Review Article

硫醚:系统综述

卷 23, 期 2, 2022

发表于: 14 June, 2021

页: [170 - 219] 页: 50

弟呕挨: 10.2174/1389450122666210614121237

价格: $65

摘要

近年来,癌症迅速蔓延,已成为继心血管疾病之后死亡率最高的原因之一。尽管在这一领域进行了大量的研究活动,但癌症发展的原因仍不清楚。科学家们现在正在研究癌症的生物学,尤其是癌症发展的根本原因。目的是治疗癌症疾病,从而治愈患者。继续努力开发作为潜在抗癌剂的新分子对于此目的至关重要。本综述的主要目的是对硫醚的药物化学进行调查,并提供有关其对各种癌细胞系的细胞毒性的实用数据。参考了2001-2020年间发表的研究文章来准备这篇评论文章;但是,专利文献并未包括在内。含硫醚的杂环化合物可能在未来成为一类新的强效抗癌剂。

关键词: 硫醚,抗癌活性,抗肿瘤,细胞毒性,药代动力学,心血管疾病

图形摘要

[1]
Stenholm S, Kivimäki M, Jylhä M, et al. Trajectories of self-rated health in the last 15 years of life by cause of death. Eur J Epidemiol 2016; 31(2): 177-85.
[http://dx.doi.org/10.1007/s10654-015-0071-0] [PMID: 26202668]
[2]
Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 2014; 7: 9-18.
[http://dx.doi.org/10.4137/CGM.S11285] [PMID: 24926201]
[3]
Kumar S, Ahmad MK, Waseem M, Pandey AK. Drug targets for cancer treatment: an overview. Med Chem 2015; 5(3): 115-23.
[4]
Saijo N, Tamura T, Nishio K. Strategy for the development of novel anticancer drugs. Cancer Chemother Pharmacol 2003; 52(1): S97-S101.
[http://dx.doi.org/10.1007/s00280-003-0596-x] [PMID: 12856152]
[5]
Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol 2013; 3(1)120144
[http://dx.doi.org/10.1098/rsob.120144] [PMID: 23303309]
[6]
Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 2015. 10-20: 1-24.
[7]
Selvakumar P, Lakshmikuttyamma A, Das U, Pati HN, Dimmock JR, Sharma RK. NC2213: a novel methionine aminopeptidase 2 inhibitor in human colon cancer HT29 cells. Mol Cancer 2009; 8(65): 65.
[http://dx.doi.org/10.1186/1476-4598-8-65] [PMID: 19703310]
[8]
Küçükgüzel I, Güniz Küçükgüzel S, Rollas S, et al. Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4-triazole derivatives and their anticonvulsant activity. Farmaco 2004; 59(11): 893-901.
[http://dx.doi.org/10.1016/j.farmac.2004.07.005] [PMID: 15544794]
[9]
Gülerman NN, Doğan HN, Rollas S, Johansson C, Çelik C. Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. Farmaco 2001; 56(12): 953-8.
[http://dx.doi.org/10.1016/S0014-827X(01)01167-3] [PMID: 11829116]
[10]
Rostom SAF, Ashour HMA, Abd El Razik HA. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimicrobial and anticancer agents. Arch Pharm (Weinheim) 2009; 342(5): 299-310.
[http://dx.doi.org/10.1002/ardp.200800223] [PMID: 19415663]
[11]
Eskandariyan Z, Esfahani Zadeh M, Haj Mohammad Ebrahim Tehrani K, Mashayekhi V, Kobarfard F. Synthesis of thioether derivatives of quinazoline-4-one-2-thione and evaluation of their antiplatelet aggregation activity. Arch Pharm Res 2014; 37(3): 332-9.
[http://dx.doi.org/10.1007/s12272-013-0192-5] [PMID: 23856968]
[12]
Luo Y, Zhang S, Liu ZJ, et al. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur J Med Chem 2013; 64: 54-61.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.014] [PMID: 23644188]
[13]
Küçükgüzel I, Küçükgüzel ŞG, Rollas S, Kiraz M. Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett 2001; 11(13): 1703-7.
[http://dx.doi.org/10.1016/S0960-894X(01)00283-9] [PMID: 11425542]
[14]
Hajjar NP, Hodgson E. Flavin adenine dinucleotide--dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals. Science 1980; 209(4461): 1134-6.
[http://dx.doi.org/10.1126/science.7403873] [PMID: 7403873]
[15]
Ziegler MD. Microsomal oxidases. The Mol Biol Memb 1978; pp. 193-204.
[16]
Poulsen LL, Ziegler DM. The liver microsomal FAD-containing monooxygenase. Spectral characterization and kinetic studies. J Biol Chem 1979; 254(14): 6449-55.
[http://dx.doi.org/10.1016/S0021-9258(18)50388-4] [PMID: 36396]
[17]
Boonyapiwat B, Panaretou B, Forbes B, Mitchell SC, Steventon GB. Human phenylalanine monooxygenase and thioether metabolism. J Pharm Pharmacol 2009; 61(1): 63-7.
[http://dx.doi.org/10.1211/jpp.61.01.0009] [PMID: 19126298]
[18]
Herrmann DBJ, Besenfelder E, Bicker U, Pahlke W, Böhm E. Pharmacokinetics of the thioether phospholipid analogue BM 41.440 in rats. Lipids 1987; 22(11): 952-4.
[http://dx.doi.org/10.1007/BF02535562] [PMID: 3444391]
[19]
Heim ME, Kleeberg UR, Winkelmann M, et al. study of llmofosine in patients with malignant melanoma. onkologie 1992; 15: 465-9.
[20]
Herrmann DBJ, Opitz HG, Munder PG. Antitumor activity of Ilmofosine (BM 41.440) in the 3Lewis-lung carcinoma model. Lipids 1991; 26(12): 1431-6.
[http://dx.doi.org/10.1007/BF02536581] [PMID: 1819746]
[21]
Kluskens LD, Nelemans SA, Rink R, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther 2009; 328(3): 849-54.
[http://dx.doi.org/10.1124/jpet.108.146431] [PMID: 19038778]
[22]
Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008; 68(22): 9280-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[23]
Erickson HK, Lewis Phillips GD, Leipold DD, et al. The effect of different linkers on target cell catabolism and pharmacokinetics/pharmacodynamics of trastuzumab maytansinoid conjugates. Mol Cancer Ther 2012; 11(5): 1133-42.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0727] [PMID: 22408268]
[24]
Sahu R, Shrivastava SP. Conventional synthesis, in vitro antimicrobial activity and calculation of pharmacokinetic properties of thioether derivatives of quinoxaline. Chem Sci Trans 2016; 5(2): 305-10.
[25]
Seto S, Okada K, Kiyota K, et al. Design, synthesis, and structure-activity relationship studies of novel 2,4,6-trisubstituted-5-pyrimidinecarboxylic acids as peroxisome proliferator-activated receptor γ (PPARgamma) partial agonists with comparable antidiabetic efficacy to rosiglitazone. J Med Chem 2010; 53(13): 5012-24.
[http://dx.doi.org/10.1021/jm100443s] [PMID: 20527969]
[26]
Shimizu M, Uno T, Yasui-Furukori N, Sugawara K, Tateishi T. Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes. Eur J Clin Pharmacol 2006; 62(8): 597-603.
[http://dx.doi.org/10.1007/s00228-006-0152-9] [PMID: 16783561]
[27]
Uno T, Yasui-Furukori N, Shimizu M, Sugawara K, Tateishi T. Determination of rabeprazole and its active metabolite, rabeprazole thioether in human plasma by column-switching high-performance liquid chromatography and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 824(1-2): 238-43.
[http://dx.doi.org/10.1016/j.jchromb.2005.07.027] [PMID: 16087412]
[28]
Alanazi AM, Al-Suwaidan IM, Abdelaziz AAM, Mohamed MA, Morsy AME, El-Azab AS. Design, synthesis and biological evaluation of some novel substituted 2-mercapto-3-phenethylquinazolines as antitumor agents. Med Chem Res 2013; 22: 5566-77.
[http://dx.doi.org/10.1007/s00044-013-0546-z]
[29]
Hou YP, Sun J, Pang ZH, et al. Synthesis and antitumor activity of 1,2,4-triazoles having 1,4-benzodioxan fragment as a novel class of potent methionine aminopeptidase type II inhibitors. Bioorg Med Chem 2011; 19(20): 5948-54.
[http://dx.doi.org/10.1016/j.bmc.2011.08.063] [PMID: 21925884]
[30]
Klimesová V, Zahajská L, Waisser K, Kaustová J, Möllmann U. Synthesis and antimycobacterial activity of 1,2,4-triazole 3-benzylsulfanyl derivatives. Farmaco 2004; 59(4): 279-88.
[http://dx.doi.org/10.1016/j.farmac.2004.01.006] [PMID: 15081345]
[31]
Patel RV, Park SW. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur J Med Chem 2014; 71: 24-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.059] [PMID: 24269513]
[32]
Popiołek L, Kosikowska U, Mazur L, Dobosz M, Malm A. Synthesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Med Chem Res 2013; 22(7): 3134-47.
[http://dx.doi.org/10.1007/s00044-012-0302-9] [PMID: 23710121]
[33]
Fenga C. Occupational exposure and risk of breast cancer. Biomed Rep 2016; 4(3): 282-92.
[http://dx.doi.org/10.3892/br.2016.575] [PMID: 26998264]
[34]
Chen C, Liu YZ, Shia KS, Tseng HY. Synthesis and anticancer evaluation of vitamin K(3) analogues. Bioorg Med Chem Lett 2002; 12(19): 2729-32.
[http://dx.doi.org/10.1016/S0960-894X(02)00532-2] [PMID: 12217364]
[35]
Ott I, Xu Y, Liu J, et al. Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorg Med Chem 2008; 16(15): 7107-16.
[http://dx.doi.org/10.1016/j.bmc.2008.06.052] [PMID: 18644732]
[36]
Cloonan SM, Keating JJ, Butler SG, et al. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents. Eur J Med Chem 2009; 44(12): 4862-88.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.027] [PMID: 19717215]
[37]
Zhang HZ, Crogan-Grundy C, May C, Drewe J, Tseng B, Cai SX. Discovery and structure-activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers. Bioorg Med Chem 2009; 17(7): 2852-8.
[http://dx.doi.org/10.1016/j.bmc.2009.02.029] [PMID: 19282188]
[38]
Alafeefy AM. Some new quinazolin-4(3H)-one derivatives, synthesis, and antitumor activity. J Saudi Chem Soc 2011; 15: 337-43.
[http://dx.doi.org/10.1016/j.jscs.2011.06.019]
[39]
Abd El Hamid MK, Mihovilovic MD, El-Nassan HB. Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. Eur J Med Chem 2012; 57: 323-8.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.031] [PMID: 23085106]
[40]
dos Santos Edos A, Hamel E, Bai R, et al. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg Med Chem Lett 2013; 23(16): 4669-73.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.009] [PMID: 23810282]
[41]
La Regina G, Bai R, Rensen WM, et al. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J Med Chem 2013; 56(1): 123-49.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[42]
Marciniec K, Latocha M, Boryczka S, Kurczab R. Synthesis, molecular docking study, and evaluation of the antiproliferative action of a new group of propargylthio- and propargylselenoquinolines. Med Chem Res 2014; 23: 3468-77.
[http://dx.doi.org/10.1007/s00044-014-0922-3]
[43]
Mudududdla R, Sharma R, Guru SK, et al. Trifluoroacetic acid-catalyzed thiophenylmethylation and thioalkylmethylation of lactams and phenols via domino three-component reaction in water. RSC Advances 2014; 4: 14081-8.
[http://dx.doi.org/10.1039/C3RA47874B]
[44]
Kandeel MM, Refaat HM, Kassab AE, Shahin IG, Abdelghany TM. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives. Eur J Med Chem 2015; 90: 620-32.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.009] [PMID: 25499930]
[45]
Argyros O, Lougiakis N, Kouvari E, et al. Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity. Eur J Med Chem 2017; 126: 954-68.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.025] [PMID: 28006668]
[46]
Liu Y, Liang RM, Ma QP, et al. Synthesis of thioether andrographolide derivatives and their inhibitory effect against cancer cells. MedChemComm 2017; 8(6): 1268-74.
[http://dx.doi.org/10.1039/C7MD00169J] [PMID: 30108837]
[47]
Rostom SAF, Badr MH, Abd El Razik HA, Ashour HMA. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur J Med Chem 2017; 139: 263-79.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.053] [PMID: 28803043]
[48]
Yang L, Ma X, Yuan C, et al. Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors. Eur J Med Chem 2017; 134: 230-41.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.010] [PMID: 28415012]
[49]
Rob L, Skapa P, Robova H. Fertility-sparing surgery in patients with cervical cancer. Lancet Oncol 2011; 12(2): 192-200.
[http://dx.doi.org/10.1016/S1470-2045(10)70084-X] [PMID: 20619737]
[50]
Sreelatha T, Kandhasamy S, Dinesh R, et al. Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg Med Chem Lett 2014; 24(15): 3647-51.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.080] [PMID: 24913712]
[51]
Cefalo MG, Carai A, Miele E, et al. Human iPSC for therapeutic approaches to the nervous system: present and future applications. Stem Cells Int 2016; 20164869071
[http://dx.doi.org/10.1155/2016/4869071] [PMID: 26697076]
[52]
Ismail MMF, Rateb HS, Hussein MMM. Synthesis and docking studies of novel benzopyran-2-ones with anticancer activity. Eur J Med Chem 2010; 45(9): 3950-9.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.050] [PMID: 20580139]
[53]
Abuo-Rahma Gel-D Abdel-Aziz M, Beshr EAM, Ali TFS. 1,2,4-Triazole/oxime hybrids as new strategy for nitric oxide donors: Synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur J Med Chem 2014; 71: 185-98.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.006] [PMID: 24308998]
[54]
Chen TC, Yu DS, Huang KF, et al. Structure-based design, synthesis and biological evaluation of novel anthra[1,2-d]imidazole-6,11-dione homologues as potential antitumor agents. Eur J Med Chem 2013; 69: 278-93.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.058] [PMID: 24051300]
[55]
Kaplancıklı ZA, Yurttas L, Ozdemir A, et al. Synthesis and antiproliferative activity of new 1,5-disubstituted tetrazoles bearing hydrazone moiety. Med Chem Res 2014; 23: 1067-75.
[http://dx.doi.org/10.1007/s00044-013-0717-y]
[56]
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2018; 147: 1-8.
[http://dx.doi.org/10.1016/j.bcp.2017.11.003] [PMID: 29128368]
[57]
Zhao LM, Xie TP, He YQ, Xu DF, Li SS. Synthesis and antitumor activity of 6- and 2-(1-substituted-thio-4-methylpent-3-enyl)-5,8-dimethoxynaphthalene-1,4-diones. Eur J Med Chem 2009; 44(4): 1410-4.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.039] [PMID: 18996624]
[58]
el-Enany MM, Kamel MM, Khalil OM, el-Nassan HB. Synthesis and antitumor activity of novel 6-aryl and 6-alkylpyrazolo[3,4-d]pyrimidin-4-one derivatives. Eur J Med Chem 2010; 45(11): 5286-91.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.048] [PMID: 20846758]
[59]
Özkay Y, Işikdağ I, Incesu Z, Akalin G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur J Med Chem 2010; 45(8): 3320-8.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015] [PMID: 20451307]
[60]
Tangeda SJ, Garlapati A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives and evaluation of their activities against human colon cancer cell lines. Eur J Med Chem 2010; 45(4): 1453-8.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.050] [PMID: 20163895]
[61]
Yao J, Chen J, He Z, Sun W, Fang H, Xu W. Thiourea and thioether derivatives of sorafenib: synthesis, crystal structure, and antiproliferative activity. Med Chem Res 2013; 22: 3959-68.
[http://dx.doi.org/10.1007/s00044-012-0400-8]
[62]
Abdel-Aziz HA, Ghabbour HA, Eldehna WM, et al. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. Eur J Med Chem 2015; 104: 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.023] [PMID: 26413725]
[63]
Ma H, Zhuang C, Xu X, et al. Discovery of benzothiazole derivatives as novel non-sulfamide NEDD8 activating enzyme inhibitors by target-based virtual screening. Eur J Med Chem 2017; 133: 174-83.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.076] [PMID: 28388520]
[64]
Liu T, Sun C, Xing X, et al. Synthesis and evaluation of 2-[2-(phenylthiomethyl)-1H-benzo[d] imidazol-1-yl)acetohydrazide derivatives as antitumor agents. Bioorg Med Chem Lett 2012; 22(9): 3122-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.061] [PMID: 22483608]
[65]
Altıntop MD, Kaplancıklı ZA, Ciftçi GA, Demirel R. Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents. Eur J Med Chem 2014; 74: 264-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.060] [PMID: 24480358]
[66]
Kunzmann AT, McMenamin ÚC, Spence AD, et al. Blood biomarkers for early diagnosis of oesophageal cancer: a systematic review. Eur J Gastroenterol Hepatol 2018; 30(3): 263-73.
[http://dx.doi.org/10.1097/MEG.0000000000001029] [PMID: 29189391]
[67]
Ma LY, Pang LP, Wang B, et al. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur J Med Chem 2014; 86: 368-80.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.010] [PMID: 25180925]
[68]
Garrido M, Fonseca PJ, Vieitez JM, Frunza M, Lacave AJ. Challenges in first line chemotherapy and targeted therapy in advanced gastric cancer. Expert Rev Anticancer Ther 2014; 14(8): 887-900.
[http://dx.doi.org/10.1586/14737140.2014.915194] [PMID: 24953238]
[69]
Suda A, Kawasaki K, Komiyama S, et al. Design and synthesis of 2-amino-6-(1H,3H-benzo[de]isochromen-6-yl)-1,3,5-triazines as novel Hsp90 inhibitors. Bioorg Med Chem 2014; 22(2): 892-905.
[http://dx.doi.org/10.1016/j.bmc.2013.11.036] [PMID: 24369839]
[70]
Li ZH, Yang DX, Geng PF, et al. Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. Eur J Med Chem 2016; 124: 967-80.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.022] [PMID: 27771599]
[71]
El-Gohary NS, Shaaban MI. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur J Med Chem 2017; 137: 439-49.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[72]
King HD, Staab AJ, Pham-Kaplita K, et al. BR96 conjugates of highly potent anthracyclines. Bioorg Med Chem Lett 2003; 13(13): 2119-22.
[http://dx.doi.org/10.1016/S0960-894X(03)00375-5] [PMID: 12798317]
[73]
Leese MP, Newman SP, Purohit A, Reed MJ, Potter BVL. 2-Alkylsulfanyl estrogen derivatives: synthesis of a novel class of multi-targeted anti-tumour agents. Bioorg Med Chem Lett 2004; 14(12): 3135-8.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.027] [PMID: 15149660]
[74]
Gangjee A, Jain HD, Kisliuk RL. Novel 2-amino-4-oxo-5-arylthio-substituted-pyrrolo[2,3-d]pyrimidines as nonclassical antifolate inhibitors of thymidylate synthase. Bioorg Med Chem Lett 2005; 15(9): 2225-30.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.029] [PMID: 15837298]
[75]
Grigoryan LA, Kaldrikyan MA, Melik-Ogandzhanyan RG, Arsenyan FG, Stepanyan GM, Garibdzhanyan BG. Synthesis and antitumor activity of 2-S-substituted pyrimidine derivatives. Pharm Chem J 2005; 39: 468-72.
[http://dx.doi.org/10.1007/s11094-006-0003-0]
[76]
Mellon C, Aspiotis R, Black CW, et al. Lipophilic versus hydrogen-bonding effect in P3 on potency and selectivity of valine aspartyl ketones as caspase 3 inhibitors. Bioorg Med Chem Lett 2005; 15(17): 3886-90.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.116] [PMID: 16023344]
[77]
Saczewski F, Innocenti A, Sławiński J, et al. Carbonic anhydrase inhibitors: inhibition of human cytosolic isozymes I and II and tumor-associated isozymes IX and XII with S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides. Bioorg Med Chem 2008; 16(7): 3933-40.
[http://dx.doi.org/10.1016/j.bmc.2008.01.034] [PMID: 18242998]
[78]
Cuny GD, Robin M, Ulyanova NP, et al. Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors. Bioorg Med Chem Lett 2010; 20(12): 3491-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.150] [PMID: 20836251]
[79]
Albrecht S, Salomon E, Defoin A, Tarnus C. Rapid and efficient synthesis of a novel series of substituted aminobenzosuberone derivatives as potent, selective, non-peptidic neutral aminopeptidase inhibitors. Bioorg Med Chem 2012; 20(16): 4942-53.
[http://dx.doi.org/10.1016/j.bmc.2012.06.041] [PMID: 22796349]
[80]
Ling Y, Xiao YA, Chen GT, et al. Synthesis and in vitro biological evaluation of farnesylthiosalicylic acid derivatives as anti-tumor carcinoma agents. Chin Chem Lett 2012; 23: 1141-4.
[http://dx.doi.org/10.1016/j.cclet.2012.08.007]
[81]
Zheng CH, Yang H, Zhang M, et al. Design, synthesis, and activity evaluation of broad-spectrum small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins: characteristics of broad-spectrum protein binding and its effects on anti-tumor activity. Bioorg Med Chem Lett 2012; 22(1): 39-44.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.101] [PMID: 22172701]
[82]
Čapkauskaitė E, Zubrienė A, Smirnov A, et al. Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII. Bioorg Med Chem 2013; 21(22): 6937-47.
[http://dx.doi.org/10.1016/j.bmc.2013.09.029] [PMID: 24103428]
[83]
Fargualy AM, Habib NS, Ismail KA, Hassan AMM, Sarg MTM. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur J Med Chem 2013; 66: 276-95.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.028] [PMID: 23811090]
[84]
Hamdy R, Ziedan N, Ali S, et al. Synthesis and evaluation of 3-(benzylthio)-5-(1H-indol-3-yl)-1,2,4-triazol-4-amines as Bcl-2 inhibitory anticancer agents. Bioorg Med Chem Lett 2013; 23(8): 2391-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.029] [PMID: 23474389]
[85]
Rakse M, Karthikeyan C, Deora GS, et al. Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Eur J Med Chem 2013; 70: 469-76.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.030] [PMID: 24185377]
[86]
Sun L, Li J, Bera H, Dolzhenko AV, Chiu GNC, Chui WK. Fragment-based approach to the design of 5-chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines as thymidine phosphorylase inhibitors. Eur J Med Chem 2013; 70: 400-10.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.022] [PMID: 24177367]
[87]
Zhang D, Zhang X, Ai J, et al. Synthesis and biological evaluation of 2-amino-5-aryl-3-benzylthiopyridine scaffold based potent c-Met inhibitors. Bioorg Med Chem 2013; 21(21): 6804-20.
[http://dx.doi.org/10.1016/j.bmc.2013.07.032] [PMID: 23993328]
[88]
Żołnowska B, Sławiński J, Pogorzelska A, Chojnacki J, Vullo D, Supuran CT. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N′-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur J Med Chem 2014; 71: 135-47.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.081] [PMID: 24291567]
[89]
Çoruh I, Çevik Ö, Yelekçi K, Djikic T, Küçükgüzel ŞG. Synthesis, anti-cancer activity, and molecular modeling of etodolac-thioether derivatives as potent methionine aminopeptidase (type II) inhibitors. Arch Pharm 2018; 351: 1-16.
[http://dx.doi.org/10.1002/ardp.201700195]
[90]
Abdelhamid SG, El-Obeid HA, Al-Rashood KA, Khalil AA, El-Subbagh HI. Substituted Quinazolines, 1. Synthesis and antitumor activity of certain substituted 2-mercapto-4(3H)-quinazolinone analogs. Sci Pharm 2001; 69: 351-66.
[http://dx.doi.org/10.3797/scipharm.aut-01-205]
[91]
Ranise A, Spallarossa A, Schenone S, et al. Synthesis and antiproliferative activity of basic thioanalogues of merbarone. Bioorg Med Chem 2003; 11(12): 2575-89.
[http://dx.doi.org/10.1016/S0968-0896(03)00158-5] [PMID: 12757725]
[92]
Tandon VK, Singh RV, Yadav DB. Synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorg Med Chem Lett 2004; 14(11): 2901-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.047] [PMID: 15125956]
[93]
Lauria A, Patella C, Abbate I, Martorana A, Almerico AM. Lead optimization through VLAK protocol: new annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur J Med Chem 2012; 55: 375-83.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.046] [PMID: 22892346]
[94]
Murty MSR, Rama KR, Raoa RV, et al. Synthesis of new S-alkylated-3-mercapto-1,2,4-triazole derivatives bearing cyclic amine moiety as potent anti-cancer agents. Lett Drug Des Discov 2012; 9: 276-81.
[http://dx.doi.org/10.2174/157018012799129882]
[95]
Antypenko LM, Kovalenko SI, Antypenko OM, Katsev AM, Achkasova OM. Design and evaluation of novel antimicrobial and anti-cancer agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives. Sci Pharm 2013; 81(1): 15-42.
[http://dx.doi.org/10.3797/scipharm.1208-13] [PMID: 23641327]
[96]
Ragab FAF, Abou-Seri SM, Abdel-Aziz SA, Alfayomy AM, Aboelmagd M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur J Med Chem 2017; 138: 140-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.026] [PMID: 28667871]
[97]
Li L, Wang H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett 2016; 379(2): 191-7.
[http://dx.doi.org/10.1016/j.canlet.2015.07.018] [PMID: 26213370]
[98]
Li J, Zhao YF, Yuan XY, Xu JX, Gong P. Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules 2006; 11(7): 574-82.
[http://dx.doi.org/10.3390/11070574] [PMID: 17971729]
[99]
Wang Z, Shi XH, Wang J, et al. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg Med Chem Lett 2011; 21(4): 1097-101.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.124] [PMID: 21262571]
[100]
Zhang XY, Zhang P. Sensitization strategies in lung cancer. Oncol Lett 2016; 12(5): 3669-73.
[http://dx.doi.org/10.3892/ol.2016.5146] [PMID: 27900051]
[101]
Thomson P, Naylor MA, Stratford MRL, et al. Hypoxia-driven elimination of thiopurines from their nitrobenzyl prodrugs. Bioorg Med Chem Lett 2007; 17(15): 4320-2.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.018] [PMID: 17517505]
[102]
Altıntop MD, Özdemir A, Turan-Zitouni G, et al. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur J Med Chem 2012; 58: 299-307.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.011] [PMID: 23142671]
[103]
Chen Y, Liu HR, Liu HS, et al. Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur J Med Chem 2012; 49: 74-85.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.025] [PMID: 22265685]
[104]
Seenaiah D, Reddy PR, Reddy GM, Padmaja A, Padmavathi V, Krishna NS. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 2014; 77: 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[105]
Cai H, Huang X, Xu S, et al. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur J Med Chem 2016; 108: 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[106]
Xu CC, Wu JJ, Xu T, Yao CH, Yu BY, Liu JH. Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur J Med Chem 2016; 123: 763-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.015] [PMID: 27537924]
[107]
Wang W, Zhao B, Xu C, Wu W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int J Org Chem (Irvine) 2012; 2: 117-20.
[http://dx.doi.org/10.4236/ijoc.2012.22018]
[108]
Yun F, Cheng C, Ullah S, He J, Zahi MR, Yuan Q. Thioether-based 2-aminobenzamide derivatives: Novel HDAC inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem 2019; 176: 195-207.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.007] [PMID: 31103900]
[109]
Suzuki T, Muto N, Bando M, et al. Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8-selective inhibitors. ChemMedChem 2014; 9(3): 657-64.
[http://dx.doi.org/10.1002/cmdc.201300414] [PMID: 24403121]
[110]
Zhao L, Li X, Zhang L, et al. Novel small molecules as apoptosis inducers: synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Bioorg Med Chem Lett 2013; 23(8): 2293-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.076] [PMID: 23489624]
[111]
Cui W, Lv W, Qu Y, et al. Discovery of 2-((3-cyanopyridin-2-yl)thio)acetamides as human lactate dehydrogenase A inhibitors to reduce the growth of MG-63 osteosarcoma cells: Virtual screening and biological validation. Bioorg Med Chem Lett 2016; 26(16): 3984-7.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.083] [PMID: 27406795]
[112]
Schröder FH, Roobol MJ. Prostate cancer epidemic in sight? Eur Urol 2012; 61(6): 1093-5.
[http://dx.doi.org/10.1016/j.eururo.2012.03.019] [PMID: 22464308]
[113]
Pakarainen T, Raitanen J, Talala K, et al. Number of screening rounds and postscreening prostate cancer ıncidence: results from the Finnish section of the European randomized study of screening for prostate cancer study. Eur Urol 2016; 70(3): 499-505.
[http://dx.doi.org/10.1016/j.eururo.2016.05.009] [PMID: 27210461]
[114]
Xue W, Song B, He W, et al. Synthesis and biological activity of novel 1-(2,3,4-trimethoxyphenyl)-2-{[5-(3,4,5-trimethoxyphenyl)-1,3,4-thiadiazol-2-yl]thio} ethanone oxime ester derivatives. J Heterocycl Chem 2006; 43: 867-71.
[http://dx.doi.org/10.1002/jhet.5570430409]
[115]
Yang S, Li Z, Jin L, et al. Synthesis and bioactivity of 4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem Lett 2007; 17(8): 2193-6.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.101] [PMID: 17317179]
[116]
Liu XH, Lv PC, Xue JY, Song BA, Zhu HL. Novel 2,4,5-trisubstituted oxazole derivatives: synthesis and antiproliferative activity. Eur J Med Chem 2009; 44(10): 3930-5.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.019] [PMID: 19423198]
[117]
Han Mİ, Bekçi H, Uba Aİ, et al. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch Pharm (Weinheim) 2019; 352(6)e1800365
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[118]
Han Mİ, Bekçi H, Cumaoğlu A, Küçükgüzel ŞG. Synthesis and characterization of 1;2;4-triazole containing hydrazide-hydrazones derived from (S)-naproxen as anticancer agents. Marmara Pharm J 2018; 22(4): 559-69.
[119]
Yılmaz Ö, Bayer B, Bekçi H, et al. Synthesis, anticancer activity on prostate cancer cell lines and molecular modeling studies of flurbiprofen-thioether derivatives as potential target of MetAP (Type II). Med Chem 2020; 16(6): 735-49.
[PMID: 31203805]
[120]
Birgül K, Yıldırım Y, Karasulu HY, et al. Synthesis, molecular modeling, in vivo study and anticancer activity against prostate cancer of (+) (S)-naproxen derivatives. Eur J Med Chem 2020; 208112841
[http://dx.doi.org/10.1016/j.ejmech.2020.112841] [PMID: 32998089]
[121]
Schrader AJ, Hofmann R. Metastatic renal cell carcinoma: recent advances and current therapeutic options. Anticancer Drugs 2008; 19(3): 235-45.
[http://dx.doi.org/10.1097/CAD.0b013e3282f444de] [PMID: 18510169]
[122]
Abdel-Aziz M. Abuo-Rahma Gel-D, Beshr EAM, Ali TFS. New nitric oxide donating 1,2,4-triazole/oxime hybrids: synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg Med Chem 2013; 21(13): 3839-49.
[http://dx.doi.org/10.1016/j.bmc.2013.04.022] [PMID: 23665142]
[123]
Khalil AA, AbdelHamide SG, Al-Obaid AM, El-Subbagh HI. Substituted quinazolines, part 2. synthesis and in-vitro anti-cancer evaluation of new 2-substituted mercapto-3H-quinazoline analogs. Arch Pharm Pharm Med Chem 2003; 2: 95-103.
[http://dx.doi.org/10.1002/ardp.200390011]
[124]
El-Azab AS, Al-Omar MA, Abdel-Aziz AAM, et al. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: molecular docking study. Eur J Med Chem 2010; 45(9): 4188-98.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.013] [PMID: 20599299]
[125]
Abdel Gawad NM, Georgey HH, Youssef RM, El-Sayed NA. Synthesis and antitumor activity of some 2, 3-disubstituted quinazolin-4(3H)-ones and 4, 6- disubstituted- 1, 2, 3, 4-tetrahydroquinazolin-2H-ones. Eur J Med Chem 2010; 45(12): 6058-67.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.008] [PMID: 21051122]
[126]
Jin C, Liang YJ, He H, Fu L. Synthesis and antitumor activity of ureas containing pyrimidinyl group. Eur J Med Chem 2011; 46(1): 429-32.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.026] [PMID: 21144621]
[127]
Saad HA, Moustafa AH. Synthesis and anticancer activity of some new s-glycosyl and s-alkyl 1,2,4-triazinone derivatives. Molecules 2011; 16(7): 5682-700.
[http://dx.doi.org/10.3390/molecules16075682] [PMID: 21727893]
[128]
Brożewicz K, Sławiński J. 1-(2-Mercaptobenzenesulfonyl)-3-hydroxyguanidines--novel potent antiproliferatives, synthesis and in vitro biological activity. Eur J Med Chem 2012; 55: 384-94.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.042] [PMID: 22892345]
[129]
Purohit M, Mayur YC. Synthesis, in vitro cytotoxicity, and anti-microbial studies of 1,4-bis(4-substituted-5-mercapto-1,2,4-triazol-3-yl)butanes. Med Chem Res 2012; 21: 174-84.
[http://dx.doi.org/10.1007/s00044-010-9517-9]
[130]
Al-Suwaidan IA, Alanazi AM, Abdel-Aziz AAM, Mohamed MA, El-Azab AS. Design, synthesis and biological evaluation of 2-mercapto-3-phenethylquinazoline bearing anilide fragments as potential antitumor agents: molecular docking study. Bioorg Med Chem Lett 2013; 23(13): 3935-41.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.056] [PMID: 23683592]
[131]
Du QR, Li DD, Pi YZ. Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anti-cancer/antimicrobial agents. Bioorg Med Chem 2013; 21: 2286-97.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[132]
Huang W, Chen Q, Yang WC, Yang GF. Efficient synthesis and antiproliferative activity of novel thioether-substituted flavonoids. Eur J Med Chem 2013; 66: 161-70.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.037] [PMID: 23792763]
[133]
Insuasty B, Becerra D, Quiroga J, Abonia R, Nogueras M, Cobo J. Microwave-assisted synthesis of pyrimido[4,5-b][1,6]naphthyridin-4(3H)-ones with potential antitumor activity. Eur J Med Chem 2013; 60: 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.037] [PMID: 23279862]
[134]
Kopel LC, Ahmed MS, Halaweish FT. Synthesis of novel estrone analogs by incorporation of thiophenols via conjugate addition to an enone side chain. Steroids 2013; 78(11): 1119-25.
[http://dx.doi.org/10.1016/j.steroids.2013.07.005] [PMID: 23899492]
[135]
Kovalenko SI, Nosulenko IS, Voskoboynik AY, et al. Novel N-aryl(alkaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides: synthesis, cytotoxicity, anti-cancer activity, compare analysis and docking. Med Chem Res 2013; 22: 2610-32.
[http://dx.doi.org/10.1007/s00044-012-0257-x]
[136]
Yurttaş L, Duran M, Demirayak Ş, Gençer HK, Tunalı Y. Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives. Bioorg Med Chem Lett 2013; 23(24): 6764-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.024] [PMID: 24176398]
[137]
Markosyan AI, Torshirzad NM, Shakhbazyan GH, Arsenyan FG. Synthesis and antineoplastic properties of 3-substituted 5,5-dimethylbenzo[h]quinazolin-4(3H)-ones. Pharm Chem J 2014; 47(12): 651-4.
[http://dx.doi.org/10.1007/s11094-014-1025-7]
[138]
Murty MSR, Ram KR, Rao BR, et al. Synthesis, characterization, and anti-cancer studies of S and N alkyl piperazine-substituted positional isomers of 1,2,4-triazole derivatives. Med Chem Res 2014; 23: 1661-71.
[http://dx.doi.org/10.1007/s00044-013-0757-3]
[139]
Shao KP, Zhang XY, Chen PJ, et al. Synthesis and biological evaluation of novel pyrimidine-benzimidazol hybrids as potential anticancer agents. Bioorg Med Chem Lett 2014; 24(16): 3877-81.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.050] [PMID: 25001482]
[140]
Song Y, Lin X, Kang D, et al. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. Eur J Med Chem 2014; 82: 293-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.063] [PMID: 24922544]
[141]
Wang XJ, Yang ML, Zhang LP, et al. Design of novel bis-benzimidazole derivatives as DNA minor groove binding agents. Chin Chem Lett 2014; 25: 589-92.
[http://dx.doi.org/10.1016/j.cclet.2014.01.019]
[142]
Wu XQ, Huang C, Jia YM, Song BA, Li J, Liu XH. Novel coumarin-dihydropyrazole thio-ethanone derivatives: design, synthesis and anticancer activity. Eur J Med Chem 2014; 74: 717-25.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.014] [PMID: 24119869]
[143]
Park HS, Kim C, Park MS. Discovery and synthesis of novel allylthioaralkylthiopyridazines: their antiproliferative activity against MCF-7 and Hep3B cells. Arch Pharm Res 2015; 38(5): 791-800.
[http://dx.doi.org/10.1007/s12272-014-0416-3] [PMID: 24925344]
[144]
El-Messery SMS, Hassan GS, Nagi MN, Habib EE, Al-Rashood ST, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg Med Chem Lett 2016; 26(19): 4815-23.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.022] [PMID: 27554444]
[145]
Kulabaş N, Tatar E, Bingöl Özakpınar Ö, et al. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur J Med Chem 2016; 121: 58-70.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.017] [PMID: 27214512]
[146]
Mavrova AT, Dimov S, Yancheva D, Rangelov M, Wesselinova D, Tsenov JA. Synthesis, anticancer activity and photostability of novel 3-ethyl-2-mercapto-thieno[2,3-d]pyrimidin-4(3H)-ones. Eur J Med Chem 2016; 123: 69-79.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.022] [PMID: 27474924]
[147]
Wang Y, Richard MA, Top S, et al. VessiÀres, A.; Mansuy, D.; Jaouen, G. Ferrocenyl quinone methide–thiol adducts as new antiproliferative agents: synthesis, metabolic formation from ferrociphenols, and oxidative transformation. Angew Chem Int Ed Engl 2016; 55(35): 10431-4.
[http://dx.doi.org/10.1002/anie.201603931] [PMID: 27276169]
[148]
Yan L, Liang J, Yao C, et al. Pyrimidine triazole thioether derivatives as toll-like receptor 5 (TLR5)/flagellin complex inhibitors. Chem. Med. ChemMedChem 2016; 11(8): 822-6.
[http://dx.doi.org/10.1002/cmdc.201500471] [PMID: 26634412]
[149]
Zhao PL, Chen P, Li Q, et al. Design, synthesis and biological evaluation of novel 3-alkylsulfanyl-4-amino-1,2,4-triazole derivatives. Bioorg Med Chem Lett 2016; 26(15): 3679-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.086] [PMID: 27287368]
[150]
Abuelizz HA, Marzouk M, Ghabbour H, Al-Salahi R. Synthesis and anticancer activity of new quinazoline derivatives. Saudi Pharm J 2017; 25(7): 1047-54.
[http://dx.doi.org/10.1016/j.jsps.2017.04.022] [PMID: 29158714]
[151]
El-Gazzar YI, Georgey HH, El-Messery SM, et al. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorg Chem 2017; 72: 282-92.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[152]
Li ZH, Liu XQ, Zhao TQ, et al. Design, synthesis and preliminary antiproliferative activity studies of new diheteroaryl thioether derivatives. Bioorg Med Chem Lett 2017; 27(18): 4377-82.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.021] [PMID: 28838695]
[153]
Pogorzelska A, Sławiński J, Żołnowska B, et al. Novel 2-(2-alkylthiobenzenesulfonyl)-3-(phenylprop-2-ynylideneamino)guanidine derivatives as potent anticancer agents - Synthesis, molecular structure, QSAR studies and metabolic stability. Eur J Med Chem 2017; 138: 357-70.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.059] [PMID: 28688276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy