Research Article

基于CRISPR/ cas9基因编辑的中枢神经系统单纯疱疹病毒载体的构建与优化

卷 22, 期 1, 2022

发表于: 29 November, 2021

页: [66 - 77] 页: 12

弟呕挨: 10.2174/1566523219666210618154326

价格: $65

conference banner
摘要

目的:我们的目标是确定影响减毒HSV-1载体的安全性和长期转基因表达的参数,并优化表达盒,以实现在CNS中稳健和持续的表达。 背景:工程化、减毒的单纯疱疹病毒(HSV)载体是一种很有前途的将基因传递到外周和中枢神经系统的载体。病毒潜伏启动子(LAP)通常用于驱动外源基因的表达;然而,影响减毒HSV-1载体安全性和长期转基因表达的参数尚未完全了解。目的:利用CRISPR-Cas9系统构建HSV-1弱毒载体,检测转基因盒的构建和插入位点对转基因表达和载体安全性的影响。 方法:利用CRISPR-Cas9系统对HSV-1减毒株1716进行准确高效的编辑,构建LMR和LMRx两组重组病毒,分别在外显子1(LAP2)和LAP下游2.0 kb的内含子中插入不同的基因盒。在体外细胞系中比较了转基因基因的表达和病毒基因的转录动力学。在小鼠海马基因转导模型中进一步评估了各载体的报告基因表达和安全性。 结果:体外细胞系分析表明,基因表达盒的插入会破坏病毒基因的转录。小鼠海马转导分析表明,在2.0 kb内含子处插入完整的表达盒可以实现较长时间的基因表达。含有缺乏Poly (A)基因表达盒的重组子由于持续的病毒抗原表达和小胶质细胞激活而诱导了显著的神经元炎症。 结论:我们的结果表明,LAT转录本的完整性对于建立长期潜伏表达是不需要的。外源强启动子(如cBh启动子)置于LAT位点的外显子1或2.0 Kb内含子中,在潜伏期仍可保持活性,但其转录活性随着时间的延长而下降。与之前的研究一致,当基因盒位于外显子1的下游时,外源基因的表达持续时间更长,提示LAP2在潜伏期维持启动子活性中发挥作用。此外,LAT下游部分的过转录可诱导减毒载体的持续激活,提示LAT在维持病毒再激活潜能方面具有重要作用。

关键词: HSV-1载体,CRISPR-Cas9基因组编辑,潜伏期相关转录,海马基因转导,长期转基因表达,重组病毒。

« Previous
图形摘要

[1]
Nesburn AJTCMC, St. Louis Mo. Report of the corneal disease panel: vision research: a national plan 1983–1987 1983.
[2]
Hjalmarsson A, Blomqvist P. Sköldenberg BJCid Herpes simplex encephalitis in Sweden 1990–2001: incidence, morbidity, and mortality 2007; 45(7): 875-80.
[http://dx.doi.org/10.1086/521262] [PMID: 17806053]
[3]
Rock DL, Nesburn A, Ghiasi H, Ong J, Lewis T, Lokensgard J, et al. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1 1987; 61(12): 3820-6.
[PMID: 2824816]
[4]
Stevens J, Wagner E, Devi-Rao G, Cook M, Feldman LJS. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons 1987; 235(4792): 1056-9.
[http://dx.doi.org/10.1126/science.2434993]
[5]
Wechsler S, Nesburn A, Watson R, Slanina S. Ghiasi HJJov Fine mapping of the latency-related gene of herpes simplex virus type 1: Alternative splicing produces distinct latency-related RNAs containing open reading frames 1988; 62(11): 4051-8.
[PMID: 9696825]
[6]
Farrell MJ, Dobson AT. Feldman LTJPotNAoS Herpes simplex virus latency-associated transcript is a stable intron 1991; 88(3): 790-4.
[http://dx.doi.org/10.1073/pnas.88.3.790] [PMID: 1846963]
[7]
Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454(7205): 780-3.
[http://dx.doi.org/10.1038/nature07103] [PMID: 18596690]
[8]
Palmer JA, Branston RH, Lilley CE, et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 2000; 74(12): 5604-18.
[http://dx.doi.org/10.1128/JVI.74.12.5604-5618.2000] [PMID: 10823868]
[9]
Margolis TP, Bloom DC, Dobson AT, Feldman LT, Stevens JGJV. Decreased reporter gene expression during latent infection with HSV LAT promoter constructs 1993; 197(2): 585-92.
[http://dx.doi.org/10.1006/viro.1993.1632]
[10]
Goins WF, Sternberg LR, Croen KD, et al. A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol 1994; 68(4): 2239-52.
[http://dx.doi.org/10.1128/JVI.68.4.2239-2252.1994] [PMID: 8139009]
[11]
Puskovic V, Wolfe D, Goss J, et al. Prolonged biologically active transgene expression driven by HSV LAP2 in brain in vivo. Mol Ther 2004; 10(1): 67-75.
[http://dx.doi.org/10.1016/j.ymthe.2004.04.004] [PMID: 15233943]
[12]
Berthomme H, Lokensgard J, Yang L, Margolis T, Feldman LT. Evidence for a bidirectional element located downstream from the herpes simplex virus type 1 latency-associated promoter that increases its activity during latency. J Virol 2000; 74(8): 3613-22.
[http://dx.doi.org/10.1128/JVI.74.8.3613-3622.2000] [PMID: 10729137]
[13]
Amelio AL, McAnany PK, Bloom DC. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol 2006; 80(5): 2358-68.
[http://dx.doi.org/10.1128/JVI.80.5.2358-2368.2006] [PMID: 16474142]
[14]
Lee JS, Raja P, Pan D, Pesola JM, Coen DM, Knipe DM. CCCTC-binding factor acts as a heterochromatin barrier on herpes simplex viral latent chromatin and contributes to poised latent infection. MBio 2018; 9(1): e02372-17.
[http://dx.doi.org/10.1128/mBio.02372-17] [PMID: 29437926]
[15]
Miyagawa Y, Marino P, Verlengia G, et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci USA 2015; 112(13): E1632-41.
[http://dx.doi.org/10.1073/pnas.1423556112] [PMID: 25775541]
[16]
Han F, Miyagawa Y, Verlengia G, et al. Cellular antisilencing elements support transgene expression from herpes simplex virus vectors in the absence of immediate early gene expression. J Virol 2018; 92(17): e00536-18.
[http://dx.doi.org/10.1128/JVI.00536-18] [PMID: 29950408]
[17]
Umbach JL, Nagel MA, Cohrs RJ, Gilden DH. Cullen BRJJov Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia 2009; 83(20): 10677-83.
[http://dx.doi.org/10.1128/JVI.01185-09] [PMID: 19656888]
[18]
Pan D, Flores O, Umbach JL, et al. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2014; 15(4): 446-56.
[http://dx.doi.org/10.1016/j.chom.2014.03.004] [PMID: 24721573]
[19]
Jiang X, Brown D, Osorio N, Hsiang C, BenMohamed L, Wechsler SL. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2. J Neurovirol 2016; 22(1): 38-49.
[http://dx.doi.org/10.1007/s13365-015-0362-y] [PMID: 26069184]
[20]
Perng G-C, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000; 287(5457): 1500-3.
[http://dx.doi.org/10.1126/science.287.5457.1500] [PMID: 10688801]
[21]
Tormanen K, Allen S, Mott KR, Ghiasi H. LAT inhibits apoptosis via downregulation of components of type I IFN pathway during latent HSV-1 ocular infection. Journal of Virology 2019. JVI. 00103-.
[22]
Lin C, Li H, Hao M, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing of HSV-1 virus in human cells. Sci Rep 2016; 6: 34531.
[http://dx.doi.org/10.1038/srep34531] [PMID: 27713537]
[23]
Conrady CD, Zheng M, van Rooijen N, et al. Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis. J Immunol 2013; 190(6): 2807-17.
[http://dx.doi.org/10.4049/jimmunol.1203265] [PMID: 23382563]
[24]
Bi Y, Sun L, Gao D, et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog 2014; 10(5)e1004090
[http://dx.doi.org/10.1371/journal.ppat.1004090] [PMID: 24788700]
[25]
Yuen K-S, Chan C-P, Wong NM, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 2015; 96(Pt 3): 626-36.
[http://dx.doi.org/10.1099/jgv.0.000012] [PMID: 25502645]
[26]
Howes R, Schofield C. Genome engineering using adeno-associated virus (AAV)Chromosomal Mutagenesis. Springer 2015; pp. 75-103.
[http://dx.doi.org/10.1007/978-1-4939-1862-1_5]
[27]
Berges BK, Wolfe JH, Fraser NW. Stable levels of long-term transgene expression driven by the latency-associated transcript promoter in a herpes simplex virus type 1 vector. Mol Ther 2005; 12(6): 1111-9.
[http://dx.doi.org/10.1016/j.ymthe.2005.06.478] [PMID: 16122987]
[28]
Liu W, Griffin G, Clarke T, et al. Bilateral single-site intracerebral injection of a nonpathogenic herpes simplex virus-1 vector decreases anxiogenic behavior in MPS VII mice. Mol Ther Methods Clin Dev 2015; 2: 14059.
[http://dx.doi.org/10.1038/mtm.2014.59] [PMID: 26052529]
[29]
Lokensgard JR, Berthomme H, Feldman LT. The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency. J Virol 1997; 71(9): 6714-9.
[http://dx.doi.org/10.1128/JVI.71.9.6714-6719.1997] [PMID: 9261395]
[30]
Lachmann RH, Efstathiou S. Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 1997; 71(4): 3197-207.
[http://dx.doi.org/10.1128/JVI.71.4.3197-3207.1997] [PMID: 9060683]
[31]
Srivastava R, Dervillez X, Khan AA, Chentoufi AA, Chilukuri S, Shukr N, et al. The herpes simplex virus LAT gene is associated with a broader repertoire of virus-specific exhausted CD8+ T cells retained within the trigeminal ganglia of latently infected HLA transgenic rabbits. J Virol 2021; 90(8): 3913-28. Available from: https://jvi.asm.org/content/jvi/90/8/3913.full.pdf
[32]
Chentoufi AA, Dervillez X, Dasgupta G, et al. The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 2012; 25(3): 204-15.
[http://dx.doi.org/10.1089/vim.2011.0091] [PMID: 22512280]
[33]
Leib DA, Bogard CL, Kosz-Vnenchak M, et al. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 1989; 63(7): 2893-900.
[http://dx.doi.org/10.1128/JVI.63.7.2893-2900.1989] [PMID: 2542601]
[34]
Hill JM, Sedarati F, Javier RT, Wagner EK, Stevens JG. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 1990; 174(1): 117-25.
[http://dx.doi.org/10.1016/0042-6822(90)90060-5] [PMID: 2152989]
[35]
Block TM, Deshmane S, Masonis J, Maggioncalda J, Valyi-Nagi T, Fraser NW. An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 1993; 192(2): 618-30.
[http://dx.doi.org/10.1006/viro.1993.1078] [PMID: 8380666]
[36]
Perng G-C, Dunkel EC, Geary PA, et al. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 1994; 68(12): 8045-55.
[http://dx.doi.org/10.1128/JVI.68.12.8045-8055.1994] [PMID: 7966594]
[37]
Nicoll MP, Hann W, Shivkumar M, et al. The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons. PLoS Pathog 2016; 12(4)e1005539
[http://dx.doi.org/10.1371/journal.ppat.1005539] [PMID: 27055281]
[38]
Kesari S, Lasner TM, Balsara KR, et al. A neuroattenuated ICP34.5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system. J Gen Virol 1998; 79(Pt 3): 525-36.
[http://dx.doi.org/10.1099/0022-1317-79-3-525] [PMID: 9519831]
[39]
Nicoll MP, Efstathiou S. Expression of the herpes simplex virus type 1 latency-associated transcripts does not influence latency establishment of virus mutants deficient for neuronal replication. J Gen Virol 2013; 94(Pt 11): 2489-94.
[http://dx.doi.org/10.1099/vir.0.056176-0] [PMID: 23907392]
[40]
Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci 2012; 15(8): 1096-101.
[http://dx.doi.org/10.1038/nn.3161] [PMID: 22837040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy