Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Facile and Novel Synthesis of Spiky Gold Nanoparticles as an Efficient Antimicrobial Agent against Pseudomonas Aeruginosa

Author(s): Farooq Aziz, Muhammad Rashid, Mubashar Rehman, Muhammad Rafique and Muhammad Imran*

Volume 25, Issue 7, 2022

Published on: 17 June, 2021

Page: [1230 - 1236] Pages: 7

DOI: 10.2174/1386207324666210617163037

Price: $65

Abstract

Aims: The aim of the study is to develop advanced antibacterial agents as nanoparticles instead of antibiotics due to the emergence of antimicrobial resistance.

Background: Pseudomonas aeruginosa is capable of causing many diseases, including serious bacterial pneumonia. There is a need for an efficient antibacterial agent to kill these pathogens.

Objective: The objective of the study is the synthesis of advanced antibacterial agents as nanoparticles for biomedical applications that can play a vital role to kill Gram-negative bacteria (Pseudomonas aeruginosa).

Methods: A novel fabrication growth of hydrophilic spiky gold nanoparticles (SGNPs) via reduction method is reported.

Results: Surface plasmon resonance peak of the synthesized SGNPs was tuned under near infrared range. The SGNPs have anisotropic and spiky morphology with 68 nm size and -58 mV surface charge and are pure, having adsorption of the organic material. Pseudomonas aeruginosa treated with synthesized SGNPs showed 60% bacterial death at the concentration of 100 μM.

Conclusion: This work consists of novel synthesis of SGNPs via safe and simple reduction method. The synthesized SGNPs exhibit strong antibacterial activity against the Gram negative bacteria Pseudomonas aeruginosa measured using microplate assay test. The result showed that these SGNPs are ideal for biomedical applications.

Keywords: Spiky gold nanoparticle, pathogen, chemical reduction, Pseudomonas Aeruginosa, antibacterial activity, metal nanoparticles.

« Previous
Graphical Abstract

[1]
Aziz, F.; Ihsan, A.; Nazir, A.; Ahmad, I.; Bajwa, S.Z.; Rehman, A.; Diallo, A.; Khan, W.S. Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effect on liver and kidney function. Int. J. Nanomedicine, 2017, 12, 1555-1563.
[http://dx.doi.org/10.2147/IJN.S127996] [PMID: 28280325]
[2]
Lee, K.X.; Shameli, K.; Yew, Y.P.; Teow, S-Y.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int. J. Nanomedicine, 2020, 15, 275-300.
[http://dx.doi.org/10.2147/IJN.S233789] [PMID: 32021180]
[3]
Liao, H; Nehl, CL; Hafner, JH 2006.Biomedical applications of plasmon resonant metal nanoparticles.,
[http://dx.doi.org/10.2217/17435889.1.2.201]
[4]
Beveridge, T.; Fyfe, W. Metal fixation by bacterial cell walls. Can. J. Earth Sci., 1985, 22(12), 1893-1898.
[http://dx.doi.org/10.1139/e85-204]
[5]
Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.S.; Selvaraj, A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J. Biol. Sci., 2019, 26(3), 455-459.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[6]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41(12), 1578-1586.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[7]
West, J.L.; Halas, N.J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng., 2003, 5(1), 285-292.
[http://dx.doi.org/10.1146/annurev.bioeng.5.011303.120723] [PMID: 14527314]
[8]
Bindhu, M.; Umadevi, M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett., 2014, 120, 122-125.
[http://dx.doi.org/10.1016/j.matlet.2014.01.108]
[9]
Chubinidze, K; Partsvania, B; Devadze, L; Zurabishvili, T; Sepashvili, N; Petriashvili, G; Chubinidze, M 2017, Gold nanoparticle conjugated organic dye nanocomposite based photostimulated luminescent enhancement and its application in nanomedicine. American J. Nano Res. Appli., 5(3-1), 42-47.
[10]
Thakur, V.K.; Thakur, M.K. Eco-friendly polymer nanocomposites: Chemistry and applications; Springer, 2015, Vol. 74, .
[http://dx.doi.org/10.1007/978-81-322-2473-0]
[11]
Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm. J., 2019, 27(7), 968-974.
[http://dx.doi.org/10.1016/j.jsps.2019.07.005] [PMID: 31997903]
[12]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[13]
Yallappa, S.; Manjanna, J.; Dhananjaya, B.L. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 236-243.
[http://dx.doi.org/10.1016/j.saa.2014.08.030] [PMID: 25222319]
[14]
Rosarin, FS; Mirunalini, S Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed 2011, 3(4), 085-091.
[15]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[16]
Mocan, L.; Tabaran, F.A.; Mocan, T.; Pop, T.; Mosteanu, O.; Agoston-Coldea, L.; Matea, C.T.; Gonciar, D.; Zdrehus, C.; Iancu, C. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. Int. J. Nanomedicine, 2017, 12, 2255-2263.
[http://dx.doi.org/10.2147/IJN.S124778] [PMID: 28356741]
[17]
Gu, H.; Ho, P.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[18]
Grace, A.N.; Pandian, K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf. A Physicochem. Eng. Asp., 2007, 297(1), 63-70.
[http://dx.doi.org/10.1016/j.colsurfa.2006.10.024]
[19]
Saha, B.; Bhattacharya, J.; Mukherjee, A.; Ghosh, A.; Santra, C.; Dasgupta, A.K.; Karmakar, P. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett., 2007, 2(12), 614.
[http://dx.doi.org/10.1007/s11671-007-9104-2]
[20]
Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J. Synergistic antibacterial effects of -lactam antibiotic combined with silver nanoparticles. Nanotechnology, 2005, 16(9), 1912.
[http://dx.doi.org/10.1088/0957-4484/16/9/082]
[21]
Rosemary, M.J.; MacLaren, I.; Pradeep, T. Investigations of the antibacterial properties of ciprofloxacin@SiO2. Langmuir, 2006, 22(24), 10125-10129.
[http://dx.doi.org/10.1021/la061411h] [PMID: 17107009]
[22]
Amin, R.M.; Mohamed, M.B.; Ramadan, M.A.; Verwanger, T.; Krammer, B. Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine (Lond.), 2009, 4(6), 637-643.
[http://dx.doi.org/10.2217/nnm.09.50] [PMID: 19663592]
[23]
Sharma, T.S.K.; Selvakumar, K.; Hwa, K.Y.; Sami, P.; Kumaresan, M. Biogenic fabrication of gold nanoparticles using Camellia japonica L. leaf extract and its biological evaluation. J. Mater. Res. Technol., 2019, 8(1), 1412-1418.
[http://dx.doi.org/10.1016/j.jmrt.2018.10.006]
[24]
Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10(1), 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[25]
Dowling, R.B.; Wilson, R. Pseudomonas aeruginosa respiratory infections. Clin. Pulm. Med., 1999, 6(5), 278-286.
[http://dx.doi.org/10.1097/00045413-199909000-00002]
[26]
Shareena Dasari, T.P.; Zhang, Y.; Yu, H. Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem. Pharmacol. (Los Angel.), 2015, 4(6), 199.
[PMID: 27019770]
[27]
Bensalah, F.; Iddou, A.; Hentit, H.; Aziz, A. Shishkin A Activated Carbon Design from Sludge to Remove Red Scarlet Nylosan “F3GL” in Aqueous Solution. Key Engineering Materials; Trans Tech Publ, 2018, pp. 87-92.
[28]
Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev., 2007, 107(11), 4797-4862.
[http://dx.doi.org/10.1021/cr0680282] [PMID: 17999554]
[29]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp., 2010, 364(1), 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[30]
Li, X.; Robinson, S.M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D.F.; Sahar, A.; Riley, M.A.; Rotello, V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 2014, 8(10), 10682-10686.
[http://dx.doi.org/10.1021/nn5042625] [PMID: 25232643]
[31]
Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release, 2011, 149(1), 65-71.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.006] [PMID: 20004222]
[32]
Lawrenz, M.B.; Biller, A.E.; Cramer, D.E.; Kraenzle, J.L.; Sotsky, J.B.; Vanover, C.D.; Yoder-Himes, D.R.; Pollard, A.; Warawa, J.M. Development and evaluation of murine lung-specific disease models for Pseudomonas aeruginosa applicable to therapeutic testing. Pathog. Dis., 2015, 73(5), ftv025.
[http://dx.doi.org/10.1093/femspd/ftv025] [PMID: 25857733]
[33]
Ramsey, D.M.; Wozniak, D.J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol., 2005, 56(2), 309-322.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04552.x] [PMID: 15813726]
[34]
Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. (Camb.), 2020, 11(4), 923-936.
[http://dx.doi.org/10.1039/C9SC06497D]
[35]
Katas, H.; Lim, C.S.; Nor Azlan, A.Y.H.; Buang, F.; Mh Busra, M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J., 2019, 27(2), 283-292.
[http://dx.doi.org/10.1016/j.jsps.2018.11.010] [PMID: 30766441]
[36]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[37]
Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci., 2019, 20(2), 449.
[http://dx.doi.org/10.3390/ijms20020449] [PMID: 30669621]
[38]
Hartmann, M.; Berditsch, M.; Hawecker, J.; Ardakani, M.F.; Gerthsen, D.; Ulrich, A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother., 2010, 54(8), 3132-3142.
[http://dx.doi.org/10.1128/AAC.00124-10] [PMID: 20530225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy