Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Therapeutic Potential of Targeting the Angiotensin Pathway as a Novel Therapeutic Approach to Ameliorating Post-surgical Adhesions

Author(s): Ghazaleh Khalili-Tanha, Nima Khalili-Tanha, Seyedeh Elnaz Nazari, Negin Chaeichi-Tehrani, Majid Khazaei, Mohsen Aliakbarian, Seyed Mahdi Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns and Amir Avan*

Volume 28, Issue 3, 2022

Published on: 25 June, 2021

Page: [180 - 186] Pages: 7

DOI: 10.2174/1381612827666210625153011

Price: $65

conference banner
Abstract

Background: Post-surgical adhesion is a common complication after abdominal or pelvic surgeries. Despite improvements in surgical techniques or the application of physical barriers, few improvements have been achieved. It causes bowel obstruction, pelvic pain, and infertility in women and has an adverse effect on the quality of life. Renin-Angiotensin System (RAS) is traditionally considered a blood pressure regulator. However, recent studies have indicated that the RAS plays a vital role in other processes, including oxidative stress, fibrosis, proliferation, inflammation, and wound healing. Angiotensin II (Ang II) is the main upstream effector of the RAS that can bind to the AT1 receptor (ATIR). A growing body of evidence has revealed that targeting Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II type 1 Receptor Blockers (ARBs), and Direct Renin Inhibitors (DRIs) can prevent post-surgical adhesions. Here we provide an overview of the therapeutic effect of RAS antagonists for adhesion.

Methods: PubMed, EMBASE, and the Cochrane library were reviewed to identify potential agents targeting the RAS system as a potential approach for post-surgical adhesion.

Results: Available evidence suggests the involvement of the RAS signaling pathway in inflammation, proliferation, and fibrosis pathways as well as in post-surgical adhesions. Several FDA-approved drugs are used for targeting the RAS system, and some of them are being tested in different models to reduce fibrosis and improve adhesion after surgery, including telmisartan, valsartan, and enalapril.

Conclusion: Identification of the pathological causes of post-surgical adhesion and the potential role of targeting the Renin-Angiotensin System may help to prevent this problem. Based on the pathological function of RAS signaling after surgeries, the administration of ARBs may be considered a novel and efficient approach to prevent postsurgical adhesions. Pre-clinical and clinical studies should be carried out to have better information on the clinical significance of this therapy against post-surgical adhesion formation.

Keywords: Renin-Angiotensin system, ACEIs, ARBs, postsurgical adhesion, fibrosis, inflammation.

[1]
Kim SG, Song KY, Lee HH, et al. Efficacy of an antiadhesive agent for the prevention of intra-abdominal adhesions after radical gastrectomy: A prospective randomized, multicenter trial. Medicine 2019; 98(19): e15141.
[http://dx.doi.org/10.1097/MD.0000000000015141] [PMID: 31083151]
[2]
Brüggmann D, Tchartchian G, Wallwiener M, Münstedt K, Tinneberg H-R, Hackethal A. Intra-abdominal adhesions: Definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int 2010; 107(44): 769-75.
[PMID: 21116396]
[3]
Diamond MP. Incidence of postsurgical adhesions. In: Dezerega GS, Ed. Peritoneal surgery. Springer 2000; pp. 217-20.
[4]
Holmdahl L. Making and covering of surgical footprints. Lancet 1999; 353(9163): 1456-7.
[http://dx.doi.org/10.1016/S0140-6736(99)90061-2] [PMID: 10232305]
[5]
Ellis H. The clinical significance of adhesions: Focus on intestinal obstruction. Eur J Surg Suppl 1997; (577): 5-9.
[6]
Coleman MG, McLain AD, Moran BJ. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis Colon Rectum 2000; 43(9): 1297-9.
[http://dx.doi.org/10.1007/BF02237441] [PMID: 11005501]
[7]
Ray NF, Larsen JW Jr, Stillman RJ, Jacobs RJ. Economic impact of hospitalizations for lower abdominal adhesiolysis in the United States in 1988. Surg Gynecol Obstet 1993; 176(3): 271-6.
[PMID: 8438200]
[8]
Tabibian N, Swehli E, Boyd A, Umbreen A, Tabibian JH. Abdominal adhesions: A practical review of an often overlooked entity. Ann Med Surg 2017; 15: 9-13.
[http://dx.doi.org/10.1016/j.amsu.2017.01.021] [PMID: 28203370]
[9]
Wu W, Cheng R, das Neves J, et al. Advances in biomaterials for preventing tissue adhesion. J Control Release 2017; 261: 318-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.020] [PMID: 28652071]
[10]
Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 2010; 50: 439-65.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105610] [PMID: 20055710]
[11]
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev 2010; 90(2): 607-73.
[http://dx.doi.org/10.1152/physrev.00011.2009] [PMID: 20393195]
[12]
Llorens-Cortes C, Greenberg B, Huang H, Corvol P. Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension 1994; 24(5): 538-48.
[http://dx.doi.org/10.1161/01.HYP.24.5.538] [PMID: 7525476]
[13]
Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: Etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg 2001; 18(4): 260-73.
[http://dx.doi.org/10.1159/000050149] [PMID: 11528133]
[14]
Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure. Curr Hypertens Rep 2018; 20(12): 100.
[http://dx.doi.org/10.1007/s11906-018-0900-0] [PMID: 30291560]
[15]
Hahn AW, Jonas U, Bühler FR, Resink TJ. Activation of human peripheral monocytes by angiotensin II. FEBS Lett 1994; 347(2-3): 178-80.
[http://dx.doi.org/10.1016/0014-5793(94)00531-1] [PMID: 7518396]
[16]
Zhang L, Du J, Hu Z, et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 2009; 20(3): 604-12.
[http://dx.doi.org/10.1681/ASN.2008060628] [PMID: 19158350]
[17]
Meng Y, Chen C, Liu Y, Tian C, Li H-H. Angiotensin II regulates dendritic cells through activation of NF-κB/p65, ERK1/2 and STAT1 pathways. Cell Physiol Biochem 2017; 42(4): 1550-8.
[http://dx.doi.org/10.1159/000479272] [PMID: 28723692]
[18]
Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007; 204(10): 2449-60.
[http://dx.doi.org/10.1084/jem.20070657] [PMID: 17875676]
[19]
Yang S, Li R, Tang L, et al. TLR4-mediated anti-atherosclerosis mechanisms of angiotensin-converting enzyme inhibitor-fosinopril. Cell Immunol 2013; 285(1-2): 38-41.
[http://dx.doi.org/10.1016/j.cellimm.2013.08.003] [PMID: 24044965]
[20]
Fukuda D, Enomoto S, Hirata Y, Nagai R, Sata M. The angiotensin receptor blocker, telmisartan, reduces and stabilizes atherosclerosis in ApoE and AT1aR double deficient mice. Biomed Pharmacother 2010; 64(10): 712-7.
[http://dx.doi.org/10.1016/j.biopha.2010.09.014] [PMID: 20970951]
[21]
Hoshino A, Kawamura YI, Yasuhara M, et al. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J Immunol 2007; 178(8): 5296-304.
[http://dx.doi.org/10.4049/jimmunol.178.8.5296] [PMID: 17404314]
[22]
Siegler AM, Kontopoulos V, Wang CF. Prevention of postoperative adhesions in rabbits with ibuprofen, a nonsteroidal anti-inflammatory agent. Fertil Steril 1980; 34(1): 46-9.
[http://dx.doi.org/10.1016/S0015-0282(16)44838-7] [PMID: 7398907]
[23]
Saed GM, Munkarah AR, Abu-Soud HM, Diamond MP. Hypoxia upregulates cyclooxygenase-2 and prostaglandin E(2) levels in human peritoneal fibroblasts. Fertil Steril 2005; 83(4)(Suppl. 1): 1216-9.
[http://dx.doi.org/10.1016/j.fertnstert.2004.11.037] [PMID: 15831295]
[24]
Futagami A, Ishizaki M, Fukuda Y, Kawana S, Yamanaka N. Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Lab Invest 2002; 82(11): 1503-13.
[http://dx.doi.org/10.1097/01.LAB.0000035024.75914.39] [PMID: 12429810]
[25]
Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004; 1(2): 98-105.
[http://dx.doi.org/10.1038/ncpgasthep0055] [PMID: 16265071]
[26]
Murphy AM, Wong AL, Bezuhly M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenesis Tissue Repair 2015; 8(1): 7.
[http://dx.doi.org/10.1186/s13069-015-0023-z] [PMID: 25949522]
[27]
Ehanire T, Ren L, Bond J, et al. Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction. J Mol Med 2015; 93(3): 289-302.
[http://dx.doi.org/10.1007/s00109-014-1211-9] [PMID: 25345602]
[28]
Yang F, Huang XR, Chung AC, Hou CC, Lai KN, Lan HY. Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. J Pathol 2010; 221(4): 390-401.
[http://dx.doi.org/10.1002/path.2721] [PMID: 20593491]
[29]
Chen L, Chen D-Q, Wang M, et al. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem Biol Interact 2017; 273: 56-72.
[http://dx.doi.org/10.1016/j.cbi.2017.05.025] [PMID: 28578904]
[30]
Imbalzano E, Scarpelli M, Mandraffino G, et al. Combination therapy with aliskiren versus ramipril or losartan added to conventional therapy in patients with type 2 diabetes mellitus, uncontrolled hypertension and microalbuminuria. J Renin Angiotensin Aldosterone Syst 2015; 16(4): 956-64.
[http://dx.doi.org/10.1177/1470320314530018] [PMID: 25070350]
[31]
Page MR. The JNC 8 hypertension guidelines: An in-depth guide. 2014.
[32]
Buscemi CP, Romeo C. Wound healing, angiotensin-converting enzyme inhibition, and collagen-containing products: A case study. J Wound Ostomy Continence Nurs 2014; 41(6): 611-4.
[http://dx.doi.org/10.1097/WON.0000000000000074] [PMID: 25377113]
[33]
Iannello S, Milazzo P, Bordonaro F, Belfiore F. Low-dose enalapril in the treatment of surgical cutaneous hypertrophic scar and keloid-two case reports and literature review. MedGenMed 2006; 8(4): 60.
[PMID: 17415337]
[34]
Fang Q-Q, Wang X-F, Zhao W-Y, et al. Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways. Sci Rep 2018; 8(1): 3332.
[http://dx.doi.org/10.1038/s41598-018-21600-w] [PMID: 29463869]
[35]
Uzun H, Bitik O, Hekimoğlu R, Atilla P, Kaykçoğlu AU, Ur KIL. Angiotensin-converting enzyme inhibitor enalapril reduces formation of hypertrophic scars in a rabbit ear wounding model. Plast Reconstr Surg 2013; 132(3): 361e-71e.
[http://dx.doi.org/10.1097/PRS.0b013e31829acf0a] [PMID: 23985648]
[36]
Vaughan DE. Angiotensin and vascular fibrinolytic balance. Am J Hypertens 2002; 15(1 Pt 2): 3S-8S.
[http://dx.doi.org/10.1016/S0895-7061(01)02273-7] [PMID: 11824873]
[37]
Rudi W-S, Molitor M, Garlapati V, et al. ACE inhibition modulates myeloid hematopoiesis after acute myocardial infarction and reduces cardiac and vascular inflammation in ischemic heart failure. Antioxidants 2021; 10(3): 396.
[http://dx.doi.org/10.3390/antiox10030396] [PMID: 33807982]
[38]
Kostakoglu U, Topcu A, Atak M, Tumkaya L, Mercantepe T, Uydu HA. The protective effects of angiotensin-converting enzyme inhibitor against cecal ligation and puncture-induced sepsis via oxidative stress and inflammation. Life Sci 2020; 241: 117051.
[http://dx.doi.org/10.1016/j.lfs.2019.117051] [PMID: 31733315]
[39]
Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN, Hatano Y. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325(5): 293-302.
[http://dx.doi.org/10.1056/NEJM199108013250501] [PMID: 2057034]
[40]
Tokinaga Y, Kimoto Y, Ogawa K, Mizumoto K, Tange K, Hatano Y. Reduction of adhesion formation by an angiotensin type 1 receptor antagonist. Langenbecks Arch Surg 2011; 396(1): 127-32.
[http://dx.doi.org/10.1007/s00423-010-0665-7] [PMID: 20589392]
[41]
Koh KK, Chung W-J, Ahn JY, et al. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients: A randomized, double-blind, placebo-controlled study. Atherosclerosis 2004; 177(1): 155-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.07.008] [PMID: 15488878]
[42]
Sachinidis A, el-Haschimi K, Ko Y, Seul C, Düsing R, Vetter H. CV-11974, the active metabolite of TCV-116 (Candesarten), inhibits the synergistic or additive effect of different growth factors on angiotensin II-induced proliferation of vascular smooth muscle cells. Biochem Pharmacol 1996; 52(1): 123-6.
[http://dx.doi.org/10.1016/0006-2952(96)00171-2] [PMID: 8678895]
[43]
Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax 2004; 59(1): 31-8.
[http://dx.doi.org/10.1136/thx.2003.000893] [PMID: 14694243]
[44]
Yamada T, Kuno A, Masuda K, et al. Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther 2003; 307(1): 17-23.
[http://dx.doi.org/10.1124/jpet.103.053322] [PMID: 12944495]
[45]
Manabe S, Okura T, Watanabe S, Fukuoka T, Higaki J. Effects of angiotensin II receptor blockade with valsartan on pro-inflammatory cytokines in patients with essential hypertension. J Cardiovasc Pharmacol 2005; 46(6): 735-9.
[http://dx.doi.org/10.1097/01.fjc.0000185783.00391.60] [PMID: 16306795]
[46]
Graninger M, Reiter R, Drucker C, Minar E, Jilma B. Angiotensin receptor blockade decreases markers of vascular inflammation. J Cardiovasc Pharmacol 2004; 44(3): 335-9.
[http://dx.doi.org/10.1097/01.fjc.0000137160.76616.cc] [PMID: 15475831]
[47]
Hadi NR, Yousif NG, Abdulzahra MS, et al. Role of NF-κβ and oxidative pathways in atherosclerosis: Cross-talk between dyslipidemia and candesartan. Cardiovasc Ther 2013; 31(6): 381-7.
[http://dx.doi.org/10.1111/1755-5922.12033] [PMID: 23566285]
[48]
Refaat R, Salama M, Abdel Meguid E, El Sarha A, Gowayed M. Evaluation of the effect of losartan and methotrexate combined therapy in adjuvant-induced arthritis in rats. Eur J Pharmacol 2013; 698(1-3): 421-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.024] [PMID: 23117086]
[49]
Guerra GC, Araújo AA, Lira GA, et al. Telmisartan decreases inflammation by modulating TNF-α, IL-10, and RANK/RANKL in a rat model of ulcerative colitis. Pharmacol Rep 2015; 67(3): 520-6.
[http://dx.doi.org/10.1016/j.pharep.2014.12.011] [PMID: 25933964]
[50]
McMurray J, Solomon S, Pieper K, et al. The effect of valsartan, captopril, or both on atherosclerotic events after acute myocardial infarction: An analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). J Am Coll Cardiol 2006; 47(4): 726-33.
[http://dx.doi.org/10.1016/j.jacc.2005.09.055] [PMID: 16487836]
[51]
Yamada T, Kuno A, Ogawa K, et al. Combination therapy with an angiotensin-converting enzyme inhibitor and an angiotensin II receptor blocker synergistically suppresses chronic pancreatitis in rats. J Pharmacol Exp Ther 2005; 313(1): 36-45.
[http://dx.doi.org/10.1124/jpet.104.077883] [PMID: 15608084]
[52]
Tsuruoka S, Kai H, Usui J, et al. Effects of irbesartan on inflammatory cytokine concentrations in patients with chronic glomerulonephritis. Intern Med 2013; 52(3): 303-8.
[http://dx.doi.org/10.2169/internalmedicine.52.9066] [PMID: 23370736]
[53]
Arjmand M-H, Zahedi-Avval F, Barneh F, et al. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J Surg Res 2020; 248: 171-81.
[54]
Boudreau C, LeVatte T, Jones C, Gareau A, Legere S, Bezuhly M. The selective angiotensin ii type 2 receptor agonist compound 21 reduces abdominal adhesions in mice. J Surg Res 2020; 256: 231-42.
[http://dx.doi.org/10.1016/j.jss.2020.06.051] [PMID: 32711180]
[55]
Hae-Young L, Byung-Hee O. Aliskiren for direct renin inhibition in hypertension. Asia Pacific Cardiol 2008; 2(1): 34-40.
[56]
Jensen C, Herold P, Brunner HR. Aliskiren: The first renin inhibitor for clinical treatment. Nat Rev Drug Discov 2008; 7(5): 399-410.
[http://dx.doi.org/10.1038/nrd2550] [PMID: 18340340]
[57]
Oliveira SHP, Brito VGB, Frasnelli SCT, et al. Aliskiren attenuates the inflammatory response and wound healing process in diabetic mice with periodontal disease. Front Pharmacol 2019; 10: 708.
[http://dx.doi.org/10.3389/fphar.2019.00708] [PMID: 31333451]
[58]
Pettersson US, Christoffersson G, Massena S, et al. Increased recruitment but impaired function of leukocytes during inflammation in mouse models of type 1 and type 2 diabetes. PLoS One 2011; 6(7): e22480.
[http://dx.doi.org/10.1371/journal.pone.0022480] [PMID: 21799868]
[59]
Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam 2014; 2014: 6893600.
[http://dx.doi.org/10.1155/2014/689360]
[60]
Zhou G, Liu X, Cheung AK, Huang Y. Efficacy of aliskiren, compared with angiotensin II blockade, in slowing the progression of diabetic nephropathy in db/db mice: Should the combination therapy be a focus? Am J Transl Res 2015; 7(5): 825-40.
[PMID: 26175845]
[61]
Choi DE, Jeong JY, Lim BJ, et al. Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol 2011; 186(2): 694-701.
[http://dx.doi.org/10.1016/j.juro.2011.03.122] [PMID: 21683401]
[62]
Gross O, Girgert R, Rubel D, Temme J, Theissen S, Müller G-A. Renal protective effects of aliskiren beyond its antihypertensive property in a mouse model of progressive fibrosis. Am J Hypertens 2011; 24(3): 355-61.
[http://dx.doi.org/10.1038/ajh.2010.231] [PMID: 21127470]
[63]
Sun C-Y, Cherng W-J, Jian H-Z, et al. Aliskiren reduced renal fibrosis in mice with chronic ischemic kidney injury-beyond the direct renin inhibition. Hypertens Res 2012; 35(3): 304-11.
[http://dx.doi.org/10.1038/hr.2011.181] [PMID: 22089535]
[64]
Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345(12): 851-60.
[http://dx.doi.org/10.1056/NEJMoa011303] [PMID: 11565517]
[65]
Remuzzi A, Perico N, Sangalli F, et al. ACE inhibition and ANG II receptor blockade improve glomerular size-selectivity in IgA nephropathy. Am J Physiol 1999; 276(3): F457-66.
[PMID: 10070170]
[66]
Hilgers KF, Mann JFE. ACE inhibitors versus AT(1) receptor antagonists in patients with chronic renal disease. J Am Soc Nephrol 2002; 13(4): 1100-8.
[http://dx.doi.org/10.1681/ASN.V1341100] [PMID: 11912272]
[67]
Ke CY, Lee CC, Lee CJ, Subeq YM, Lee RP, Hsu BG. Aliskiren ameliorates chlorhexidine digluconate-induced peritoneal fibrosis in rats. Eur J Clin Invest 2010; 40(4): 301-9.
[http://dx.doi.org/10.1111/j.1365-2362.2010.02264.x] [PMID: 20486991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy