Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Encapsulation of Purified Pediocin of Pediococcus pentosaceus into Liposome Based Nanovesicles and its Antilisterial Effect

Author(s): Vaithiyanathan Suganthi, Selvarajan Ethiraj, Nivetha Anbalagan, Jannatul Firdous Siddique and Mohanasrinivasan Vaithilingam*

Volume 28, Issue 10, 2021

Published on: 17 June, 2021

Page: [1115 - 1126] Pages: 12

DOI: 10.2174/2666255814666210617145058

Price: $65

Abstract

Aims: To encapsulate a purified bacteriocin into a nanovesicles and check its antibacterial effect.

Background: Although the use of nano-encapsulated bacteriocins in food matrices is poorly reported, encapsulated nisin can reduce L. monocytogenes counts in whole and skimmed milk and in soft cheese.

Objective: The present study deals with the extraction and purification of a bacteriocin from an isolated strain Pediococcus pentosaceus KC692718. A comparative study of the effect of free pediocin and liposome encapsulated pediocin against Listeria sp. was performed.

Methods: The purification of the extracted cell free supernatant was subjected to ammonium sulphate precipitation, cation exchange chromatography followed by gel permeation chromatography. The bacteriocin activity and protein concentration were determined using Lowry’s method. The characterization of the pure pediocin was done. Liposome like nanovesicle was constructed and the stability of the liposome encapsulated pediocin was checked. Finally, the antibacterial effect was comparatively studied of the free pediocin, liposome, and liposome encapsulated pediocin simultaneously.

Results: The pediocin of 3.6kDa was purified with a specific activity of 898.8. AU/mg. It remained stable from pH 2.0-8.0 was found to be moderately stable above 80°C and remain stable for one month when stored at -20°C. The encapsulated pediocin showed stability since it retained 50% of its initial activity. The encapsulated pediocin showed 89% of encapsulation efficiency.

Conclusion: The encapsulated pediocin not only improved pediocin stability but also enhanced the controlled release of the antimicrobial substances, enough for inhibiting the foodborne pathogen L. monocytogenes.

Keywords: Pediocin, Pediococcus pentosaceus, polydispersity index, zeta potential, encapsulation efficiency, nanovesicle.

Graphical Abstract

[1]
De Vuyst, L.; Vandamme, E.J. Antimicrobial potential of lactic acid bacteria. In: Bacteriocins of Lactic Acid Bacteria; De Vuyst, L.; Vandamme, E.J., Eds.; Springer: Boston, MA, 1994; pp. 91-142.
[http://dx.doi.org/10.1007/978-1-4615-2668-1_3]
[2]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[3]
Papagianni, M.; Anastasiadou, S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact., 2009, 8(1), 3.
[http://dx.doi.org/10.1186/1475-2859-8-3] [PMID: 19133115]
[4]
Ramezani, M.; Khoshhamdam, M.; Dehshahri, A.; Malaekeh-Nikouei, B. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Colloids Surf. B Biointerfaces, 2009, 72(1), 1-5.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.018] [PMID: 19395245]
[5]
Balasubramanian, A.; Lee, D.S.; Chikindas, M.L.; Yam, K.L. Effect of nisin’s controlled release on microbial growth as modeled for Micrococcus luteus. Probiotics Antimicrob. Proteins, 2011, 3(2), 113-118.
[http://dx.doi.org/10.1007/s12602-011-9073-8] [PMID: 26781576]
[6]
Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci., 2006, 71(9), R107-R116.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00195.x]
[7]
da Silva Malheiros, P.; Daroit, D.J.; da Silveira, N.P.; Brandelli, A. Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol., 2010, 27(1), 175-178.
[http://dx.doi.org/10.1016/j.fm.2009.09.013] [PMID: 19913710]
[8]
Malheiros, Pda.S.; Sant’Anna, V.; Barbosa, Mde.S.; Brandelli, A.; Franco, B.D. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol., 2012, 156(3), 272-277.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2012.04.004] [PMID: 22554928]
[9]
Suganthi, V.; Mohanasrinivasan, V. Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. J. Food Sci. Technol., 2015, 52(6), 3773-3783.
[PMID: 26028762]
[10]
Yamamoto, Y.; Togawa, Y.; Shimosaka, M.; Okazaki, M. Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl. Environ. Microbiol., 2003, 69(10), 5746-5753.
[http://dx.doi.org/10.1128/AEM.69.10.5546-5553.2003] [PMID: 14532021]
[11]
Todorov, S.D.; Dicks, L.M.T. Partial characterization of bacteriocins produced by four lactic acid bacteria isolated from regional South African barley beer. Ann. Microbiol., 2004, 54(4), 403-413.
[12]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[13]
Enan, G.; el-Essawy, A.A.; Uyttendaele, M.; Debevere, J. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal action of plantaricin UG1. Int. J. Food Microbiol., 1996, 30(3), 189-215.
[http://dx.doi.org/10.1016/0168-1605(96)00947-6] [PMID: 8854175]
[14]
da Silva Malheiros, P.; Sant’Anna, V.; Micheletto, Y.M.S.; da Silveira, N.P.; Brandelli, A. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes. J. Nanopart. Res., 2011, 13(8), 3545-3552.
[http://dx.doi.org/10.1007/s11051-011-0278-2]
[15]
Motta, A.S.; Brandelli, A. Characterization of an antibacterial peptide produced by Brevibacterium linens. J. Appl. Microbiol., 2002, 92(1), 63-70.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01490.x] [PMID: 11849329]
[16]
Laridi, R.; Kheadr, E.E.; Benech, R.O.; Vuillemard, J.C.; Lacroix, C.; Fliss, I. Liposome encapsulated nisin Z: Optimization, stability and release during milk fermentation. Int. Dairy J., 2003, 13(4), 325-336.
[http://dx.doi.org/10.1016/S0958-6946(02)00194-2]
[17]
Uteng, M.; Hauge, H.H.; Brondz, I.; Nissen-Meyer, J.; Fimland, G. Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Appl. Environ. Microbiol., 2002, 68(2), 952-956.
[http://dx.doi.org/10.1128/AEM.68.2.952-956.2002] [PMID: 11823243]
[18]
Kumar, M.; Tiwari, S.K.; Srivastava, S. Purification and characterization of enterocin LR/6, a bacteriocin from Enterococcus faecium LR/6. Appl. Biochem. Biotechnol., 2010, 160(1), 40-49.
[http://dx.doi.org/10.1007/s12010-009-8586-z] [PMID: 19277483]
[19]
Tichaczek, P.S.; Nissen-Meyer, J.; Nes, I.F.; Vogel, R.F.; Hammes, W.P. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst. Appl. Microbiol., 1992, 15(3), 460-468.
[http://dx.doi.org/10.1016/S0723-2020(11)80223-7]
[20]
Kheadr, E.; Zihler, A.; Dabour, N.; Lacroix, C.; Le Blay, G.; Fliss, I. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J. Appl. Microbiol., 2010, 109(1), 54-64.
[PMID: 20059619]
[21]
Nel, H.A.; Bauer, R.; Vandamme, E.J.; Dicks, L.M.T. Growth optimization of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1. J. Appl. Microbiol., 2001, 91(6), 1131-1138.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01486.x] [PMID: 11851822]
[22]
Vijay Simha, B.; Sood, S.K.; Kumariya, R.; Garsa, A.K. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res., 2012, 167(9), 544-549.
[http://dx.doi.org/10.1016/j.micres.2012.01.001] [PMID: 22277956]
[23]
Anastasiadou, S.; Papagianni, M.; Ambrosiadis, I.; Koidis, P. Rapid quantifiable assessment of nutritional parameters influencing pediocin production by Pediococcus acidilactici NRRL B5627. Bioresour. Technol., 2008, 99(14), 6646-6650.
[http://dx.doi.org/10.1016/j.biortech.2007.11.068] [PMID: 18215516]
[24]
Wu, C.W.; Yin, L.J.; Jiang, S.T. Purification and characterization of bacteriocin from Pediococcus pentosaceus ACCEL. J. Agric. Food Chem., 2004, 52(5), 1146-1151.
[http://dx.doi.org/10.1021/jf035100d] [PMID: 14995112]
[25]
Bagenda, D.K.; Hayashi, K.; Yamazaki, K.; Kawai, Y. Characterization of an antibacterial substance produced by Pediococcus pentosaceus Iz3. 13 isolated from Japanese fermented marine food. Fish. Sci., 2008, 74(2), 439-448.
[http://dx.doi.org/10.1111/j.1444-2906.2008.01542.x]
[26]
Todorov, S.D.; Dicks, L.M. Growth parameters influencing the production of Lactobacillus rhamnosus bacteriocins ST461BZ and ST462BZ. Ann. Microbiol., 2005, 55(4), 283.
[27]
Xiraphi, N.; Georgalaki, M.; Driessche, G.V.; Devreese, B.; Beeumen, J.V.; Tsakalidou, E.; Metaxopoulos, J.; Drosinos, E.H. Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442. Antonie van Leeuwenhoek, 2006, 89(1), 19-26.
[http://dx.doi.org/10.1007/s10482-005-9004-3] [PMID: 16244793]
[28]
Ray, B. Pediocins of Pediococcus species. In: Bacteriocins of Lactic Acid Bacteria; Vuyst, L.; Vandamme, E.J., Eds.; Springer: Boston, MA, 1994; pp. 465-495.
[http://dx.doi.org/10.1007/978-1-4615-2668-1_20]
[29]
Fremaux, C.; Ahn, C.; Klaenhammer, T.R. Molecular analysis of the lactacin F operon. Appl. Environ. Microbiol., 1993, 59(11), 3906-3915.
[http://dx.doi.org/10.1128/AEM.59.11.3906-3915.1993] [PMID: 8285694]
[30]
Hernández, D.; Cardell, E.; Zárate, V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol., 2005, 99(1), 77-84.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02576.x] [PMID: 15960667]
[31]
Hwanhlem, N.; Biscola, V.; El-Ghaish, S.; Jaffrès, E.; Dousset, X.; Haertlé, T.; H-Kittikun, A.; Chobert, J.M. Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in Southern Thailand as potential bio-control agents: purification and characterization of bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics Antimicrob. Proteins, 2013, 5(4), 264-278.
[http://dx.doi.org/10.1007/s12602-013-9150-2] [PMID: 26783072]
[32]
Green, G.; Dicks, L.M.T.; Bruggeman, G.; Vandamme, E.J.; Chikindas, M.L. Pediocin PD-1, a bactericidal antimicrobial peptide from Pediococcus damnosus NCFB 1832. J. Appl. Microbiol., 1997, 83(1), 127-132.
[http://dx.doi.org/10.1046/j.1365-2672.1997.00241.x] [PMID: 9246779]
[33]
Bhunia, A.K.; Johnson, M.C.; Ray, B.; Kalchayanand, N. Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol., 1991, 70(1), 25-33.
[http://dx.doi.org/10.1111/j.1365-2672.1991.tb03782.x]
[34]
de Mello, M.B.; da Silva Malheiros, P.; Brandelli, A.; Pesce da Silveira, N.; Jantzen, M.M.; de Souza da Motta, A. Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics Antimicrob. Proteins, 2013, 5(1), 43-50.
[http://dx.doi.org/10.1007/s12602-013-9125-3] [PMID: 26782604]
[35]
Teixeira, M.L.; dos Santos, J.; Silveira, N.P.; Brandelli, A. Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Innov. Food Sci. Emerg. Technol., 2008, 9(1), 49-53.
[http://dx.doi.org/10.1016/j.ifset.2007.05.001]
[36]
Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys., 2007, 2(1), 1-9.
[http://dx.doi.org/10.1007/s11483-007-9023-x]
[37]
Were, L.M.; Bruce, B.D.; Davidson, P.M.; Weiss, J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J. Agric. Food Chem., 2003, 51(27), 8073-8079.
[http://dx.doi.org/10.1021/jf0348368] [PMID: 14690399]
[38]
Horn, N.; Martínez, M.I.; Martínez, J.M.; Hernández, P.E.; Gasson, M.J.; Rodríguez, J.M.; Dodd, H.M. Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis. Appl. Environ. Microbiol., 1999, 65(10), 4443-4450.
[http://dx.doi.org/10.1128/AEM.65.10.4443-4450.1999] [PMID: 10508073]
[39]
Degnan, A.J.; Buyong, N.; Luchansky, J.B. Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol., 1993, 18(2), 127-138.
[http://dx.doi.org/10.1016/0168-1605(93)90217-5] [PMID: 8494679]
[40]
Colas, J.C.; Shi, W.; Rao, V.S.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 2007, 38(8), 841-847.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy