Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Ultrasound-Based Drug Delivery System

Author(s): Wei-Wei Ren , Shi-Hao Xu, Li-Ping Sun* and Kun Zhang*

Volume 29, Issue 8, 2022

Published on: 17 June, 2021

Page: [1342 - 1351] Pages: 10

DOI: 10.2174/0929867328666210617103905

Price: $65

Abstract

Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients’ clinical symptoms and extend life-span survival time. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted-therapy. However, due to the complexity and heterogeneity of tumor, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its abilities to enhance the efficacy and reduce toxic and side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems, and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation, as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.

Keywords: Cancer, nano-drug delivery systems, ultrasound, sonodynamic therapy, nanotechnology, anti-cancerdrugs.

[1]
Yu, S.; Ding, J.; He, C.; Cao, Y.; Xu, W.; Chen, X. Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(5), 752-760.
[http://dx.doi.org/10.1002/adhm.201300308] [PMID: 24574261]
[2]
Wang, F.Z.; Xing, L.; Tang, Z.H.; Lu, J.J.; Cui, P.F.; Qiao, J.B.; Jiang, L.; Jiang, H.L.; Zong, L. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol. Pharm., 2016, 13(4), 1298-1307.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00879] [PMID: 26894988]
[3]
Li, Y.; Xu, B.; Bai, T.; Liu, W. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials, 2015, 55, 12-23.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.034] [PMID: 25934448]
[4]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[5]
Shi, J.; Liu, Y.; Wang, L.; Gao, J.; Zhang, J.; Yu, X.; Ma, R.; Liu, R.; Zhang, Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater., 2014, 10(3), 1280-1291.
[http://dx.doi.org/10.1016/j.actbio.2013.10.037] [PMID: 24211343]
[6]
Li, S.; Chen, H.; Liu, H.; Liu, L.; Yuan, Y.; Mao, C.; Zhang, W.; Zhang, X.; Guo, W.; Lee, C.S.; Liang, X.J. In vivo real-time pharmaceutical evaluations of near-infrared II fluorescent nanomedicine bound polyethylene glycol ligands for tumor photothermal ablation. ACS Nano, 2020, 14(10), 13681-13690.
[http://dx.doi.org/10.1021/acsnano.0c05885] [PMID: 32926626]
[7]
Ma, X.; Yao, M.; Shi, J.; Li, X.; Gao, Y.; Luo, Q.; Hou, R.; Liang, X.; Wang, F. High intensity Focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition. ACS Nano, 2020, 14(11), 15904-15918.
[http://dx.doi.org/10.1021/acsnano.0c07287] [PMID: 33175487]
[8]
Li, M.; Deng, L.; Li, J.; Yuan, W.; Gao, X.; Ni, J.; Jiang, H.; Zeng, J.; Ren, J.; Wang, P. Actively targeted magnetothermally responsive nanocarriers/doxorubicin for thermochemotherapy of hepatoma. ACS Appl. Mater. Interfaces, 2018, 10(48), 41107-41117.
[http://dx.doi.org/10.1021/acsami.8b14972] [PMID: 30403475]
[9]
Fang, Y.; Li, H.Y.; Yin, H.H.; Xu, S.H.; Ren, W.W.; Ding, S.S.; Tang, W.Z.; Xiang, L.H.; Wu, R.; Guan, X.; Zhang, K. Radiofrequency-sensitive longitudinal relaxation tuning strategy enabling the visualization of radiofrequency ablation intensified by magnetic composite. ACS Appl. Mater. Interfaces, 2019, 11(12), 11251-11261.
[http://dx.doi.org/10.1021/acsami.9b02401] [PMID: 30874421]
[10]
Zhang, F.; Liu, S.; Zhang, N.; Kuang, Y.; Li, W.; Gai, S.; He, F.; Gulzar, A.; Yang, P. X-ray-triggered NO-released Bi-SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy. Nanoscale, 2020, 12(37), 19293-19307.
[http://dx.doi.org/10.1039/D0NR04634E] [PMID: 32935695]
[11]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[12]
Ding, Y.X.; Xu, Y.J.; Yang, W.Z.; Niu, P.; Li, X.; Chen, Y.D.; Li, Z.Y.; Liu, Y.; An, Y.L.; Liu, Y.; Shen, W.Z.; Shi, L.Q. Investigating the EPR effect of nanomedicines in human renal tumorsvia ex vivo perfusion strategy. Nano Today, 2020, 35, 100970.
[http://dx.doi.org/10.1016/j.nantod.2020.100970]
[13]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[14]
McHale, A.P.; Callan, J.F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. Adv. Exp. Med. Biol., 2016, 880, 429-450.
[http://dx.doi.org/10.1007/978-3-319-22536-4_22] [PMID: 26486350]
[15]
Liang, H.; Zhang, X.B.; Lv, Y.; Gong, L.; Wang, R.; Zhu, X.; Yang, R.; Tan, W. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 2014, 47(6), 1891-1901.
[http://dx.doi.org/10.1021/ar500078f] [PMID: 24780000]
[16]
Yue, W.; Chen, L.; Yu, L.; Zhou, B.; Yin, H.; Ren, W.; Liu, C.; Guo, L.; Zhang, Y.; Sun, L.; Zhang, K.; Xu, H.; Chen, Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun., 2019, 10(1), 2025.
[http://dx.doi.org/10.1038/s41467-019-09760-3] [PMID: 31048681]
[17]
Rouge, J.L.; Hao, L.; Wu, X.A.; Briley, W.E.; Mirkin, C.A. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation. ACS Nano, 2014, 8(9), 8837-8843.
[http://dx.doi.org/10.1021/nn503601s] [PMID: 25144723]
[18]
Zhang, K.; Cheng, Y.; Ren, W.; Sun, L.; Liu, C.; Wang, D.; Guo, L.; Xu, H.; Zhao, Y. Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv. Sci. (Weinh.), 2018, 5(9), 1800021.
[http://dx.doi.org/10.1002/advs.201800021] [PMID: 30250780]
[19]
Zhang, H.; Wu, Y.; Hu, Y.; Li, X.; Zhao, M.; Lv, Z. Targeted nanoparticle drug delivery system for the enhancement of cancer immunotherapy. J. Biomed. Nanotechnol., 2019, 15(9), 1839-1866.
[http://dx.doi.org/10.1166/jbn.2019.2827] [PMID: 31387674]
[20]
Ibrahim, M.; Sabouni, R.; Husseini, G.A. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem., 2017, 24(2), 193-214.
[http://dx.doi.org/10.2174/0929867323666160926151216] [PMID: 27686655]
[21]
Varshosaz, J.; Taymouri, S. Hollow inorganic nanoparticles as efficient carriers for siRNA delivery: A comprehensive review. Curr. Pharm. Des., 2015, 21(29), 4310-4328.
[http://dx.doi.org/10.2174/1381612821666150901103937] [PMID: 26323421]
[22]
Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[23]
Lv, C.; Yang, C.; Ding, D.; Sun, Y.; Wang, R.; Han, D.; Tan, W. Endocytic pathways and intracellular transport of aptamer-drug conjugates in live cells monitored by single-particle tracking. Anal. Chem., 2019, 91(21), 13818-13823.
[http://dx.doi.org/10.1021/acs.analchem.9b03281] [PMID: 31593429]
[24]
Paillard, A.; Hindré, F.; Vignes-Colombeix, C.; Benoit, J.P.; Garcion, E. The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability. Biomaterials, 2010, 31(29), 7542-7554.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.024] [PMID: 20630585]
[25]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[26]
Rizk, N.; Christoforou, N.; Lee, S. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology, 2016, 27(18), 185704.
[http://dx.doi.org/10.1088/0957-4484/27/18/185704] [PMID: 27004512]
[27]
Elci, S.G.; Jiang, Y.; Yan, B.; Kim, S.T.; Saha, K.; Moyano, D.F.; Yesilbag Tonga, G.; Jackson, L.C.; Rotello, V.M.; Vachet, R.W. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano, 2016, 10(5), 5536-5542.
[http://dx.doi.org/10.1021/acsnano.6b02086] [PMID: 27164169]
[28]
Banskota, S.; Yousefpour, P.; Chilkoti, A. Cell-based biohybrid drug delivery systems: The best of the synthetic and natural worlds. Macromol. Biosci., 2017, 17(1), 1600361.
[http://dx.doi.org/10.1002/mabi.201600361] [PMID: 27925398]
[29]
Qi, F.; Hu, C.; Yu, W.; Hu, T. Conjugation with eight-arm PEG markedly improves the in vitro activity and prolongs the blood circulation of staphylokinase. Bioconjug. Chem., 2018, 29(2), 451-458.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00770] [PMID: 29298046]
[30]
Lu, J.; Wang, J.; Ling, D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small, 2018, 14(5), 1702037.
[http://dx.doi.org/10.1002/smll.201702037] [PMID: 29251419]
[31]
Esipova, T.V.; Ye, X.; Collins, J.E.; Sakadžić, S.; Mandeville, E.T.; Murray, C.B.; Vinogradov, S.A. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc. Natl. Acad. Sci. USA, 2012, 109(51), 20826-20831.
[http://dx.doi.org/10.1073/pnas.1213291110] [PMID: 23213211]
[32]
Tu, Y.; Chen, C.; Li, Y.; Hou, Y.; Huang, M.; Zhang, L. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed. Mater. Eng., 2017, 28(3), 223-233.
[http://dx.doi.org/10.3233/BME-171669] [PMID: 28527186]
[33]
Rao, L.; Meng, Q.F.; Bu, L.L.; Cai, B.; Huang, Q.; Sun, Z.J.; Zhang, W.F.; Li, A.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces, 2017, 9(3), 2159-2168.
[http://dx.doi.org/10.1021/acsami.6b14450] [PMID: 28050902]
[34]
Rossi, L.; Pierigè, F.; Antonelli, A.; Bigini, N.; Gabucci, C.; Peiretti, E.; Magnani, M. Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 73-87.
[http://dx.doi.org/10.1016/j.addr.2016.05.008] [PMID: 27189231]
[35]
Müller, K.; Kessel, E.; Klein, P.M.; Höhn, M.; Wagner, E. Post-PEGylation of siRNA lipo-oligoamino amide polyplexes using tetra-glutamylated folic acid as ligand for receptor-targeted delivery. Mol. Pharm., 2016, 13(7), 2332-2345.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00102] [PMID: 27177200]
[36]
Dong, W.; Huang, A.; Huang, J.; Wu, P.; Guo, S.; Liu, H.; Qin, M.; Yang, X.; Zhang, B.; Wan, M.; Zong, Y. Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery. Biomater. Sci., 2020, 8(19), 5329-5345.
[http://dx.doi.org/10.1039/D0BM00699H] [PMID: 32793943]
[37]
Zardad, A.; Mabrouk, M.; Marimuthu, T.; du Toit, L.C.; Kumar, P.; Choonara, Y.E.; Kondiah, P.P.D.; Badhe, R.V.; Chejara, D.R.; Pillay, V. Synthesis and biocompatibility of dual-responsive thermosonic injectable organogels based on crosslinked N-(isopropyl acrylamide) for tumour microenvironment targeting. Mater. Sci. Eng. C, 2018, 90, 148-158.
[http://dx.doi.org/10.1016/j.msec.2018.04.059] [PMID: 29853077]
[38]
Schroeder, A.; Honen, R.; Turjeman, K.; Gabizon, A.; Kost, J.; Barenholz, Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release, 2009, 137(1), 63-68.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.007] [PMID: 19303426]
[39]
Wang, C.H.; Kang, S.T.; Lee, Y.H.; Luo, Y.L.; Huang, Y.F.; Yeh, C.K. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 2012, 33(6), 1939-1947.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.036] [PMID: 22142768]
[40]
Negishi, Y.; Endo-Takahashi, Y.; Matsuki, Y.; Kato, Y.; Takagi, N.; Suzuki, R.; Maruyama, K.; Aramaki, Y. Systemic delivery systems of angiogenic gene by novel bubble liposomes containing cationic lipid and ultrasound exposure. Mol. Pharm., 2012, 9(6), 1834-1840.
[http://dx.doi.org/10.1021/mp200554c] [PMID: 22571418]
[41]
Chen, D.; Li, D.Y.; Zhang, Y.Z.; Kang, Z.T. Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling. Ultrason. Sonochem., 2013, 20(6), 1337-1340.
[http://dx.doi.org/10.1016/j.ultsonch.2013.04.001] [PMID: 23622867]
[42]
Li, W.; Cai, X.; Kim, C.; Sun, G.; Zhang, Y.; Deng, R.; Yang, M.; Chen, J.; Achilefu, S.; Wang, L.V.; Xia, Y. Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale, 2011, 3(4), 1724-1730.
[http://dx.doi.org/10.1039/c0nr00932f] [PMID: 21321760]
[43]
Li, X.; Xie, C.; Xia, H.; Wang, Z. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for controlled drug delivery. Langmuir, 2018, 34(34), 9974-9981.
[http://dx.doi.org/10.1021/acs.langmuir.8b01091] [PMID: 30056720]
[44]
Zhang, K.; Xu, H.; Chen, H.; Jia, X.; Zheng, S.; Cai, X.; Wang, R.; Mou, J.; Zheng, Y.; Shi, J. CO2 bubbling-based ‘nanobomb’ system for targetedly suppressing panc-1 pancreatic tumor via low intensity ultrasound-activated inertial cavitation. Theranostics, 2015, 5(11), 1291-1302.
[http://dx.doi.org/10.7150/thno.12691] [PMID: 26379793]
[45]
Irajirad, R.; Ahmadi, A.; Najafabad, B.K.; Abed, Z.; Sheervalilou, R.; Khoei, S.; Shiran, M.B.; Ghaznavi, H.; Shakeri-Zadeh, A. Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: an in vivo study. Cancer Chemother. Pharmacol., 2019, 84(6), 1315-1321.
[http://dx.doi.org/10.1007/s00280-019-03961-9] [PMID: 31559450]
[46]
Wang, D.S.; Panje, C.; Pysz, M.A.; Paulmurugan, R.; Rosenberg, J.; Gambhir, S.S.; Schneider, M.; Willmann, J.K. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology, 2012, 264(3), 721-732.
[http://dx.doi.org/10.1148/radiol.12112368] [PMID: 22723497]
[47]
Zhao, Y.Z.; Lu, C.T.; Fu, H.X.; Li, X.K.; Zhou, Z.C.; Zhao, G.T.; Tian, J.L.; Gao, H.S.; Jiang, Y.N.; Hu, S.P.; Yang, W. Phospholipid-based ultrasonic microbubbles for loading protein and ultrasound-triggered release. Drug Dev. Ind. Pharm., 2009, 35(9), 1121-1127.
[http://dx.doi.org/10.1080/03639040902783082] [PMID: 19555252]
[48]
Beik, J.; Shiran, M.B.; Abed, Z.; Shiri, I.; Ghadimi-Daresajini, A.; Farkhondeh, F.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med. Phys., 2018, 45(9), 4306-4314.
[http://dx.doi.org/10.1002/mp.13100] [PMID: 30043986]
[49]
Park, D.J.; Min, K.H.; Lee, H.J.; Kim, K.; Kwon, I.C.; Jeong, S.Y.; Lee, S.C. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(7), 1219-1227.
[http://dx.doi.org/10.1039/C5TB02338F] [PMID: 32262977]
[50]
Zhu, B.; Liu, Q.; Wang, Y.; Wang, X.; Wang, P.; Zhang, L.; Su, S. Comparison of accumulation, subcellular location, and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy, 2010, 56(5), 403-410.
[http://dx.doi.org/10.1159/000317743] [PMID: 20948211]
[51]
Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci. China Life Sci., 2018, 61(4), 415-426.
[http://dx.doi.org/10.1007/s11427-017-9262-x] [PMID: 29666990]
[52]
Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12), 10816-10828.
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[53]
Chen, Y.; Liang, Y.; Jiang, P.; Li, F.; Yu, B.; Yan, F. Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery. ACS Appl. Mater. Interfaces, 2019, 11(45), 41842-41852.
[http://dx.doi.org/10.1021/acsami.9b10188] [PMID: 31633326]
[54]
Li, D.; Lin, L.; Fan, Y.; Liu, L.; Shen, M.; Wu, R.; Du, L.; Shi, X. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact. Mater., 2020, 6(3), 729-739.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.015] [PMID: 33024894]
[55]
Wan, Q.; Zou, C.; Hu, D.; Zhou, J.; Chen, M.; Tie, C.; Qiao, Y.; Yan, F.; Cheng, C.; Sheng, Z.; Zhang, B.; Liu, X.; Liang, D.; Zheng, H. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater. Sci., 2019, 7(7), 3007-3015.
[http://dx.doi.org/10.1039/C9BM00292H] [PMID: 31112151]
[56]
Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.
[http://dx.doi.org/10.1016/j.nantod.2020.101009]
[57]
Guan, X.; Yin, H.H.; Xu, X.H.; Xu, G.; Zhang, Y.; Zhou, B.G.; Yue, W.W.; Liu, C.; Sun, L.P.; Xu, H.X.; Zhang, K. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron-hole pairs’ separation. Adv. Funct. Mater., 2020, 30(27), 2000326.
[http://dx.doi.org/10.1002/adfm.202000326]
[58]
Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D.; Li, H.; Liu, C.; Sun, L.; Chen, Y.; Xu, H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun., 2019, 10(1), 5380.
[http://dx.doi.org/10.1038/s41467-019-13115-3] [PMID: 31772164]
[59]
Zhang, K.; Li, H.Y.; Lang, J.Y.; Li, X.T.; Yue, W.W.; Yin, Y.F.; Du, D.; Fang, Y.; Wu, H.; Zhao, Y.X.; Xu, C. Quantum yield-engineered biocompatible probes illuminate lung tumor based on viscosity confinement-mediated antiaggregation. Adv. Funct. Mater., 2019, 29(44), 1905124.
[http://dx.doi.org/10.1002/adfm.201905124]
[60]
Zheng, L.; Liu, S.; Cheng, X.; Qin, Z.; Lu, Z.; Zhang, K.; Zhao, J. Intensified stiffness and photodynamic provocation in a collagen-based composite hydrogel drive chondrogenesis. Adv. Sci. (Weinh.), 2019, 6(16), 1900099.
[http://dx.doi.org/10.1002/advs.201900099] [PMID: 31453055]
[61]
Chen, J.; Luo, H.; Liu, Y.; Zhang, W.; Li, H.; Luo, T.; Zhang, K.; Zhao, Y.; Liu, J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano, 2017, 11(12), 12849-12862.
[http://dx.doi.org/10.1021/acsnano.7b08225] [PMID: 29236476]
[62]
Zhang, K.; Li, P.; Chen, H.; Bo, X.; Li, X.; Xu, H. Continuous cavitation designed for enhancing radiofrequency ablation via a special radiofrequency solidoid vaporization process. ACS Nano, 2016, 10(2), 2549-2558.
[http://dx.doi.org/10.1021/acsnano.5b07486] [PMID: 26800221]
[63]
Zhang, K.; Li, P.; He, Y.; Bo, X.; Li, X.; Li, D.; Chen, H.; Xu, H. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment. Biomaterials, 2016, 99, 34-46.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.014] [PMID: 27209261]
[64]
Zhao, J.; Castranova, V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(8), 593-632.
[http://dx.doi.org/10.1080/10937404.2011.615113] [PMID: 22008094]
[65]
Nyström, A.M.; Fadeel, B. Safety assessment of nanomaterials: implications for nanomedicine. J. Control. Release, 2012, 161(2), 403-408.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.027] [PMID: 22306428]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy