Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Pathways Involved in Remyelination after Cerebral Ischemia

Author(s): Gonzalo Garcia-Martin, Berta Alcover-Sanchez, Francisco Wandosell and Beatriz Cubelos*

Volume 20, Issue 4, 2022

Published on: 24 February, 2022

Page: [751 - 765] Pages: 15

DOI: 10.2174/1570159X19666210610093658

Price: $65

Abstract

Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.

Keywords: Cerebral ischemia, stroke, oligodendrocyte, oligodendrocyte precursor cell, remyelination, glial cells.

Graphical Abstract

[1]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Emergency and comprehensive care for stroke needed. Lancet, 2009, 373(9674), 1496.
[http://dx.doi.org/10.1016/S0140-6736(09)60833-3] [PMID: 19410695]
[3]
Fonseca, A.C.; Ferro, J.M. Cryptogenic stroke. Eur. J. Neurol., 2015, 22(4), 618-623.
[http://dx.doi.org/10.1111/ene.12673] [PMID: 25597418]
[4]
Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci., 1999, 22(9), 391-397.
[http://dx.doi.org/10.1016/S0166-2236(99)01401-0] [PMID: 10441299]
[5]
Yin, K.J.; Hamblin, M.; Chen, Y.E. Non-coding RNAs in cerebral endothelial pathophysiology: Emerging roles in stroke. Neurochem. Int., 2014, 77, 9-16.
[http://dx.doi.org/10.1016/j.neuint.2014.03.013] [PMID: 24704794]
[6]
Krueger, M.; Bechmann, I.; Immig, K.; Reichenbach, A.; Härtig, W.; Michalski, D. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2015, 35(2), 292-303.
[http://dx.doi.org/10.1038/jcbfm.2014.199] [PMID: 25425076]
[7]
McCabe, C.; Arroja, M.M.; Reid, E.; Macrae, I.M. Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology, 2018, 134(Pt B), 169-177.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.022] [PMID: 28923277]
[8]
Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav., 2007, 87(1), 179-197.
[http://dx.doi.org/10.1016/j.pbb.2007.04.015] [PMID: 17521716]
[9]
Richard Green, A.; Odergren, T.; Ashwood, T. Animal models of stroke: Do they have value for discovering neuroprotective agents? Trends Pharmacol. Sci., 2003, 24(8), 402-408.
[http://dx.doi.org/10.1016/S0165-6147(03)00192-5] [PMID: 12915049]
[10]
Rolfe, D.F.S.; Brown, G.C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev., 1997, 77(3), 731-758.
[http://dx.doi.org/10.1152/physrev.1997.77.3.731] [PMID: 9234964]
[11]
Puig, B.; Brenna, S.; Magnus, T. Molecular communication of a dying neuron in stroke. Int. J. Mol. Sci., 2018, 19(9) ,E2834.
[http://dx.doi.org/10.3390/ijms19092834] [PMID: 30235837]
[12]
Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev., 2018, 98(2), 813-880.
[http://dx.doi.org/10.1152/physrev.00011.2017] [PMID: 29488822]
[13]
Khoshnam, S.E.; Winlow, W.; Farzaneh, M.; Farbood, Y.; Moghaddam, H.F. Pathogenic mechanisms following ischemic stroke. Neurol. Sci., 2017, 38(7), 1167-1186.
[http://dx.doi.org/10.1007/s10072-017-2938-1] [PMID: 28417216]
[14]
Rock, K.L.; Kono, H.; Adriano, A.; Christina, S. The inflammatory response to cell death. Annu. Rev. Pathol. Dis., 2008, 3, 67-97.
[15]
Perez-Alvarez, M.J.; Wandosell, F. Stroke and neuroinflamation: Role of sexual hormones. Curr. Pharm. Des., 2016, 22(10), 1334-1349.
[http://dx.doi.org/10.2174/138161282210160304112834] [PMID: 26972291]
[16]
Broughton, B.R.S.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke, 2009, 40(5), e331-e339.
[http://dx.doi.org/10.1161/STROKEAHA.108.531632] [PMID: 19182083]
[17]
Forbes, T.A.; Gallo, V. All wrapped up: Environmental effects on myelination. Trends Neurosci., 2017, 40(9), 572-587.
[http://dx.doi.org/10.1016/j.tins.2017.06.009] [PMID: 28844283]
[18]
Bergles, D.E.; Richardson, W.D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol., 2015, 8(2) ,a020453.
[http://dx.doi.org/10.1101/cshperspect.a020453] [PMID: 26492571]
[19]
Simons, M.; Nave, K.A. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb. Perspect. Biol., 2015, 8(1) ,a020479.
[http://dx.doi.org/10.1101/cshperspect.a020479] [PMID: 26101081]
[20]
Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the central nervous system: Structure, function, and pathology. Physiol. Rev., 2019, 99(3), 1381-1431.
[http://dx.doi.org/10.1152/physrev.00031.2018] [PMID: 31066630]
[21]
Salzer, J.L.; Zalc, B. Myelination. Curr. Biol., 2016, 26(20), R971-R975.
[http://dx.doi.org/10.1016/j.cub.2016.07.074] [PMID: 27780071]
[22]
Goldman, S.A.; Kuypers, N.J. How to make an oligodendrocyte. Development, 2015, 142(23), 3983-3995.
[http://dx.doi.org/10.1242/dev.126409] [PMID: 26628089]
[23]
Ghosh, A.; Sherman, D.L.; Brophy, P.J. The axonal cytoskeleton and the assembly of nodes of ranvier. Neuroscientist, 2018, 24(2), 104-110.
[http://dx.doi.org/10.1177/1073858417710897] [PMID: 28534438]
[24]
Lubetzki, C.; Sol-Foulon, N.; Desmazières, A. Nodes of ranvier during development and repair in the CNS. Nat. Rev. Neurol., 2020, 1871.
[http://dx.doi.org/10.1038/s41582-020-0375-x]
[25]
Bercury, K.K.; Macklin, W.B. Dynamics and mechanisms of CNS myelination. Dev. Cell, 2015, 32(4), 447-458.
[http://dx.doi.org/10.1016/j.devcel.2015.01.016] [PMID: 25710531]
[26]
Philips, T.; Rothstein, J.D.; Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of neurons. J. Clin. Invest., 2017, 127(9), 3271-3280.
[http://dx.doi.org/10.1172/JCI90610] [PMID: 28862639]
[27]
Chamberlain, K.A.; Sheng, Z-H. Mechanisms for the maintenance and regulation of axonal energy supply. J. Neurosci. Res., 2019, 97(8), 897-913.
[http://dx.doi.org/10.1002/jnr.24411] [PMID: 30883896]
[28]
Gibson, E.M.; Geraghty, A.C.; Monje, M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev. Neurobiol., 2018, 78(2), 123-135.
[http://dx.doi.org/10.1002/dneu.22541] [PMID: 28986960]
[29]
Dobson, R.; Giovannoni, G. Multiple sclerosis - A review. Eur. J. Neurol., 2019, 26(1), 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[30]
Jasiak-Zatonska, M.; Kalinowska-Lyszczarz, A.; Michalak, S.; Kozubski, W. The immunology of neuromyelitis optica-current knowledge, clinical implications, controversies and future perspectives. Int. J. Mol. Sci., 2016, 17(3), 273.
[http://dx.doi.org/10.3390/ijms17030273] [PMID: 26950113]
[31]
Cai, W.; Yang, T.; Liu, H.; Han, L.; Zhang, K.; Hu, X.; Zhang, X.; Yin, K.J.; Gao, Y.; Bennett, M.V.L.; Leak, R.K.; Chen, J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog. Neurobiol., 2018, 163-164, 27-58.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.002] [PMID: 29032144]
[32]
Mierzwa, A.J.; Marion, C.M.; Sullivan, G.M.; McDaniel, D.P.; Armstrong, R.C. Components of myelin damage and repair in the progression of white matter pathology after mild traumatic brain injury. J. Neuropathol. Exp. Neurol., 2015, 74(3), 218-232.
[http://dx.doi.org/10.1097/NEN.0000000000000165] [PMID: 25668562]
[33]
Yang, T.; Sun, Y.; Lu, Z.; Leak, R.K.; Zhang, F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev., 2017, 34, 15-29.
[http://dx.doi.org/10.1016/j.arr.2016.09.007] [PMID: 27693240]
[34]
Rosenberg, G.A. Vascular cognitive impairment: Biomarkers in diagnosis and molecular targets in therapy. J. Cereb. Blood Flow Metab., 2016, 36(1), 4-5.
[http://dx.doi.org/10.1177/0271678X15609542] [PMID: 26667984]
[35]
Benarroch, E.E. Oligodendrocytes: Susceptibility to injury and involvement in neurologic disease. Neurology, 2009, 72(20), 1779-1785.
[http://dx.doi.org/10.1212/WNL.0b013e3181a6b123] [PMID: 19451534]
[36]
Saab, A.S.; Tzvetavona, I.D.; Trevisiol, A.; Baltan, S.; Dibaj, P.; Kusch, K.; Möbius, W.; Goetze, B.; Jahn, H.M.; Huang, W.; Steffens, H.; Schomburg, E.D.; Pérez-Samartín, A.; Pérez-Cerdá, F.; Bakhtiari, D.; Matute, C.; Löwel, S.; Griesinger, C.; Hirrlinger, J.; Kirchhoff, F.; Nave, K.A. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 2016, 91(1), 119-132.
[http://dx.doi.org/10.1016/j.neuron.2016.05.016] [PMID: 27292539]
[37]
Lin, W.; Harding, H.P.; Ron, D.; Popko, B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J. Cell Biol., 2005, 169(4), 603-612.
[http://dx.doi.org/10.1083/jcb.200502086] [PMID: 15911877]
[38]
Hövelmeyer, N.; Hao, Z.; Kranidioti, K.; Kassiotis, G.; Buch, T.; Frommer, F.; von Hoch, L.; Kramer, D.; Minichiello, L.; Kollias, G.; Lassmann, H.; Waisman, A. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol., 2005, 175(9), 5875-5884.
[http://dx.doi.org/10.4049/jimmunol.175.9.5875] [PMID: 16237080]
[39]
Pang, Y.; Cai, Z.; Rhodes, P.G. Effect of tumor necrosis factor-α on developing optic nerve oligodendrocytes in culture. J. Neurosci. Res., 2005, 80(2), 226-234.
[http://dx.doi.org/10.1002/jnr.20450] [PMID: 15765524]
[40]
Shi, H.; Hu, X.; Leak, R.K.; Shi, Y.; An, C.; Suenaga, J.; Chen, J.; Gao, Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp. Neurol., 2015, 272, 17-25.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.017] [PMID: 25819104]
[41]
Pantoni, L.; Garcia, J.H.; Gutierrez, J.A. Cerebral white matter is highly vulnerable to ischemia. Stroke, 1996, 27(9), 1641-1646.
[http://dx.doi.org/10.1161/01.STR.27.9.1641] [PMID: 8784142]
[42]
Jiang, X.; Pu, H.; Hu, X.; Wei, Z.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res., 2016, 7(6), 548-561.
[http://dx.doi.org/10.1007/s12975-016-0502-6] [PMID: 27714669]
[43]
Dawson, M.R.L.; Polito, A.; Levine, J.M.; Reynolds, R. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci., 2003, 24(2), 476-488.
[http://dx.doi.org/10.1016/S1044-7431(03)00210-0] [PMID: 14572468]
[44]
Nait-Oumesmar, B.; Picard-Riera, N.; Kerninon, C.; Decker, L.; Seilhean, D.; Höglinger, G.U.; Hirsch, E.C.; Reynolds, R.; Baron-Van, E.A. Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4694-4699.
[http://dx.doi.org/10.1073/pnas.0606835104] [PMID: 17360586]
[45]
Menn, B.; Garcia-Verdugo, J.M.; Yaschine, C.; Gonzalez-Perez, O.; Rowitch, D.; Alvarez-Buylla, A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci., 2006, 26(30), 7907-7918.
[http://dx.doi.org/10.1523/JNEUROSCI.1299-06.2006] [PMID: 16870736]
[46]
Fancy, S.P.J.; Zhao, C.; Franklin, R.J.M. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol. Cell. Neurosci., 2004, 27(3), 247-254.
[http://dx.doi.org/10.1016/j.mcn.2004.06.015] [PMID: 15519240]
[47]
Tong, C.K.; Fuentealba, L.C.; Shah, J.K.; Lindquist, R.A.; Ihrie, R.A.; Guinto, C.D.; Rodas-Rodriguez, J.L.; Alvarez-Buylla, A. A dorsal SHH-dependent domain in the V-SVZ produces large numbers of oligodendroglial lineage cells in the postnatal brain. Stem Cell Reports, 2015, 5(4), 461-470.
[http://dx.doi.org/10.1016/j.stemcr.2015.08.013] [PMID: 26411905]
[48]
Flygt, J.; Clausen, F.; Marklund, N. Diffuse traumatic brain injury in the mouse induces a transient proliferation of oligodendrocyte progenitor cells in injured white matter tracts. Restor. Neurol. Neurosci., 2017, 35(2), 251-263.
[http://dx.doi.org/10.3233/RNN-160675] [PMID: 27768001]
[49]
Zhang, R.; Chopp, M.; Zhang, Z.G. Oligodendrogenesis after cerebral ischemia. Front. Cell. Neurosci., 2013, 7, 201.
[PMID: 24194700]
[50]
Chen, L.X.; Ma, S.M.; Zhang, P.; Fan, Z.C.; Xiong, M.; Cheng, G.Q.; Yang, Y.; Qiu, Z.L.; Zhou, W.H.; Li, J. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS One, 2015, 10(3) ,e0115997.
[http://dx.doi.org/10.1371/journal.pone.0115997] [PMID: 25790286]
[51]
Orthmann-Murphy, J.; Call, C.L.; Molina-Castro, G.C.; Hsieh, Y.C.; Rasband, M.N.; Calabresi, P.A.; Bergles, D.E. Remyelination alters the pattern of myelin in the cerebral cortex. eLife, 2020, 9, 1-61.
[http://dx.doi.org/10.7554/eLife.56621] [PMID: 32459173]
[52]
Poncet, C.; Soula, C.; Trousse, F.; Kan, P.; Hirsinger, E.; Pourquié, O.; Duprat, A.M.; Cochard, P. Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: Effects of notochord and floor plate grafts, and of sonic hedgehog. Mech. Dev., 1996, 60(1), 13-32.
[http://dx.doi.org/10.1016/S0925-4773(96)00595-3] [PMID: 9025058]
[53]
Pringle, N.P.; Yu, W.P.; Guthrie, S.; Roelink, H.; Lumsden, A.; Peterson, A.C.; Richardson, W.D. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol., 1996, 177(1), 30-42.
[http://dx.doi.org/10.1006/dbio.1996.0142] [PMID: 8660874]
[54]
Laouarem, Y.; Traiffort, E. Developmental and repairing production of myelin: The role of hedgehog signaling. Front. Cell. Neurosci., 2018, 12, 305.
[http://dx.doi.org/10.3389/fncel.2018.00305] [PMID: 30237763]
[55]
Ferent, J.; Traiffort, E. Hedgehog: Multiple paths for multiple roles in shaping the brain and spinal cord. Neuroscientist, 2015, 21(4), 356-371.
[http://dx.doi.org/10.1177/1073858414531457] [PMID: 24743306]
[56]
Park, H.C.; Mehta, A.; Richardson, J.S.; Appel, B. olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol., 2002, 248(2), 356-368.
[http://dx.doi.org/10.1006/dbio.2002.0738] [PMID: 12167410]
[57]
Schebesta, M.; Serluca, F.C. Olig 1 Expression identifies developing oligodendrocytes in zebrafish and requires hedgehog and notch signaling. Dev. Dyn., 2009, 238(4), 887-898.
[http://dx.doi.org/10.1002/dvdy.21909] [PMID: 19253391]
[58]
Ferent, J.; Zimmer, C.; Durbec, P.; Ruat, M.; Traiffort, E. Sonic Hedgehog signaling is a positive oligodendrocyte regulator during demyelination. J. Neurosci., 2013, 33(5), 1759-1772.
[http://dx.doi.org/10.1523/JNEUROSCI.3334-12.2013] [PMID: 23365216]
[59]
Alvarez, J.I.; Dodelet-Devillers, A.; Kebir, H.; Ifergan, I.; Fabre, P.J.; Terouz, S.; Sabbagh, M.; Wosik, K.; Bourbonnière, L.; Bernard, M.; Van Horssen, J.; De Vries, H.E.; Charron, F.; Prat, A. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 2011, 334(6063), 1727-1731.
[60]
Wang, L.; Zhang, Z.G.; Gregg, S.R.; Zhang, R.L.; Jiao, Z.; LeTourneau, Y.; Liu, X.; Feng, Y.; Gerwien, J.; Torup, L.; Leist, M.; Noguchi, C.T.; Chen, Z.Y.; Chopp, M. The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J. Biol. Chem., 2007, 282(44), 32462-32470.
[http://dx.doi.org/10.1074/jbc.M706880200] [PMID: 17804404]
[61]
Liu, X.S.; Chopp, M.; Wang, X.L.; Zhang, L.; Hozeska-Solgot, A.; Tang, T.; Kassis, H.; Zhang, R.L.; Chen, C.; Xu, J.; Zhang, Z.G. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J. Biol. Chem., 2013, 288(18), 12478-12488.
[http://dx.doi.org/10.1074/jbc.M112.449025] [PMID: 23511639]
[62]
Zhang, L.; Chopp, M.; Meier, D.H.; Winter, S.; Wang, L.; Szalad, A.; Lu, M.; Wei, M.; Cui, Y.; Zhang, Z.G. Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke. Stroke, 2013, 44(7), 1965-1972.
[http://dx.doi.org/10.1161/STROKEAHA.111.000831] [PMID: 23696546]
[63]
Samanta, J.; Grund, E.M.; Silva, H.M.; Lafaille, J.J.; Fishell, G.; Salzer, J.L. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature, 2015, 526(7573), 448-452.
[http://dx.doi.org/10.1038/nature14957] [PMID: 26416758]
[64]
Sanchez, M.A.; Sullivan, G.M.; Armstrong, R.C. Genetic detection of Sonic hedgehog (Shh) expression and cellular response in the progression of acute through chronic demyelination and remyelination. Neurobiol. Dis., 2018, 115(115), 145-156.
[http://dx.doi.org/10.1016/j.nbd.2018.04.003] [PMID: 29627579]
[65]
Alcover-Sanchez, B.; Garcia-Martin, G.; Wandosell, F.; Cubelos, B. R-Ras GTPases signaling role in myelin neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(16), 1-18.
[http://dx.doi.org/10.3390/ijms21165911] [PMID: 32824627]
[66]
Gaesser, J.M.; Fyffe-Maricich, S.L. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp. Neurol., 2016, 283(Pt B), 501-511.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.008] [PMID: 26957369]
[67]
Flores, A.I.; Narayanan, S.P.; Morse, E.N.; Shick, H.E.; Yin, X.; Kidd, G.; Avila, R.L.; Kirschner, D.A.; Macklin, W.B. Constitutively active Akt induces enhanced myelination in the CNS. J. Neurosci., 2008, 28(28), 7174-7183.
[http://dx.doi.org/10.1523/JNEUROSCI.0150-08.2008] [PMID: 18614687]
[68]
Goebbels, S.; Oltrogge, J.H.; Kemper, R.; Heilmann, I.; Bormuth, I.; Wolfer, S.; Wichert, S.P.; Möbius, W.; Liu, X.; Lappe-Siefke, C.; Rossner, M.J.; Groszer, M.; Suter, U.; Frahm, J.; Boretius, S.; Nave, K.A. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci., 2010, 30(26), 8953-8964.
[http://dx.doi.org/10.1523/JNEUROSCI.0219-10.2010] [PMID: 20592216]
[69]
McLane, L.E.; Bourne, J.N.; Evangelou, A.V.; Khandker, L.; Macklin, W.B.; Wood, T.L. Loss of tuberous sclerosis complex1 in adult oligodendrocyte progenitor cells enhances axon remyelination and increases myelin thickness after a focal demyelination. J. Neurosci., 2017, 37(31), 7534-7546.
[http://dx.doi.org/10.1523/JNEUROSCI.3454-16.2017] [PMID: 28694334]
[70]
Shi, Q.; Saifetiarova, J.; Taylor, A.M.; Bhat, M.A. mTORC1 Activation by loss of tsc1 in myelinating glia causes downregulation of quaking and neurofascin 155 leading to paranodal domain disorganization. Front. Cell. Neurosci., 2018, 12, 201.
[http://dx.doi.org/10.3389/fncel.2018.00201] [PMID: 30050412]
[71]
Figlia, G.; Gerber, D.; Suter, U. Myelination and mTOR. Glia, 2018, 66(4), 693-707.
[http://dx.doi.org/10.1002/glia.23273] [PMID: 29210103]
[72]
Malumbres, M.; Barbacid, M. RAS oncogenes: The first 30 years. Nat. Rev. Cancer, 2003, 3(6), 459-465.
[http://dx.doi.org/10.1038/nrc1097] [PMID: 12778136]
[73]
Sjölander, A.; Yamamoto, K.; Huber, B.E.; Lapetina, E.G. Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA, 1991, 88(18), 7908-7912.
[http://dx.doi.org/10.1073/pnas.88.18.7908] [PMID: 1716764]
[74]
Rodriguez-Viciana, P.; Warne, P.H.; Dhand, R.; Vanhaesebroeck, B.; Gout, I.; Fry, M.J.; Waterfield, M.D.; Downward, J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 1994, 370(6490), 527-532.
[http://dx.doi.org/10.1038/370527a0] [PMID: 8052307]
[75]
Gonsalvez, D.; Ferner, A.H.; Peckham, H.; Murray, S.S.; Xiao, J. The roles of extracellular related-kinases 1 and 2 signaling in CNS myelination. Neuropharmacology,, 2016, 110(Pt B), 586-593.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.024] [PMID: 25959068]
[76]
Ishii, A.; Furusho, M.; Dupree, J.L.; Bansal, R. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J. Neurosci., 2014, 34(48), 16031-16045.
[http://dx.doi.org/10.1523/JNEUROSCI.3360-14.2014] [PMID: 25429144]
[77]
Ishii, A.; Fyffe-Maricich, S.L.; Furusho, M.; Miller, R.H.; Bansal, R. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J. Neurosci., 2012, 32(26), 8855-8864.
[http://dx.doi.org/10.1523/JNEUROSCI.0137-12.2012] [PMID: 22745486]
[78]
Dai, J.; Bercury, K.K.; Macklin, W.B. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation. Glia, 2014, 62(12), 2096-2109.
[http://dx.doi.org/10.1002/glia.22729] [PMID: 25060812]
[79]
Michel, K.; Zhao, T.; Karl, M.; Lewis, K.; Fyffe-Maricich, S.L. Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain. J. Neurosci., 2015, 35(20), 7850-7865.
[http://dx.doi.org/10.1523/JNEUROSCI.4380-14.2015] [PMID: 25995471]
[80]
Sanz-Rodriguez, M.; Gruart, A.; Escudero-Ramirez, J.; de Castro, F.; Delgado-García, J.M.; Wandosell, F.; Cubelos, B. R-Ras1 and R-Ras2 Are essential for oligodendrocyte differentiation and survival for correct myelination in the central nervous system. J. Neurosci., 2018, 38(22), 5096-5110.
[http://dx.doi.org/10.1523/JNEUROSCI.3364-17.2018] [PMID: 29720552]
[81]
Alcover-Sanchez, B.; Garcia-Martin, G.; Escudero-Ramirez, J.; Gonzalez-Riano, C.; Lorenzo, P.; Gimenez-Cassina, A.; Formentini, L.; de la Villa-Polo, P.; Pereira, M.P.; Wandosell, F.; Cubelos, B. Absence of R-Ras1 and R-Ras2 causes mitochondrial alterations that trigger axonal degeneration in a hypomyelinating disease model. Glia, 2021, 69(3), 619-637.
[http://dx.doi.org/10.1002/glia.23917] [PMID: 33010069]
[82]
Ishii, A.; Furusho, M.; Macklin, W.; Bansal, R. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia, 2019, 67(7), 1277-1295.
[http://dx.doi.org/10.1002/glia.23602] [PMID: 30761608]
[83]
Zhou, J.; Du, T.; Li, B.; Rong, Y.; Verkhratsky, A.; Peng, L. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro, 2015, 7(5) ,1759091415602463.
[http://dx.doi.org/10.1177/1759091415602463] [PMID: 26442853]
[84]
Liu, R.; Tang, J.C.; Pan, M.X.; Zhuang, Y.; Zhang, Y.; Liao, H.B.; Zhao, D.; Lei, Y.; Lei, R.X.; Wang, S.; Liu, A.C.; Qin, X.P.; Chen, J.; Zhang, Z.F.; Wan, Q. ERK 1/2 activation mediates the neuroprotective effect of BpV(pic) in focal cerebral ischemia-reperfusion injury. Neurochem. Res., 2018, 43(7), 1424-1438.
[http://dx.doi.org/10.1007/s11064-018-2558-z] [PMID: 29882124]
[85]
Sun, J.; Fang, Y.; Chen, T.; Guo, J.; Yan, J.; Song, S.; Zhang, L.; Liao, H. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination. Brain Res., 2013, 1491, 225-235.
[http://dx.doi.org/10.1016/j.brainres.2012.11.006] [PMID: 23148948]
[86]
Santra, M.; Chopp, M.; Zhang, Z.G.; Lu, M.; Santra, S.; Nalani, A.; Santra, S.; Morris, D.C. Thymosin β 4 mediates oligodendrocyte differentiation by upregulating p38 MAPK. Glia, 2012, 60(12), 1826-1838.
[http://dx.doi.org/10.1002/glia.22400] [PMID: 23073962]
[87]
Shioda, N.; Han, F.; Fukunaga, K. Role of akt and erk signaling in the neurogenesis following brain Ischemia, 1st ed; Elsevier Inc., 2009, p. 85.
[http://dx.doi.org/10.1016/S0074-7742(09)85026-5]
[88]
Yu, Y.; Fu, P.; Yu, Z.; Xie, M.; Wang, W.; Luo, X. NKCC1 inhibition attenuates chronic cerebral hypoperfusion-induced white matter lesions by enhancing progenitor cells of oligodendrocyte proliferation. J. Mol. Neurosci., 2018, 64(3), 449-458.
[http://dx.doi.org/10.1007/s12031-018-1043-0] [PMID: 29502291]
[89]
Guo, F.; Lang, J.; Sohn, J.; Hammond, E.; Chang, M.; Pleasure, D. Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain. Glia, 2015, 63(10), 1671-1693.
[http://dx.doi.org/10.1002/glia.22813] [PMID: 25782433]
[90]
Fancy, S.P.J.; Baranzini, S.E.; Zhao, C.; Yuk, D.I.; Irvine, K.A.; Kaing, S.; Sanai, N.; Franklin, R.J.M.; Rowitch, D.H. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev., 2009, 23(13), 1571-1585.
[http://dx.doi.org/10.1101/gad.1806309] [PMID: 19515974]
[91]
Feigenson, K.; Reid, M.; See, J.; Crenshaw, E.B. III.; Grinspan, J.B. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol. Cell. Neurosci., 2009, 42(3), 255-265.
[http://dx.doi.org/10.1016/j.mcn.2009.07.010] [PMID: 19619658]
[92]
Azim, K.; Butt, A.M. GSK3β negatively regulates oligodendrocyte differentiation and myelination In vivo. Glia, 2011, 59(4), 540-553.
[http://dx.doi.org/10.1002/glia.21122] [PMID: 21319221]
[93]
Nicaise, A.M.; Johnson, K.M.; Willis, C.M.; Guzzo, R.M.; Crocker, S.J. TIMP-1 promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol. Neurobiol., 2019, 56(5), 3380-3392.
[http://dx.doi.org/10.1007/s12035-018-1310-7] [PMID: 30121936]
[94]
Wang, L.; Geng, J.; Qu, M.; Yuan, F.; Wang, Y.; Pan, J.; Li, Y.; Ma, Y.; Zhou, P.; Zhang, Z.; Yang, G-Y. Oligodendrocyte precursor cells transplantation protects blood-brain barrier in a mouse model of brain ischemia via Wnt/β-catenin signaling. Cell Death Dis., 2020, 11(1), 9.
[http://dx.doi.org/10.1038/s41419-019-2206-9] [PMID: 31907363]
[95]
Zhang, S.; Kim, B.; Zhu, X.; Gui, X.; Wang, Y.; Lan, Z.; Prabhu, P.; Fond, K.; Wang, A.; Guo, F. Glial type specific regulation of CNS angiogenesis by hifα-activated different signaling pathways. Nat. Commun., 2020, 11(1), 1-17.
[96]
Fu, H.; Kesari, S.; Cai, J. Tcf7l2 is tightly controlled during myelin formation. Cell. Mol. Neurobiol., 2012, 32(3), 345-352.
[http://dx.doi.org/10.1007/s10571-011-9778-y] [PMID: 22160878]
[97]
Weng, C.; Ding, M.; Fan, S.; Cao, Q.; Lu, Z. Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination. Mol. Med. Rep., 2017, 16(2), 1864-1870.
[http://dx.doi.org/10.3892/mmr.2017.6843] [PMID: 28656232]
[98]
Zhao, C.; Deng, Y.; Liu, L.; Yu, K.; Zhang, L.; Wang, H.; He, X.; Wang, J.; Lu, C.; Wu, L.N.; Weng, Q.; Mao, M.; Li, J.; van Es, J.H.; Xin, M.; Parry, L.; Goldman, S.A.; Clevers, H.; Lu, Q.R. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat. Commun., 2016, 7, 10883.
[http://dx.doi.org/10.1038/ncomms10883] [PMID: 26955760]
[99]
Hammond, E.; Lang, J.; Maeda, Y.; Pleasure, D.; Angus-Hill, M.; Xu, J.; Horiuchi, M.; Deng, W.; Guo, F. The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J. Neurosci., 2015, 35(12), 5007-5022.
[http://dx.doi.org/10.1523/JNEUROSCI.4787-14.2015] [PMID: 25810530]
[100]
Zhang, S.; Wang, Y.; Zhu, X.; Song, L.; Zhan, X.; Ma, E.; McDonough, J.; Fu, H.; Cambi, F.; Grinspan, J.; Guo, F. The wnt effector tcf7l2 promotes oligodendroglial differentiation by repressing autocrine bmp4-mediated signaling. J. Neurosci., 2021, 41(8), 1650-1664.
[101]
Feigenson, K.; Reid, M.; See, J.; Crenshaw, E.B., III; Grinspan, J.B. Canonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation. ASN Neuro, 2011, 3(3) ,e00061.
[http://dx.doi.org/10.1042/AN20110004] [PMID: 21599637]
[102]
Cantone, M.; Küspert, M.; Reiprich, S.; Lai, X.; Eberhardt, M.; Göttle, P.; Beyer, F.; Azim, K.; Küry, P.; Wegner, M.; Vera, J. A gene regulatory architecture that controls region-independent dynamics of oligodendrocyte differentiation. Glia, 2019, 67(5), 825-843.
[http://dx.doi.org/10.1002/glia.23569] [PMID: 30730593]
[103]
Sauer, S. Ligands for the nuclear peroxisome proliferator-activated receptor gamma. Trends Pharmacol. Sci., 2015, 36(10), 688-704.
[http://dx.doi.org/10.1016/j.tips.2015.06.010] [PMID: 26435213]
[104]
Zhao, X.; Strong, R.; Zhang, J.; Sun, G.; Tsien, J.Z.; Cui, Z.; Grotta, J.C.; Aronowski, J. Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J. Neurosci., 2009, 29(19), 6186-6195.
[http://dx.doi.org/10.1523/JNEUROSCI.5857-08.2009] [PMID: 19439596]
[105]
Han, L.; Cai, W.; Mao, L.; Liu, J.; Li, P.; Leak, R.K.; Xu, Y.; Hu, X.; Chen, J. Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke, 2015, 46(9), 2628-2636.
[http://dx.doi.org/10.1161/STROKEAHA.115.010091] [PMID: 26243225]
[106]
Zhang, Q.; Zhu, W.; Xu, F.; Dai, X.; Shi, L.; Cai, W.; Mu, H.; Hitchens, T.K.; Foley, L.M.; Liu, X.; Yu, F.; Chen, J.; Shi, Y.; Leak, R.K.; Gao, Y.; Chen, J.; Hu, X. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol., 2019, 17(6) ,e3000330.
[http://dx.doi.org/10.1371/journal.pbio.3000330] [PMID: 31226122]
[107]
Kanakasabai, S.; Pestereva, E.; Chearwae, W.; Gupta, S.K.; Ansari, S.; Bright, J.J. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One, 2012, 7(11) ,e50500.
[http://dx.doi.org/10.1371/journal.pone.0050500] [PMID: 23185633]
[108]
Wan Ibrahim, W.N.; Tofighi, R.; Onishchenko, N.; Rebellato, P.; Bose, R.; Uhlén, P.; Ceccatelli, S. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and In vivo. Toxicol. Appl. Pharmacol., 2013, 269(1), 51-60.
[http://dx.doi.org/10.1016/j.taap.2013.03.003] [PMID: 23500012]
[109]
De Nuccio, C.; Bernardo, A.; De Simone, R.; Mancuso, E.; Magnaghi, V.; Visentin, S.; Minghetti, L. Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J. Neuropathol. Exp. Neurol., 2011, 70(10), 900-912.
[http://dx.doi.org/10.1097/NEN.0b013e3182309ab1] [PMID: 21937914]
[110]
Roth, A.D.; Leisewitz, A.V.; Jung, J.E.; Cassina, P.; Barbeito, L.; Inestrosa, N.C.; Bronfman, M. PPAR γ activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J. Neurosci. Res., 2003, 72(4), 425-435.
[http://dx.doi.org/10.1002/jnr.10596] [PMID: 12704804]
[111]
Bernardo, A.; Bianchi, D.; Magnaghi, V.; Minghetti, L. Peroxisome proliferator-activated receptor-γ agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J. Neuropathol. Exp. Neurol., 2009, 68(7), 797-808.
[http://dx.doi.org/10.1097/NEN.0b013e3181aba2c1] [PMID: 19535992]
[112]
Kawase-Koga, Y.; Otaegi, G.; Sun, T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev. Dyn., 2009, 238(11), 2800-2812.
[http://dx.doi.org/10.1002/dvdy.22109] [PMID: 19806666]
[113]
Nave, K.A. Oligodendrocytes and the “micro brake” of progenitor cell proliferation. Neuron, 2010, 65(5), 577-579.
[http://dx.doi.org/10.1016/j.neuron.2010.02.026] [PMID: 20223193]
[114]
Dugas, J.C.; Cuellar, T.L.; Scholze, A.; Ason, B.; Ibrahim, A.; Emery, B.; Zamanian, J.L.; Foo, L.C.; McManus, M.T.; Barres, B.A. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron, 2010, 65(5), 597-611.
[http://dx.doi.org/10.1016/j.neuron.2010.01.027] [PMID: 20223197]
[115]
Zhao, X.; He, X.; Han, X.; Yu, Y.; Ye, F.; Chen, Y.; Hoang, T.; Xu, X.; Mi, Q.S.; Xin, M.; Wang, F.; Appel, B.; Lu, Q.R. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron, 2010, 65(5), 612-626.
[http://dx.doi.org/10.1016/j.neuron.2010.02.018] [PMID: 20223198]
[116]
Kornfeld, S.F.; Cummings, S.E.; Fathi, S.; Bonin, S.R.; Kothary, R. MiRNA-145-5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. J. Cell. Physiol., 2021, 236(2), 997-1012.
[http://dx.doi.org/10.1002/jcp.29910] [PMID: 32602617]
[117]
Liu, X.S.; Chopp, M.; Pan, W.L.; Wang, X.L.; Fan, B.Y.; Zhang, Y.; Kassis, H.; Zhang, R.L.; Zhang, X.M.; Zhang, Z.G. MicroRNA-146a Promotes Oligodendrogenesis in Stroke. Mol. Neurobiol., 2017, 54(1), 227-237.
[http://dx.doi.org/10.1007/s12035-015-9655-7] [PMID: 26738853]
[118]
Buller, B.; Chopp, M.; Ueno, Y.; Zhang, L.; Zhang, R.L.; Morris, D.; Zhang, Y.; Zhang, Z.G. Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation. Glia, 2012, 60(12), 1906-1914.
[http://dx.doi.org/10.1002/glia.22406] [PMID: 22907787]
[119]
Santra, M.; Chopp, M.; Santra, S.; Nallani, A.; Vyas, S.; Zhang, Z.G.; Morris, D.C. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J. Neurochem., 2016, 136(1), 118-132.
[http://dx.doi.org/10.1111/jnc.13394] [PMID: 26466330]
[120]
Burda, J.E.; Bernstein, A.M.; Sofroniew, M.V. Astrocyte roles in traumatic brain injury. Exp. Neurol., 2016, 275(Pt 3), 305-315.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.020] [PMID: 25828533]
[121]
Gomez-Nicola, D.; Perry, V.H. Microglial dynamics and role in the healthy and diseased brain: A paradigm of functional plasticity. Neuroscientist, 2015, 21(2), 169-184.
[http://dx.doi.org/10.1177/1073858414530512] [PMID: 24722525]
[122]
Wu, L.; Zhang, K.; Hu, G.; Yan, H.; Xie, C.; Wu, X. Inflammatory response and neuronal necrosis in rats with cerebral ischemia. Neural Regen. Res., 2014, 9(19), 1753-1762.
[http://dx.doi.org/10.4103/1673-5374.143419] [PMID: 25422636]
[123]
McDonough, A.; Weinstein, J.R. Neuroimmune Response in Ischemic Preconditioning. Neurotherapeutics, 2016, 13(4), 748-761.
[http://dx.doi.org/10.1007/s13311-016-0465-z] [PMID: 27525700]
[124]
Fumagalli, M.; Lombardi, M.; Gressens, P.; Verderio, C. How to reprogram microglia toward beneficial functions. Glia, 2018, 66(12), 2531-2549.
[http://dx.doi.org/10.1002/glia.23484] [PMID: 30195261]
[125]
Krupiński, J.; Kałuza, J.; Kumar, P.; Kumar, S. Immunocytochemical studies of cellular reaction in human ischemic brain stroke. MAB anti-CD68 stains macrophages, astrocytes and microglial cells in infarcted area. Folia Neuropathol., 1996, 34(1), 17-24.
[PMID: 8855083]
[126]
Gulyás, B.; Tóth, M.; Schain, M.; Airaksinen, A.; Vas, A.; Kostulas, K.; Lindström, P.; Hillert, J.; Halldin, C. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: A PET study with the TSPO molecular imaging biomarker [((11))C]vinpocetine. J. Neurol. Sci., 2012, 320(1-2), 110-117.
[http://dx.doi.org/10.1016/j.jns.2012.06.026] [PMID: 22841414]
[127]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(79), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[128]
Ma, Y.; Wang, J.; Wang, Y.; Yang, G.Y. The biphasic function of microglia in ischemic stroke. Prog. Neurobiol., 2017, 157, 247-272.
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.005] [PMID: 26851161]
[129]
Yrjänheikki, J.; Keinänen, R.; Pellikka, M.; Hökfelt, T.; Koistinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15769-15774.
[http://dx.doi.org/10.1073/pnas.95.26.15769] [PMID: 9861045]
[130]
Lehnardt, S.; Massillon, L.; Follett, P.; Jensen, F.E.; Ratan, R.; Rosenberg, P.A.; Volpe, J.J.; Vartanian, T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8514-8519.
[http://dx.doi.org/10.1073/pnas.1432609100] [PMID: 12824464]
[131]
Kacimi, R.; Giffard, R.G.; Yenari, M.A. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J. Inflamm. (Lond.), 2011, 8, 7.
[http://dx.doi.org/10.1186/1476-9255-8-7] [PMID: 21385378]
[132]
Jolivel, V.; Bicker, F.; Binamé, F.; Ploen, R.; Keller, S.; Gollan, R.; Jurek, B.; Birkenstock, J.; Poisa-Beiro, L.; Bruttger, J.; Opitz, V.; Thal, S.C.; Waisman, A.; Bäuerle, T.; Schäfer, M.K.; Zipp, F.; Schmidt, M.H.H. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol., 2015, 129(2), 279-295.
[http://dx.doi.org/10.1007/s00401-014-1372-1] [PMID: 25500713]
[133]
Stone, S.; Jamison, S.; Yue, Y.; Durose, W.; Schmidt-Ullrich, R.; Lin, W. NF-κB Activation protects oligodendrocytes against inflammation. J. Neurosci., 2017, 37(38), 9332-9344.
[http://dx.doi.org/10.1523/JNEUROSCI.1608-17.2017] [PMID: 28842413]
[134]
da Fonseca, A.C.C.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci., 2014, 8(November), 362.
[http://dx.doi.org/10.3389/fncel.2014.00362] [PMID: 25404894]
[135]
Machado, L.S.; Sazonova, I.Y.; Kozak, A.; Wiley, D.C.; El-Remessy, A.B.; Ergul, A.; Hess, D.C.; Waller, J.L.; Fagan, S.C. Minocycline and tissue-type plasminogen activator for stroke: Assessment of interaction potential. Stroke, 2009, 40(9), 3028-3033.
[http://dx.doi.org/10.1161/STROKEAHA.109.556852] [PMID: 19628804]
[136]
Tikka, T.; Fiebich, B.L.; Goldsteins, G.; Keinänen, R.; Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci., 2001, 21(8), 2580-2588.
[http://dx.doi.org/10.1523/JNEUROSCI.21-08-02580.2001] [PMID: 11306611]
[137]
Yenari, M.A.; Xu, L.; Tang, X.N.; Qiao, Y.; Giffard, R.G. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline In vivo and in vitro. Stroke, 2006, 37(4), 1087-1093.
[http://dx.doi.org/10.1161/01.STR.0000206281.77178.ac] [PMID: 16497985]
[138]
Amici, S.A.; Dong, J.; Guerau-de-Arellano, M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front. Immunol., 2017, 8, 1520.
[http://dx.doi.org/10.3389/fimmu.2017.01520] [PMID: 29176977]
[139]
Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64.
[http://dx.doi.org/10.1038/nrneurol.2014.207] [PMID: 25385337]
[140]
Koizumi, S.; Hirayama, Y.; Morizawa, Y.M. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem. Int., 2018, 119, 107-114.
[http://dx.doi.org/10.1016/j.neuint.2018.01.007] [PMID: 29360494]
[141]
Schmitz, T.; Krabbe, G.; Weikert, G.; Scheuer, T.; Matheus, F.; Wang, Y.; Mueller, S.; Kettenmann, H.; Matyash, V.; Bührer, C.; Endesfelder, S. Minocycline protects the immature white matter against hyperoxia. Exp. Neurol., 2014, 254, 153-165.
[http://dx.doi.org/10.1016/j.expneurol.2014.01.017] [PMID: 24491957]
[142]
Masumura, M.; Hata, R.; Nagai, Y.; Sawada, T. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: Comparison between normotensive and spontaneously hypertensive rats. Neurosci. Res., 2001, 39(4), 401-412.
[http://dx.doi.org/10.1016/S0168-0102(01)00195-X] [PMID: 11274739]
[143]
Jalal, F.Y.; Yang, Y.; Thompson, J.; Lopez, A.C.; Rosenberg, G.A. Myelin loss associated with neuroinflammation in hypertensive rats. Stroke, 2012, 43(4), 1115-1122.
[http://dx.doi.org/10.1161/STROKEAHA.111.643080] [PMID: 22363061]
[144]
Wang, G.; Zhang, J.; Hu, X.; Zhang, L.; Mao, L.; Jiang, X.; Liou, A.K.F.; Leak, R.K.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab., 2013, 33(12), 1864-1874.
[http://dx.doi.org/10.1038/jcbfm.2013.146] [PMID: 23942366]
[145]
Miron, V.E.; Boyd, A.; Zhao, J.W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M.; Ffrench-Constant, C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci., 2013, 16(9), 1211-1218.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[146]
Shigemoto-Mogami, Y.; Hoshikawa, K.; Goldman, J.E.; Sekino, Y.; Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci., 2014, 34(6), 2231-2243.
[http://dx.doi.org/10.1523/JNEUROSCI.1619-13.2014] [PMID: 24501362]
[147]
Zhao, X.; Wang, H.; Sun, G.; Zhang, J.; Edwards, N.J.; Aronowski, J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci., 2015, 35(32), 11281-11291.
[http://dx.doi.org/10.1523/JNEUROSCI.1685-15.2015] [PMID: 26269636]
[148]
Xiong, X.; Barreto, G.E.; Xu, L.; Ouyang, Y.B.; Xie, X.; Giffard, R.G. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke, 2011, 42(7), 2026-2032.
[http://dx.doi.org/10.1161/STROKEAHA.110.593772] [PMID: 21597016]
[149]
Preston, A.N.; Cervasio, D.A.; Laughlin, S.T. Visualizing the brain’s astrocytes, 1st; Elsevier Inc., 2019, p. 622.
[150]
Adams, K.L.; Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci., 2018, 21(1), 9-15.
[http://dx.doi.org/10.1038/s41593-017-0033-9] [PMID: 29269757]
[151]
Giaume, C.; Naus, C.C.; Sáez, J.C.; Leybaert, L. Glial connexins and pannexins in the healthy and diseased brain. Physiol. Rev., 2021, 101(1), 93-145.
[http://dx.doi.org/10.1152/physrev.00043.2018] [PMID: 32326824]
[152]
Li, T.; Niu, J.; Yu, G.; Ezan, P.; Yi, C.; Wang, X.; Koulakoff, A.; Gao, X.; Chen, X.; Sáez, J.C.; Giaume, C.; Xiao, L. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation. Glia, 2020, 68(6), 1201-1212.
[http://dx.doi.org/10.1002/glia.23770] [PMID: 31868275]
[153]
Hirayama, Y.; Ikeda-Matsuo, Y.; Notomi, S.; Enaida, H.; Kinouchi, H.; Koizumi, S. Astrocyte-mediated ischemic tolerance. J. Neurosci., 2015, 35(9), 3794-3805.
[http://dx.doi.org/10.1523/JNEUROSCI.4218-14.2015] [PMID: 25740510]
[154]
Shinozaki, Y.; Shibata, K.; Yoshida, K.; Shigetomi, E.; Gachet, C.; Ikenaka, K.; Tanaka, K.F.; Koizumi, S. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep., 2017, 19(6), 1151-1164.
[http://dx.doi.org/10.1016/j.celrep.2017.04.047] [PMID: 28494865]
[155]
Krzyżanowska, W.; Pomierny, B.; Bystrowska, B.; Pomierny-Chamioło, L.; Filip, M.; Budziszewska, B.; Pera, J. Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia. PLoS One, 2017, 12(10) ,e0186243.
[http://dx.doi.org/10.1371/journal.pone.0186243] [PMID: 29045497]
[156]
Ruscher, K.; Freyer, D.; Karsch, M.; Isaev, N.; Megow, D.; Sawitzki, B.; Priller, J.; Dirnagl, U.; Meisel, A. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: Evidence from an in vitro model. J. Neurosci., 2002, 22(23), 10291-10301.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10291.2002] [PMID: 12451129]
[157]
Fang, B.; Li, X.M.; Sun, X.J.; Bao, N.R.; Ren, X.Y.; Lv, H.W.; Ma, H. Ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in rabbits by attenuating blood spinal cord barrier disruption. Int. J. Mol. Sci., 2013, 14(5), 10343-10354.
[http://dx.doi.org/10.3390/ijms140510343] [PMID: 23685868]
[158]
Hirt, L.; Ternon, B.; Price, M.; Mastour, N.; Brunet, J.F.; Badaut, J. Protective role of early aquaporin 4 induction against postischemic edema formation. J. Cereb. Blood Flow Metab., 2009, 29(2), 423-433.
[http://dx.doi.org/10.1038/jcbfm.2008.133] [PMID: 18985050]
[159]
Neumann, J.T.; Thompson, J.W.; Raval, A.P.; Cohan, C.H.; Koronowski, K.B.; Perez-Pinzon, M.A. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J. Cereb. Blood Flow Metab., 2015, 35(1), 121-130.
[http://dx.doi.org/10.1038/jcbfm.2014.185] [PMID: 25370861]
[160]
Morizawa, Y.M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via abca1-mediated pathway. Nat. Commun., 2017, 8(1), 1-14.
[PMID: 28232747]
[161]
Schmitt, S.; Castelvetri, L.C.; Simons, M. Metabolism and functions of lipids in myelin. Biochim. Biophys. Acta, 2015, 1851(8), 999-1005.
[http://dx.doi.org/10.1016/j.bbalip.2014.12.016] [PMID: 25542507]
[162]
Gu, X.; Li, Y.; Chen, S.; Yang, X.; Liu, F.; Li, Y.; Li, J.; Cao, J.; Liu, X.; Chen, J.; Shen, C.; Yu, L.; Huang, J.; Lam, T.H.; Fang, X.; He, Y.; Zhang, X.; Lu, X.; Wu, S.; Gu, D. Association of lipids with ischemic and hemorrhagic stroke: A prospective cohort study among 267 500 chinese. Stroke, 2019, 50(12), 3376-3384.
[http://dx.doi.org/10.1161/STROKEAHA.119.026402] [PMID: 31658904]
[163]
Berghoff, S.A.; Gerndt, N.; Winchenbach, J.; Stumpf, S.K.; Hosang, L.; Odoardi, F.; Ruhwedel, T.; Böhler, C.; Barrette, B.; Stassart, R.; Liebetanz, D.; Dibaj, P.; Möbius, W.; Edgar, J.M.; Saher, G. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat. Commun., 2017, 8, 14241.
[http://dx.doi.org/10.1038/ncomms14241] [PMID: 28117328]
[164]
Li, L.; Li, R.; Zacharek, A.; Wang, F.; Landschoot-Ward, J.; Chopp, M.; Chen, J.; Cui, X. ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke. Int. J. Mol. Sci., 2020, 21(12), 1-18.
[http://dx.doi.org/10.3390/ijms21124369] [PMID: 32575457]
[165]
Dietschy, J.M.; Turley, S.D. Thematic review series: Brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res., 2004, 45(8), 1375-1397.
[http://dx.doi.org/10.1194/jlr.R400004-JLR200] [PMID: 15254070]
[166]
Cui, X.; Chopp, M.; Zacharek, A.; Karasinska, J.M.; Cui, Y.; Ning, R.; Zhang, Y.; Wang, Y.; Chen, J. Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke. Stroke, 2015, 46(3), 827-834.
[http://dx.doi.org/10.1161/STROKEAHA.114.007145] [PMID: 25593138]
[167]
Cui, X.; Chopp, M.; Zhang, Z.; Li, R.; Zacharek, A.; Landschoot-Ward, J.; Venkat, P.; Chen, J. ABCA1/ApoE/HDL pathway mediates GW3965-induced neurorestoration after stroke. Stroke, 2017, 48(2), 459-467.
[http://dx.doi.org/10.1161/STROKEAHA.116.015592] [PMID: 28028143]
[168]
Wang, X.; Li, R.; Zacharek, A.; Landschoot-Ward, J.; Wang, F.; Wu, K.H.H.; Chopp, M.; Chen, J.; Cui, X. Administration of downstream apoe attenuates the adverse effect of brain ABCA1 deficiency on stroke. Int. J. Mol. Sci., 2018, 19(11) ,E3368.
[http://dx.doi.org/10.3390/ijms19113368] [PMID: 30373276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy