Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Systematic Review Article

Zinc Oxide Nanoparticles as a Potential Agent for Antiviral Drug Delivery Development: A Systematic Literature Review

Author(s): Mahda S. Nasrollahzadeh*, Razieh Ghodsi, Farzin Hadizadeh, MahdiFaal Maleki, Mohammad Mashreghi and Donya Poy

Volume 18, Issue 2, 2022

Published on: 12 January, 2022

Page: [147 - 153] Pages: 7

DOI: 10.2174/1573413717666210618103632

Price: $65

Abstract

Viral infection is a worldwide health problem, which has negatively affected global activity in recent years. There is no specific medication for most of the viral infections and the treatments are based on symptom management. Nanoparticles (NPs) in recent years have shown promising antibacterial and antiviral properties, among which metal oxide NPs have shown superiority. In the present study, we aimed to systematically review all available literature supporting the efficiency of zinc oxide (ZnO)NPs in the treatment of viral infections. For this purpose, a systematic literature search was performed in scientific literature databases, including PubMed, Scopus, Web of Science, Science Direct, Ovid, Embase, and Google Scholar by using “viral infections”, “antiviral effects” and “ZnO NPs” in addition to all their equivalent terms as keywords. Due to the lack of human studies, no strict inclusion criteria were defined and all available relevant studies were included. A total of 14 documents that fully met the inclusion criteria were retrieved and used for data synthesis. The results showed that ZnO NPs due to specific physicochemical properties can be a promising approach in developing antiviral agents and nano vaccines, especially against RNA viruses, such as human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus. The most probable antiviral mechanistic pathways of ZnO NPs include blocking the virus entry into the cells and deactivation of the virus through virostatic potential. Based on the findings of the included studies, it is suggested that ZnO NPs and other metal oxide-based NPs may be potential antiviral agents; however, further human studies are required to confirm such efficiency in clinical practice.

Keywords: Zinc oxide, viral infection, ZnO NPs, nanoparticle, vaccines, immune system.

Next »
[1]
Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: strengthening the global response. Front. Immunol., 2019, 10, 549.
[http://dx.doi.org/10.3389/fimmu.2019.00549] [PMID: 30984169]
[2]
Salehpour, M.; Tayyebi Meibodi, N.; Teimourpour, R.; Ghorani-Azam, A.; Sepahi, S.; Rostami, S.; Meshkat, Z. Frequency of human papillomavirus genotypes 6, 11, 16, 18 And 31 in paraffin-embedded tissue samples of invasive breast carcinoma, north-east of Iran. Iran. J. Pathol., 2015, 10(3), 192-198.
[PMID: 26351484]
[3]
Kelesidis, T.; Mastoris, I.; Metsini, A.; Tsiodras, S. How to approach and treat viral infections in ICU patients. BMC Infect. Dis., 2014, 14, 321.
[http://dx.doi.org/10.1186/1471-2334-14-321] [PMID: 25431007]
[4]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[5]
Zare-Zardini, H.; Ferdowsian, F.; Soltaninejad, H.; Ghorani-Azam, A.; Soleymani, S.; Zare-Shehneh, M.; Mofidi, M.; Rafati, R.; Ebrahimi, L. Application of nanotechnology in biomedicine: A major focus on cancer therapy. J Nano Res, 2015, 35, 55-66.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.35.55]
[6]
Mohseni, S.; Aghayan, M.; Ghorani-Azam, A.; Behdani, M.; Asoodeh, A. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle. Braz. J. Microbiol., 2015, 45(4), 1393-1399.
[http://dx.doi.org/10.1590/S1517-83822014000400033] [PMID: 25763046]
[7]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[8]
Bogunia-Kubik, K.; Sugisaka, M. From molecular biology to nanotechnology and nanomedicine. Biosystems, 2002, 65(2-3), 123-138.
[http://dx.doi.org/10.1016/S0303-2647(02)00010-2] [PMID: 12069723]
[9]
Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105(4), 1025-1102.
[http://dx.doi.org/10.1021/cr030063a] [PMID: 15826010]
[10]
Tang, Y.; Li, X.; Lv, H.; Wang, W.; Zhi, C.; Li, H. Integration designs toward new-generation wearable energy supply‐sensor systems for real-time health monitoring: a minireview. InfoMat, 2020, 2(6), 1109-1130.
[http://dx.doi.org/10.1002/inf2.12102]
[11]
Chen, Y.; Hu, L.; Li, C.; Dang, B.; Sun, Q.; Zhai, T.; Li, H. A biomimetic‐structured wood‐derived carbon sponge with highly compressible and biocompatible properties for human‐motion detection. InfoMat, 2020, 2(6), 1225-1235.
[http://dx.doi.org/10.1002/inf2.12075]
[12]
Baltscheit, J.; Schmidt, N.; Schröder, F.; Meyer, J. Investigations on the aging behavior of transparent bioplastics for optical applications. InfoMat, 2020, 2(2), 424-433.
[http://dx.doi.org/10.1002/inf2.12065]
[13]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1062562.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[14]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9, 2399-2407.
[http://dx.doi.org/10.2147/ijn.s55015] [PMID: 24876773]
[15]
Papadiamantis, A.G.; Jänes, J.; Voyiatzis, E.; Sikk, L.; Burk, J.; Burk, P.; Tsoumanis, A.; Ha, M.K.; Yoon, T.H.; Valsami-Jones, E.; Lynch, I.; Melagraki, G.; Tämm, K.; Afantitis, A. Predicting cytotoxicity of metal oxide nanoparticles using Isalos Analytics platform. Nanomaterials (Basel), 2020, 10(10), 2017.
[http://dx.doi.org/10.3390/nano10102017] [PMID: 33066094]
[16]
Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced antibacterial activity of nanocrystalline zno due to increased ros-mediated cell injury. Adv. Funct. Mater., 2009, 19(6), 842-852.
[http://dx.doi.org/10.1002/adfm.200801081]
[17]
Verma, S.K.; Jha, E.; Panda, P.K.; Das, J.K.; Thirumurugan, A.; Suar, M.; Parashar, S. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond.), 2018, 13(1), 43-68.
[http://dx.doi.org/10.2217/nnm-2017-0237] [PMID: 29173091]
[18]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[19]
Dicastillo, C.L.; Vidal, C.P.; Falcó, I.; Sánchez, G.; Márquez, P.; Escrig, J. Antimicrobial bilayer nanocomposites based on the incorporation of as-synthetized hollow zinc oxide nanotubes. Nanomaterials (Basel), 2020, 10(3), E503.
[http://dx.doi.org/10.3390/nano10030503] [PMID: 32168893]
[20]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol., 2009, 62(10), e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[21]
Choudhary, S.; Kumar, R.; Dalal, U.; Tomar, S.; Reddy, S.N. Green synthesis of nanometal impregnated biomass - antiviral potential. Mater. Sci. Eng. C, 2020, 112, 110934.
[http://dx.doi.org/10.1016/j.msec.2020.110934] [PMID: 32409081]
[22]
Antoine, T.E.; Hadigal, S.R.; Yakoub, A.M.; Mishra, Y.K.; Bhattacharya, P.; Haddad, C.; Valyi-Nagy, T.; Adelung, R.; Prabhakar, B.S.; Shukla, D. Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J. Immunol., 2016, 196(11), 4566-4575.
[http://dx.doi.org/10.4049/jimmunol.1502373] [PMID: 27183601]
[23]
Mishra, Y.K.; Adelung, R.; Röhl, C.; Shukla, D.; Spors, F.; Tiwari, V. Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res., 2011, 92(2), 305-312.
[http://dx.doi.org/10.1016/j.antiviral.2011.08.017] [PMID: 21893101]
[24]
Tavakoli, A.; Ataei-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine (Lond.), 2018, 13(21), 2675-2690.
[http://dx.doi.org/10.2217/nnm-2018-0089] [PMID: 30346253]
[25]
Farouk, F.; Shebl, R.I. Comparing surface chemical modifications of zinc oxide nanoparticles for modulating their antiviral activity against herpes simplex virus type-1. Int. J. Nanoparticl. Nanotechnol., 2018, 4(1), 1-14.
[http://dx.doi.org/10.35840/2631-5084/5521]
[26]
Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M.; Pirhajati-Mahabadi, V.; Monavari, S.H.; Ataei-Pirkooh, A. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J. Biomed. Sci., 2019, 26(1), 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[27]
Mac Mahon, J.; Pillai, S.C.; Kelly, J.M.; Gill, L.W. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system. J. Photochem. Photobiol. B, 2017, 170, 79-90.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.03.027] [PMID: 28399477]
[28]
Abinaya, M.; Vaseeharan, B.; Divya, M.; Sharmili, A.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J. Trace Elem. Med. Biol., 2018, 45, 93-103.
[http://dx.doi.org/10.1016/j.jtemb.2017.10.002] [PMID: 29173489]
[29]
Zeedan, G.S.G.; El-Razik, K.A.A.; Allam, A.M.; Abdalhamed, A.M.; Zeina, H.A.A. Evaluations of potential antiviral effects of green zinc oxide and silver nanoparticles against bovine herpesvirus-1. Adv. Animal Veterin. Sci., 2020, 8(4), 433-443.
[http://dx.doi.org/10.17582/journal.aavs/2020/8.4.433.443]
[30]
Rabiee, N.; Bagherzadeh, M.; Ghadiri, A.M.; Kiani, M.; Aldhaher, A.; Ramakrishna, S.; Tahriri, M.; Tayebi, L.; Webster, T.J. Green synthesis of zno nps viasalvia hispanica: Evaluation of potential antioxidant, antibacterial, mammalian cell viability, h1n1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol., 2020, 16(4), 456-466.
[http://dx.doi.org/10.1166/jbn.2020.2916] [PMID: 32970978]
[31]
Agelidis, A.; Koujah, L.; Suryawanshi, R.; Yadavalli, T.; Mishra, Y.K.; Adelung, R.; Shukla, D. An intra-vaginal zinc oxide tetrapod nanoparticles (zoten) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine. Front. Immunol., 2019, 10, 500.
[http://dx.doi.org/10.3389/fimmu.2019.00500] [PMID: 30949169]
[32]
Duggal, N.; Jaishankar, D.; Yadavalli, T.; Hadigal, S.; Mishra, Y.K.; Adelung, R.; Shukla, D. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Mol. Vis., 2017, 23, 26-38.
[PMID: 28275313]
[33]
Poon, W.L.; Alenius, H.; Ndika, J.; Fortino, V.; Kolhinen, V.; Meščeriakovas, A.; Wang, M.; Greco, D.; Lähde, A.; Jokiniemi, J.; Lee, J.C.; El-Nezami, H.; Karisola, P. Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells. Nanotoxicology, 2017, 11(7), 936-951.
[http://dx.doi.org/10.1080/17435390.2017.1382600] [PMID: 28958187]
[34]
Antoine, T.E.; Mishra, Y.K.; Trigilio, J.; Tiwari, V.; Adelung, R.; Shukla, D. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res., 2012, 96(3), 363-375.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.020] [PMID: 23047013]
[35]
Kaushik, N.; Anang, S.; Ganti, K.P.; Surjit, M. Zinc: A potential antiviral against hepatitis e virus infection? DNA Cell Biol., 2018, 37(7), 593-599.
[http://dx.doi.org/10.1089/dna.2018.4175] [PMID: 29897788]
[36]
Skrajnowska, D.; Bobrowska-Korczak, B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients, 2019, 11(10), E2273.
[http://dx.doi.org/10.3390/nu11102273] [PMID: 31546724]
[37]
Hotter, D.; Kirchhoff, F. Interferons and beyond: Induction of antiretroviral restriction factors. J. Leukoc. Biol., 2018, 103(3), 465-477.
[http://dx.doi.org/10.1002/JLB.3MR0717-307R] [PMID: 29345347]
[38]
Foster, M.; Samman, S. Zinc and regulation of inflammatory cytokines: Implications for cardiometabolic disease. Nutrients, 2012, 4(7), 676-694.
[http://dx.doi.org/10.3390/nu4070676] [PMID: 22852057]
[39]
Brieger, A.; Rink, L.; Haase, H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J. Immunol., 2013, 191(4), 1808-1817.
[http://dx.doi.org/10.4049/jimmunol.1301261] [PMID: 23863901]
[40]
Devhare, P.B.; Chatterjee, S.N.; Arankalle, V.A.; Lole, K.S. Analysis of antiviral response in human epithelial cells infected with hepatitis E virus. PLoS One, 2013, 8(5), e63793.
[http://dx.doi.org/10.1371/journal.pone.0063793] [PMID: 23671700]
[41]
Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A multipurpose trace element. Arch. Toxicol., 2006, 80(1), 1-9.
[http://dx.doi.org/10.1007/s00204-005-0009-5] [PMID: 16187101]
[42]
Cai, L.; Liu, C.; Fan, G.; Liu, C.; Sun, X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano, 2019, 6(12), 3653-3669.
[http://dx.doi.org/10.1039/C9EN00850K]
[43]
Ishida, S.T. Zinc (II) ions-mediated hydrolyzing and degrading functions for bacterial cell walls, viral protein and RNA, and cancerous malignancy and metastasis. J Genet Genet Eng, 2018, 2, 17-25.
[44]
Jin, S.E.; Hwang, W.; Lee, H.J.; Jin, H.E. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage. Int. J. Nanomedicine, 2017, 12, 8057-8070.
[http://dx.doi.org/10.2147/IJN.S144236] [PMID: 29138562]
[45]
Al-Halifa, S.; Gauthier, L.; Arpin, D.; Bourgault, S.; Archambault, D. Nanoparticle-based vaccines against respiratory viruses. Front. Immunol., 2019, 10, 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[46]
Ghafoorianfar, S.; Ghorani-Azam, A.; Mohajeri, S.A.; Farzin, D. Efficiency of nanoparticles for treatment of ocular infections: Systematic literature review. J. Drug Deliv. Sci. Technol., 2020, 57, 101765.
[http://dx.doi.org/10.1016/j.jddst.2020.101765]
[47]
Chattopadhyay, S.; Chen, J.Y.; Chen, H.W.; Hu, C.J. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 2017, 1(3), 244-260.
[http://dx.doi.org/10.7150/ntno.19796] [PMID: 29071191]
[48]
Asoodeh, A.; Sepahi, S.; Ghorani-Azam, A. Purification and modeling amphipathic alpha helical antimicrobial peptides from skin secretions of Euphlyctis cyanophlyctis. Chem. Biol. Drug Des., 2014, 83(4), 411-417.
[http://dx.doi.org/10.1111/cbdd.12256] [PMID: 24168384]
[49]
Zare-Zardini, H.; Ebrahimi, L.; Ejtehadi, M.M.; Hashemi, A.; Ghorani-Azam, A.; Atefi, A.; Soleimanizadeh, M. Purification and characterization of one novel cationic antimicrobial peptide from skin secretion of Bufo kavirensis. Turk J Biochem., 2013, 38(4)
[http://dx.doi.org/10.5505/tjb.2013.26818]
[50]
Wainwright, M. Local treatment of viral disease using photodynamic therapy. Int. J. Antimicrob. Agents, 2003, 21(6), 510-520.
[http://dx.doi.org/10.1016/S0924-8579(03)00035-9] [PMID: 12791463]
[51]
Costa, L.; Faustino, M.A.; Neves, M.G.; Cunha, A.; Almeida, A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses, 2012, 4(7), 1034-1074.
[http://dx.doi.org/10.3390/v4071034] [PMID: 22852040]
[52]
Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci., 2013, 18(2), 144-157.
[PMID: 23914218]
[53]
Szewczyk, B. Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci., 2013, 5, 33.
[http://dx.doi.org/10.3389/fnagi.2013.00033] [PMID: 23882214]
[54]
Turkyilmazoglu, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed., 2019, 179, 104997.
[http://dx.doi.org/10.1016/j.cmpb.2019.104997] [PMID: 31443853]
[55]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29(6), 04016049.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000643]
[56]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135(10), 1-13.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[57]
Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed., 2020, 187, 105171.
[http://dx.doi.org/10.1016/j.cmpb.2019.105171] [PMID: 31785535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy