Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Modelling Simulations and Inhibitory Effects of Naturally Derived Flavonoids Targeting Platelet-Activating Factor Receptor (PAFR)

Author(s): Noraziah Nordin*, Juriyati Jalil, Mohd Faiz Abd Ghani, Adib Afandi Abdullah and Rozana Othman

Volume 19, Issue 1, 2022

Published on: 14 June, 2021

Page: [20 - 30] Pages: 11

DOI: 10.2174/1570180818666210614170322

Price: $65

Abstract

Background: Platelet-activating factor (PAF) is an agonist mediator in the inflammatory process, which interacts with PAF receptor (PAFR) that eventually causes cancers, respiratory and neurodegenerative diseases. This interaction activates the mitogen-activated protein kinase (MAPK) pathway, leading to a pro-inflammatory cascade. The pathophysiological conditions due to activation of inflammatory cascade could be inhibited by PAF antagonists.

Objectives: In this study, selected naturally derived flavonoids (flavone, biochanin A, and myricetin) with different functional groups were subjected to molecular modelling and experimental studies to investigate their potential as PAF antagonists.

Methods: Interactions of flavonoids and PAF were assessed via Autodock Vina for molecular docking and the AMBER program for molecular dynamic simulations. The experimentally antagonistic effects of the flavonoids were also conducted via PAF inhibitory assay to determine the IC50 values.

Results: The findings of docking and dynamic simulations have revealed that all selected flavonoids interact with PAFR in the binding site with considerably good binding affinity up to - 9.8 kcal mol-1 as compared to cedrol (- 8.1 kcal mol-1) as a standard natural PAFR antagonist. The PAFR-flavonoid complexes exhibited four conserved active site residues, which included W73, F97, F174, and L279. The stability of all complexes was attained in a 30 ns simulation. The findings of in silico analyses were then compared to the experimental study on PAF inhibitory assay. Inhibitory effects of flavonoids against PAFR showed moderate activities, ranging from 27.8 – 30.8 μgM-1.

Conclusion: All studied flavonoids could act as promising PAF antagonists with some enhancement in their structures to exhibit potent antagonistic activity. However, these naturally derived flavonoids demand further investigation at cellular and animal models to develop new PAF antagonist drug candidates for treating PAF-mediated diseases.

Keywords: Flavonoids, platelet-activating factor, molecular docking, molecular dynamics simulation, PAF assay, antagonist, PAF receptor.

Graphical Abstract

[1]
Montrucchio, G.; Alloatti, G.; Camussi, G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol. Rev., 2000, 80(4), 1669-1699.
[http://dx.doi.org/10.1152/physrev.2000.80.4.1669] [PMID: 11015622]
[2]
Denoyelle, S.; Tambutet, G.; Masurier, N.; Maillard, L.T.; Martinez, J.; Lisowski, V. Synthesis of thieno [3, 2-e][1, 4] diazepin-2-ones: Application of an uncatalysed pictet-spengler reaction. Eur. J. Org. Chem., 2015, 2015(32), 7146-7153.
[http://dx.doi.org/10.1002/ejoc.201500943]
[3]
Hyland, I.K.; O’Toole, R.F.; Smith, J.A.; Bissember, A.C. Progress in the development of platelet-activating factor receptor (pafr) antagonists and applications in the treatment of inflammatory diseases. ChemMedChem, 2018, 13(18), 1873-1884.
[http://dx.doi.org/10.1002/cmdc.201800401] [PMID: 30009544]
[4]
Singh, P.; Singh, I.N.; Mondal, S.C.; Singh, L.; Garg, V.K. Platelet-activating factor (PAF)-antagonists of natural origin. Fitoterapia, 2013, 84, 180-201.
[http://dx.doi.org/10.1016/j.fitote.2012.11.002] [PMID: 23160091]
[5]
Sharif, N.A.; Wiernas, T.K. Platelet-activating factor-induced intracellular signaling and release of cytokines and prostaglandin E2 in immortalized human corneal epithelial cells. J. Ocul. Pharmacol. Ther., 2010, 26(1), 21-29.
[http://dx.doi.org/10.1089/jop.2009.0102] [PMID: 20187806]
[6]
Imaizumi, T.A.; Stafforini, D.M.; Yamada, Y.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A. Platelet-activating factor: A mediator for clinicians. J. Intern. Med., 1995, 238(1), 5-20.
[http://dx.doi.org/10.1111/j.1365-2796.1995.tb00894.x] [PMID: 7608647]
[7]
Feuerstein, G.; Rabinovici, R.; Leor, J.; Winkler, J.D.; Vonhof, S. Platelet-activating factor and cardiac diseases: Therapeutic potential for PAF inhibitors. J. Lipid Mediat. Cell Signal., 1997, 15(3), 255-284.
[http://dx.doi.org/10.1016/S0929-7855(96)00562-7] [PMID: 9041476]
[8]
Koltai, M.; Guinot, P.; Hosford, D.; Braquet, P.G. Platelet-activating factor antagonists: Scientific background and possible clinical applications. Adv. Pharmacol., 1994, 28, 81-167.
[http://dx.doi.org/10.1016/S1054-3589(08)60494-9] [PMID: 8080821]
[9]
Braquet, P.G.; Spinnewyn, B.; Braquet, M.; Bourgain, R.H.; Taylor, J.E.; Etienne, A.; Drieu, K. BN 52021 and related compounds: A new series of highly specific PAF-acether receptor antagonists isolated from Ginkgo biloba L. Blood Vessels, 1985, 16(6), 558-572.
[http://dx.doi.org/10.2491/jjsth1970.16.558]
[10]
Shen, T.Y.; Hwang, S.B.; Chang, M.N.; Doebber, T.W.; Lam, M.H.; Wu, M.S.; Wang, X.; Han, G.Q.; Li, R.Z. Characterization of a platelet-activating factor receptor antagonist isolated from Haifenteng (Piper futokadsura): Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects. Proc. Natl. Acad. Sci. USA, 1985, 82(3), 672-676.
[http://dx.doi.org/10.1073/pnas.82.3.672] [PMID: 2983307]
[11]
Okamoto, M.; Yoshida, K.; Uchida, I.; Kohsaka, M.; Aoki, H. Studies of platelet activating factor (PAF) antagonists from microbial products. II. Pharmacological studies of FR-49175 in animal models. Chem. Pharm. Bull. (Tokyo), 1986, 34(1), 345-348.
[http://dx.doi.org/10.1248/cpb.34.345] [PMID: 2421924]
[12]
Jalil, J.; Jantan, I.; Shaari, K.; Abdul Rafi, I.A. Bioassay-guided isolation of a potent platelet- activating factor antagonist alkenyiresorcinol from Ardisia elliptica. Pharm. Biol., 2004, 42, 457-461.
[http://dx.doi.org/10.1080/13880200490886157]
[13]
Nordin, N.; Jalil, J.; Jantan, I.; Murad, S. Platelet-activating factor (PAF) receptor binding activity of the roots of Enicosanthellum pulchrum. Pharm. Biol., 2012, 50(3), 284-290.
[http://dx.doi.org/10.3109/13880209.2011.602416] [PMID: 22103812]
[14]
Agrawal, P.K. Carbon-13 NMR of flavonoids.Elsevier 2013, 39
[15]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[16]
Michaelis, M.; Sithisarn, P.; Cinatl, J., Jr Effects of flavonoid-induced oxidative stress on anti-H5N1 influenza a virus activity exerted by baicalein and biochanin A. BMC Res. Notes, 2014, 7(1), 384.
[http://dx.doi.org/10.1186/1756-0500-7-384] [PMID: 24958200]
[17]
Chen, Y.; Li, P.; Su, S.; Chen, M.; He, J.; Liu, L. Synthesis and antibacterial and antiviral activities of myricetin derivatives containing a 1, 2, 4-triazole Schiff base. RSC Advances, 2019, 9(40), 23045-23052.
[http://dx.doi.org/10.1039/C9RA05139B]
[18]
Devi, K.P.; Rajavel, T.; Habtemariam, S.; Nabavi, S.F.; Nabavi, S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci., 2015, 142, 19-25.
[http://dx.doi.org/10.1016/j.lfs.2015.10.004] [PMID: 26455550]
[19]
Xiao, P.; Zheng, B.; Sun, J.; Yang, J. Biochanin A induces anticancer effects in SK-Mel-28 human malignant melanoma cells via induction of apoptosis, inhibition of cell invasion and modulation of NF-κB and MAPK signaling pathways. Oncol. Lett., 2017, 14(5), 5989-5993.
[http://dx.doi.org/10.3892/ol.2017.6945] [PMID: 29113236]
[20]
Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[21]
Cho, B.O.; Yin, H.H.; Park, S.H.; Byun, E.B.; Ha, H.Y.; Jang, S.I. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci. Biotechnol. Biochem., 2016, 80(8), 1520-1530.
[http://dx.doi.org/10.1080/09168451.2016.1171697] [PMID: 27068250]
[22]
Liu, X.; Wang, T.; Liu, X.; Cai, L.; Qi, J.; Zhang, P.; Li, Y. Biochanin A protects lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Int. Immunopharmacol., 2016, 38, 324-331.
[http://dx.doi.org/10.1016/j.intimp.2016.06.009] [PMID: 27344638]
[23]
Liang, F.; Cao, W.; Huang, Y.; Fang, Y.; Cheng, Y.; Pan, S.; Xu, X. Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. Biofactors, 2019, 45(4), 563-574.
[http://dx.doi.org/10.1002/biof.1514] [PMID: 31131946]
[24]
Yao, Y.; Lin, G.; Xie, Y.; Ma, P.; Li, G.; Meng, Q.; Wu, T. Preformulation studies of myricetin: A natural antioxidant flavonoid. Pharmazie, 2014, 69(1), 19-26.
[PMID: 24601218]
[25]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[26]
Cao, C.; Tan, Q.; Xu, C.; He, L.; Yang, L.; Zhou, Y.; Zhou, Y.; Qiao, A.; Lu, M.; Yi, C.; Han, G.W.; Wang, X.; Li, X.; Yang, H.; Rao, Z.; Jiang, H.; Zhao, Y.; Liu, J.; Stevens, R.C.; Zhao, Q.; Zhang, X.C.; Wu, B. Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol., 2018, 25(6), 488-495.
[http://dx.doi.org/10.1038/s41594-018-0068-y] [PMID: 29808000]
[27]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[28]
James, A.M.; Carmenza, M.; Koushik, K.; Lauren, W.; Kevin, E.H. Carlos simmerling. Improving the accuracy of protein side chain and backbone parameters from ff99sb. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[29]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[30]
Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem., 2002, 23(16), 1623-1641.
[http://dx.doi.org/10.1002/jcc.10128] [PMID: 12395429]
[31]
William, L.J.; Jayaraman, C.; Jeffry, D.M. Comparison of simple potential functions for simulating liquid water. Chem. Phys., 1983, 79(2), 926-935.
[32]
Case, D.A.; Brozell, S.R.; Cerutti, D.S. AMBER 2018; University of California: San Francisco, , 2018.
[33]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc., 2001, 222, U403.
[34]
Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program., 1989, 45(1), 503-528.
[http://dx.doi.org/10.1007/BF01589116]
[35]
Nocedal, J. Updating quasi-newton matrices with limited storage. Math. Comput., 1980, 35(151), 773-782.
[http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7]
[36]
Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 1992, 32(5), 523-535.
[http://dx.doi.org/10.1002/bip.360320508] [PMID: 1515543]
[37]
Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 1988, 65(6), 1409-1419.
[http://dx.doi.org/10.1080/00268978800101881]
[38]
Johan, A.; Petra, W.; Martin, N.; Sinisa, B. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett., 2004, 384(4), 288-294.
[39]
Chow, K.H.; Ferguson, D.M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun., 1995, 91(1), 283-289.
[http://dx.doi.org/10.1016/0010-4655(95)00059-O]
[40]
Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7)e1005659
[http://dx.doi.org/10.1371/journal.pcbi.1005659] [PMID: 28746339]
[41]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[42]
Miyamoto, S.; Kollman, P.A. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem., 1992, 8, 952-962.
[http://dx.doi.org/10.1002/jcc.540130805]
[43]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[44]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[45]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[46]
Jantan, I.; Jalil, J.; Abdul Warif, N.M. Platelet-activating factor (PAF) antagonistic activities of compounds isolated from Guttiferae species. Pharm. Biol., 2001, 39, 243-246. b
[http://dx.doi.org/10.1076/phbi.39.4.243.5913]
[47]
Tsoupras, A.B.; Iatrou, C.; Frangia, C.; Demopoulos, C.A. The implication of platelet activating factor in cancer growth and metastasis: Potent beneficial role of PAF-inhibitors and antioxidants. Infect. Disord. Drug Targets, 2009, 9(4), 390-399.
[http://dx.doi.org/10.2174/187152609788922555] [PMID: 19689381]
[48]
Gui, C.; Zhu, W.; Chen, G.; Luo, X.; Liew, O.W.; Puah, C.M.; Chen, K.; Jiang, H. Understanding the regulation mechanisms of PAF receptor by agonists and antagonists: Molecular modeling and molecular dynamics simulation studies. Proteins, 2007, 67(1), 41-52.
[http://dx.doi.org/10.1002/prot.21213] [PMID: 17243151]
[49]
Hansson, T.; Oostenbrink, C.; van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol., 2002, 12(2), 190-196.
[http://dx.doi.org/10.1016/S0959-440X(02)00308-1] [PMID: 11959496]
[50]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[51]
Norberg, J.; Nilsson, L. Advances in biomolecular simulations: Methodology and recent applications. Q. Rev. Biophys., 2003, 36(3), 257-306.
[http://dx.doi.org/10.1017/S0033583503003895] [PMID: 15029826]
[52]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]

© 2024 Bentham Science Publishers | Privacy Policy