valletta, L.; Corbetta, C.; Patanè, M.; Zucca, I.; Riccardi Sirtori, F.; Bruzzone, M.G.; Fogliatto, G.; Isacchi, A.; Pollo, B.; Finocchiaro, G. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol. Commun., 2015, 3, 4.
[http://dx.doi.org/10.1186/s40478-014-0180-0] [PMID: 25849072]
[147]
Platten, M.; Schilling, D.; Bunse, T.; Sahm, F.; Hueckelhoven, A.; Schenkel, I.; Stevanovic, S.; Schmitt, A.; Laumann, M.; Steinbach, J. P. .A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: A first-inman multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16). J. of Clin. Oncol., 2016, 34(15_suppl), TPS2082-TPS2082.,
[148]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[149]
Platten, M. EGFRvIII vaccine in glioblastoma-InACT-IVe or not ReACTive enough? Neuro-oncol., 2017, 19(11), 1425-1426.
[http://dx.doi.org/10.1093/neuonc/nox167] [PMID: 29059447]
[150]
Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F.; Drappatz, J.; O’Rourke, D.M.; Wong, M.; Hamilton, M.G.; Finocchiaro, G.; Perry, J.; Wick, W.; Green, J.; He, Y.; Turner, C.D.; Yellin, M.J.; Keler, T.; Davis, T.A.; Stupp, R.; Sampson, J.H. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol., 2017, 18(10), 1373-1385.
[http://dx.doi.org/10.1016/S1470-2045(17)30517-X] [PMID: 28844499]
[151]
Swartz, A.M.; Li, Q.J.; Sampson, J.H. Rindopepimut: A promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy, 2014, 6(6), 679-690.
[http://dx.doi.org/10.2217/imt.14.21] [PMID: 25186601]
[152]
Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; O’Rourke, D.M.; Tran, D.D.; Fink, K.L.; Nabors, L.B.; Li, G.; Bota, D.A.; Lukas, R.V.; Ashby, L.S.; Duic, J.P.; Mrugala, M.M.; Cruickshank, S.; Vitale, L.; He, Y.; Green, J.A.; Yellin, M.J.; Turner, C.D.; Keler, T.; Davis, T.A.; Sampson, J.H. Rindopepimut with bevacizumab for patients with relapsed egfrviii-expressing glioblastoma (ReACT): Results of a double-blind randomized phase ii trial. Clin. Cancer Res., 2020, 26(7), 1586-1594.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1140] [PMID: 32034072]
[153]
Elsamadicy, A.A.; Chongsathidkiet, P.; Desai, R.; Woroniecka, K.; Farber, S.H.; Fecci, P.E.; Sampson, J.H. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin. Biol. Ther., 2017, 17(4), 507-513.
[http://dx.doi.org/10.1080/14712598.2017.1299705] [PMID: 28274144]
[154]
He, P.; Chen, W.; Qiu, X.X.; Xi, Y.B.; Guan, H.; Xia, J. A rare high-grade glioma with a histone h3 k27m mutation in the hypothalamus of an adult patient. World Neurosurg., 2019, 128, 527-531.
[http://dx.doi.org/10.1016/j.wneu.2019.04.172] [PMID: 31048046]
[155]
Karremann, M.; Gielen, G.H.; Hoffmann, M.; Wiese, M.; Colditz, N.; Warmuth-Metz, M.; Bison, B.; Claviez, A.; van Vuurden, D.G.; von Bueren, A.O.; Gessi, M.; Kühnle, I.; Hans, V.H.; Benesch, M.; Sturm, D.; Kortmann, R.D.; Waha, A.; Pietsch, T.; Kramm, C.M. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-oncol., 2018, 20(1), 123-131.
[http://dx.doi.org/10.1093/neuonc/nox149] [PMID: 29016894]
[156]
Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y.H.; Woodfin, A.R.; Misharin, A.V.; Abshiru, N.A.; Lulla, R.R.; Saratsis, A.M.; Kelleher, N.L.; James, C.D.; Shilatifard, A. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med., 2017, 23(4), 493-500.
[http://dx.doi.org/10.1038/nm.4296] [PMID: 28263307]
[157]
Nejo, T.; Yamamichi, A.; Almeida, N.D.; Goretsky, Y.E.; Okada, H. Tumor antigens in glioma. Semin. Immunol., 2020, 47101385
[http://dx.doi.org/10.1016/j.smim.2020.101385] [PMID: 32037183]
[158]
Sasada, T.; Noguchi, M.; Yamada, A.; Itoh, K. Personalized peptide vaccination: A novel immunotherapeutic approach for advanced cancer. Hum. Vaccin. Immunother., 2012, 8(9), 1309-1313.
[http://dx.doi.org/10.4161/hv.20988] [PMID: 22894962]
[159]
Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239.
[http://dx.doi.org/10.1038/s41586-018-0792-9] [PMID: 30568305]
[160]
Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanović, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; Thor Straten, P.; Martínez-Ricarte, F.; Ponsati, B.; Okada, H.; Lassen, U.; Admon, A.; Ottensmeier, C.H.; Ulges, A.; Kreiter, S.; von Deimling, A.; Skardelly, M.; Migliorini, D.; Kroep, J.R.; Idorn, M.; Rodon, J.; Piró, J.; Poulsen, H.S.; Shraibman, B.; McCann, K.; Mendrzyk, R.; Löwer, M.; Stieglbauer, M.; Britten, C.M.; Capper, D.; Welters, M.J.P.; Sahuquillo, J.; Kiesel, K.; Derhovanessian, E.; Rusch, E.; Bunse, L.; Song, C.; Heesch, S.; Wagner, C.; Kemmer-Brück, A.; Ludwig, J.; Castle, J.C.; Schoor, O.; Tadmor, A.D.; Green, E.; Fritsche, J.; Meyer, M.; Pawlowski, N.; Dorner, S.; Hoffgaard, F.; Rössler, B.; Maurer, D.; Weinschenk, T.; Reinhardt, C.; Huber, C.; Rammensee, H.G.; Singh-Jasuja, H.; Sahin, U.; Dietrich, P.Y.; Wick, W. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738), 240-245.
[http://dx.doi.org/10.1038/s41586-018-0810-y] [PMID: 30568303]
[161]
Yang, J.; Li, Y.; Zhang, T.; Zhang, X. Development of bioactive materials for glioblastoma therapy. Bioact. Mater., 2016, 1(1), 29-38.
[http://dx.doi.org/10.1016/j.bioactmat.2016.03.003] [PMID: 29744393]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy