Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Recent Advances on Polymer-Based Nanocomposite: A Brief Review

Author(s): Santosh K. Parida*

Volume 14, Issue 2, 2022

Published on: 06 December, 2021

Page: [121 - 132] Pages: 12

DOI: 10.2174/1876402913666210609143836

Price: $65

Abstract

This review article is constructed in the form of an extensive source for researchers on polymer nanocomposites covering their structure property, manufacturing techniques, and potential applications when a small number of nanosized particles are added to a host polymer matrix. The exceptional structural, mechanical, and electrical properties of polymer nanocomposites after the addition of inorganic solid nanoparticles are elucidated by the large surface area of doped nanoparticles interacted with host polymer matrices. The conventional method of preparation of polymer nanocomposites makes it more interesting from the point of view of production mechanisms. The present brief review provides a sketch of different synthesis techniques, characterization, applications, along with the safety concerns for polymer nanocomposites.

Keywords: Polymeric nanocomposite, nanoparticles, manufacturing techniques, characterization, nanosized particles, polymer matrix.

Graphical Abstract

[1]
Sanchez, C.; Arribart, H.; Guille, M.M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater., 2005, 4(4), 277-288.
[http://dx.doi.org/10.1038/nmat1339] [PMID: 15875305]
[2]
Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 2006, 40, 1511-1575.
[http://dx.doi.org/10.1177/0021998306067321]
[3]
Ajayan, P.M. Bulk metal, and ceramics nanocomposites, nanocomposite science and technology; Wiley-VCH, 2004, pp. 1-75.
[4]
Oliveira, M.; Nogueira, R.; Machado, A.V. Synthesis of aluminum nanoparticles in a PP matrix during melt processing: Effect of the alkoxide organic chain. React. Funct. Polym., 2012, 72, 703-712.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.06.022]
[5]
Sanchez, C.; Julián, B.; Belleville, P.M. Pop all, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem., 2005, 15, 3559-3592.
[http://dx.doi.org/10.1039/b509097k]
[6]
Pomogailo, A.D. Hybrid polymer-inorganic nanocomposites. Russ. Chem. Rev., 2000, 69, 53-80.
[http://dx.doi.org/10.1070/RC2000v069n01ABEH000506]
[7]
Roy, R.; Roy, R.A.; Roy, D.M. Alternative perspectives on quasi-crystallinity non-uniformity and nanocomposites. Mater. Lett., 1986, 4, 323-328.
[http://dx.doi.org/10.1016/0167-577X(86)90063-7]
[8]
Gleiter, H. Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostruct. Mater., 1992, 1, 1-19.
[http://dx.doi.org/10.1016/0965-9773(92)90045-Y]
[9]
Younis, A.A. Protection of polyester fabric from ignition by a new chemical modification method. J. Ind. Text., 2017, 47(3), 363-376.
[10]
Richards, A.F. 2 - Nylon fibers. Synthetic Fibres, 2005, 1, 20-94.
[http://dx.doi.org/10.1533/9781845690427.20]
[11]
Adegbola, T.A.; Agboola, O.; Fayomi, O.S.I. Review of polyacrylonitrile blends and application in manufacturing technology: Recycling and environmental impact. Results Eng., 2020, 7, 100144-12.
[http://dx.doi.org/10.1016/j.rineng.2020.100144]
[12]
Antonakou, E.V.; Achilias, D.S. Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valoriz., 2013, 4, 9-21.
[http://dx.doi.org/10.1007/s12649-012-9159-x]
[13]
Flagg, B. New extrusion techniques advance catheter design. MDþDI, 2013. Available from: http://www.mddionline.com/article/
[14]
Capperauld, I. Suture materials: A review. Clin. Mater., 1989, 4, 3-12.
[http://dx.doi.org/10.1016/0267-6605(89)90021-8]
[15]
Sampson, J.; de Korte, D. DEHP-plasticised PVC: Relevance to blood services. Transfus. Med., 2011, 21(2), 73-83.
[http://dx.doi.org/10.1111/j.1365-3148.2010.01056.x] [PMID: 21143327]
[16]
Högman, C.F.; Eriksson, L.; Ericson, A.; Reppucci, A.J. Storage of saline-adenine-glucose-mannitol-suspended red cells in a new plastic container: Plyvinylchloride plasticized with butyryl-n-trihexyl-citrate. Transfusion, 1991, 31(1), 26-29.
[http://dx.doi.org/10.1046/j.1537-2995.1991.31191096180.x] [PMID: 1898784]
[17]
Ferreira, P.; Silva, A.F.M.; Pinto, M.I.; Gil, M.H. Development of a biodegradable bioadhesive containing urethane groups. J. Mater. Sci. Mater. Med., 2008, 19(1), 111-120.
[http://dx.doi.org/10.1007/s10856-007-3117-3] [PMID: 17587150]
[18]
Klinkmann, H.; Vienken, J. Membranes for dialysis. Nephrol. Dial. Transplant., 1995, 10(Suppl. 3), 39-45.
[http://dx.doi.org/10.1093/ndt/10.supp3.39] [PMID: 7494613]
[19]
National Kidney Foundation. A clinical update on dialyzer membranes. State-of-the-art considerations for optimal care in hemodialysis; New York, 2014. Available from: kidney. org.
[20]
Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32), 4845-4869.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.013] [PMID: 17686513]
[21]
Pruitt, L.; Furmanski, J. Polymeric biomaterials for load-bearing medical devices. J. Met., 2009, 61, 14-20.
[22]
Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013, 34(34), 8533-8554.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.089] [PMID: 23953781]
[23]
Longo, U.G.; Lamberti, A.; Maffulli, N.; Denaro, V. Tendon augmentation grafts: A systematic review. Br. Med. Bull., 2010, 94, 165-188.
[http://dx.doi.org/10.1093/bmb/ldp051] [PMID: 20047971]
[24]
Kannan, R.Y.; Salacinski, H.J.; Butler, P.E.; Hamilton, G.; Seifalian, A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. B Appl. Biomater., 2005, 74(1), 570-581.
[http://dx.doi.org/10.1002/jbm.b.30247] [PMID: 15889440]
[25]
Kenny, S.M.; Buggy, M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med., 2003, 14(11), 923-938.
[http://dx.doi.org/10.1023/A:1026394530192] [PMID: 15348504]
[26]
Bozukova, D.; Pagnoulle, C.; Jerome, R.; Jerome, C. Polymers in modern ophthalmic implants – historical background and recent advances. Mater. Sci. Eng. Rep., 2010, 69, 63-83.
[http://dx.doi.org/10.1016/j.mser.2010.05.002]
[27]
Kasser, M.J. Regulation of UHMWPE biomaterials in total hip arthroplasty. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(3), 400-406.
[PMID: 22987363]
[28]
Lewis, G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(6), 1702-1720.
[http://dx.doi.org/10.1002/jbm.b.32712] [PMID: 22566484]
[29]
Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci., 2018, 58, 2119-2132.
[http://dx.doi.org/10.1002/pen.24855]
[30]
Gao, Q.Y.; Fu, Y.; Hui, Y.N. Vitreous substitutes: Challenges and directions. Int. J. Ophthalmol., 2015, 8(3), 437-440.
[PMID: 26085987]
[31]
Vijaya Ramnath, B.; Elanchezhian, C.; Annamalai, R.M.; Aravind, S.; Sri Ananda Atreya, T.; Vignesh, V.; Subramanian, C. Aluminium metal matrix composites - a review. Rev. Adv. Mater. Sci., 2014, 38, 55-60.
[32]
Kumar, Dipen. Rajak; Durgesh D., Pagar; Ravinder, Kumar; Catalin I., Pruncu Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol., 2019, 8, 6354-6374.
[http://dx.doi.org/10.1016/j.jmrt.2019.09.068]
[33]
Schmidt, D.; Shah, D.; Giannelis, E.P. New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci., 2002, 6, 205-212.
[http://dx.doi.org/10.1016/S1359-0286(02)00049-9]
[34]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[35]
Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties, and uses of a new class of materials. Mater. Sci. Eng., 2000, 28, 1-63.
[http://dx.doi.org/10.1016/S0927-796X(00)00012-7]
[36]
Gangopadhyay, R.; Amitabha, D. Conducting polymer nanocomposites: A brief overview. Chem. Mater., 2000, 12, 608-622.
[http://dx.doi.org/10.1021/cm990537f]
[37]
Sternitzke, M. structural ceramic nanocomposites. J. Eur. Ceram. Soc., 1997, 17, 1061-1082.
[http://dx.doi.org/10.1016/S0955-2219(96)00222-1]
[38]
Ray, S.S.; Okamoto, M. polymer - layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 2003, 28, 1539-1641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[39]
Ray, S.S.; Bousmina, M. Biodegradable polymers, and their layered silicate nanocomposites: In greening the 21st-century materials world. Prog. Mater. Sci., 2005, 50, 962-1079.
[http://dx.doi.org/10.1016/j.pmatsci.2005.05.002]
[40]
Pandey, J.K.; Kumar, A.P.; Misra, M.; Mohanty, A.K.; Drzal, L.T.; Singh, R.P. Recent advances in biodegradable nanocomposites. J. Nanosci. Nanotechnol., 2005, 5(4), 497-526.
[http://dx.doi.org/10.1166/jnn.2005.111] [PMID: 16004113]
[41]
Penney, A.; Laurent, C.H.; Flahaut, E.; Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int., 2000, 26, 677-683.
[http://dx.doi.org/10.1016/S0272-8842(00)00004-3]
[42]
Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol., 2001, 61, 1899-1912.
[http://dx.doi.org/10.1016/S0266-3538(01)00094-X]
[43]
Pokropivnyi, V.V. Two-dimensional nanocomposites: Photonic crystals and nanomembranes (review): Types and preparation. Powder Metall. Met. Ceramics, 2002, 41, 264-272.
[http://dx.doi.org/10.1023/A:1020579314897]
[44]
Pandey, J.K.; Reddy, K.R.; Kumar, A.P.; Singh, R.P. An overview of the degradability of polymer nanocomposites. Polym. Degrad. Stabil., 2005, 88, 234-250.
[http://dx.doi.org/10.1016/j.polymdegradstab.2004.09.013]
[45]
Choi, S.M.; Awaji, H. Nanocomposites: A new material design concept. Sci. Technol. Adv. Mater., 2005, 6, 2-10.
[http://dx.doi.org/10.1016/j.stam.2004.06.002]
[46]
Niihara, K. New design concept of structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn., 1991, 99, 974-982.
[http://dx.doi.org/10.2109/jcersj.99.974]
[47]
Nakahira, A.; Niihara, K. Structural ceramics-ceramic nanocomposites by sintering method: Roles of nano-size particles. J. Ceram. Soc. Jpn., 1992, 100, 448-453.
[http://dx.doi.org/10.2109/jcersj.100.448]
[48]
Ferroni, L.P.; Pezzotti, G.; Isshiki, T.; Kleebe, H.J. Determination of amorphous interfacial phases in Al2O3/SiC nanocomposites by computer-aided high-resolution electron microscopy. Acta Mater., 2001, 49, 2103-2113.
[http://dx.doi.org/10.1016/S1359-6454(01)00117-3]
[49]
Baker, C.; Ismat, S. Shah; Hasanain, SK. Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J. Magn. Magn. Mater., 2004, 280, 412-418.
[http://dx.doi.org/10.1016/j.jmmm.2004.03.037]
[50]
Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett., 1998, 73, 3842-3844.
[http://dx.doi.org/10.1063/1.122911]
[51]
Chen, W.X.; Lee, J.Y.; Liu, Z. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochem. Commun., 2002, 4, 260-265.
[http://dx.doi.org/10.1016/S1388-2481(02)00268-0]
[52]
Yang, J.; Schaller, R. Mechanical spectroscopy of mg reinforced with Al2O3 short fibers and carbon nanotubes. Mater. Sci. Eng., 2004, 370, 512-515.
[http://dx.doi.org/10.1016/j.msea.2003.08.124]
[53]
Laurent, C.; Peigney, A.; Dumortier, O.; Rousset, A. Carbon nanotubes Fe- alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites. J. Eur. Ceram. Soc., 1998, 18, 2005-2013.
[http://dx.doi.org/10.1016/S0955-2219(98)00142-3]
[54]
Schadler, L.S. Polymer-based and polymer-filled nanocomposites, nanocomposite science and technology; Wiley-VCH, 2004, pp. 77-153.
[55]
Kickelbick, G. Hybrid materials: Synthesis, characterization, and applications; Wiley-VCH, 2007.
[56]
Handlin, D.; de Roberto Guzman, V.; Silvia, C.; Kosuke, T.; Hulya, C.; Marcel, W. Elastic properties of aligned carbon nanotube polymer nanocomposites with controlled morphology, 53rd aiaa/ asme/asce/ahs/asc structures Structural dynamics and materials conference: American Institute of Aeronautics and Astronautics, 2012.
[57]
Berta, M.; Loppinet, B.; Vlassopoulos, D.; Askounis, A.; Koutsos, V.; Pastoriza-Santos, I. Tailoring the properties of grafted silver nano prisms composites. Polymer (Guildf.), 2012, 53, 5771-5778.
[http://dx.doi.org/10.1016/j.polymer.2012.10.034]
[58]
Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites - a review. Mater. Sci. Eng. A, 2005, 393, 1-11.
[http://dx.doi.org/10.1016/j.msea.2004.09.044]
[59]
Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev., 2011, 40(2), 696-753.
[http://dx.doi.org/10.1039/c0cs00136h] [PMID: 21229132]
[60]
Petrović, Z.S.; Javni, I.; Waddon, A.; Bánhegyi, G. Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci., 2000, 76, 133-151.
[http://dx.doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133:AID-APP3>3.0.CO;2-K]
[61]
Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J., 2009, 45, 967-984.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027]
[62]
Zhang, Q.; Lin, X.; Chen, W.; Zhang, H.; Han, D. Modification of rigid polyurethane foams with the addition of nano-sio2 or lignocellulosic biomass. Polymers (Basel), 2020, 12(1), 107-121.
[http://dx.doi.org/10.3390/polym12010107] [PMID: 31948014]
[63]
Chanhoma, P.; Charoenlapb, N. Colloidal titania-silica iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities. J. Magn. Magn. Mater., 2017, 427, 54-59.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.123]
[64]
Morales, K.; Reza, G.M. Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterial, 2017, 7, 406-412.
[http://dx.doi.org/10.3390/nano7120406]
[65]
Cui, H.; Liu, Y.; Ren, W. Structure switch between α-Fe2O3, γ-Fe2O3, and Fe3O4 during the large scale and low-temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol., 2013, 24, 93-97.
[http://dx.doi.org/10.1016/j.apt.2012.03.001]
[66]
Rajmohan, T.; Koundinya, U.K.; Arun, P.; Harish, G. Evaluation of mechanical properties of nano filled glass fiber reinforced. IEEE International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, (ICANMEET), 2013, pp. 24-26.
[67]
Shahrousvand, M.; Hoseinian, M.S.; Ghollasi, M.; Karbalaeimahdi, A.; Salimi, A.; Tabar, F.A. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior. Mater. Sci. Eng. C, 2017, 74, 556-567.
[http://dx.doi.org/10.1016/j.msec.2016.12.117] [PMID: 28254331]
[68]
Kanagaraj, S. Mechanical properties of high-density polyethylene/carbon nanotube composites. Compos. Sci. Technol., 2007, 67, 3071-3077.
[http://dx.doi.org/10.1016/j.compscitech.2007.04.024]
[69]
Mahrholz, T.; Stangle, J.; Sinapius, M. Quantitation of reinforcement effect of silica nanoparticle in the epoxy resin used in liquid composite molding processes. Compos., Part A Appl. Sci. Manuf., 2009, 40, 235-243.
[http://dx.doi.org/10.1016/j.compositesa.2008.11.008]
[70]
Thorsten, Mahrholz; Jurgen, Mosch; Dirk, Rostennundt; Ulrich, Riedel Lars, Herbeck New high performance fibre reinforced material with nano composites, materials for aerospace applications., 2003, pp. 24-26.
[71]
Ganga Raju Achary, P.; Munisha, B.; Singh Deo, S.; Parida, S. K Study of electrical properties of nickel doped polyurethane nanocomposites. Polymer Sci., 2018, 4(1:7), 1-5.
[72]
Parida, S.K. Polymer nanocomposites and applications: A brief review. International Journal of Scientific Research in Physics and Applied Sciences, 2018, 6, 75-78.
[http://dx.doi.org/10.26438/ijsrpas/v6i3.7578]
[73]
Dae-Soon Lim; Jeong-Wook, An; Hussain, F.; Hwack Joo, Lee Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear, 2002, 252, 512-517.
[http://dx.doi.org/10.1016/S0043-1648(02)00012-1]
[74]
Haque, A.; Shamsuzzoha, M.; Hussain, F.; Dean, D. S2-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. J. Compos. Mater., 2003, 37, 1821-1837.
[http://dx.doi.org/10.1177/002199803035186]
[75]
Njugunaa, J.; Pielichowskib, K.; Alcock, J.R. Epoxy-based fibre reinforced nanocomposites: Current status. Adv. Eng. Mater., 2007, 9, 835-847.
[http://dx.doi.org/10.1002/adem.200700118]
[76]
Sharma, B.; Mahajan, S.; Chhibber, R.; Mehta, R. Glass fiber reinforced polymer-clay nanocomposites: Processing, structure and hygrothermal effects on mechanical properties. Procedia Chem., 2012, 4, 39-46.
[http://dx.doi.org/10.1016/j.proche.2012.06.006]
[77]
Jun, Yang Morphology thermal stability and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J. Appl. Polym. Sci., 2005, 98, I 087-I 091.
[78]
Ganga Raju Achary, P.; Choudhary, R.N.P.; Parida, S.K. Effect of temperature on electrical properties of PU/Fe (30%) nanocomposites. J. Polym. Res., 2020, 27, 244-252.
[http://dx.doi.org/10.1007/s10965-020-02131-3]
[79]
Kornmann, X.; Rees, M.; Thomann, Y.; Nicola, A.; Barbezat, M.; Thomann, R. Epoxy-layered silicate nanocomposites as the matrix in glass fiber-reinforced composites. Compos. Sci. Technol., 2005, 65, 2259-2268.
[http://dx.doi.org/10.1016/j.compscitech.2005.02.006]
[80]
Chowdhury, F.H.; Hosur, M.V.; Jeelani, S. Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Mater. Sci. Eng. A, 2006, 421, 298-306.
[http://dx.doi.org/10.1016/j.msea.2006.01.074]
[81]
Lin, L.Y.; Lee, J.H.; Hong, C.E.; Yoo, G.H.; Advani, S.G. Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos. Sci. Technol., 2006, 66, 2116-2125.
[http://dx.doi.org/10.1016/j.compscitech.2005.12.025]
[82]
Quaresimin, M.; Varley, R.J. Understanding the effect of nanomodifier addition upon the properties of fiber-reinforced laminates. Compos. Sci. Technol., 2008, 68, 718-726.
[http://dx.doi.org/10.1016/j.compscitech.2007.09.005]
[83]
Avila, A.F.; Duarte, H.V.; Soares, M.I. The nanoclay influence on impact response of laminate plates. Lat. Am. J. Solids Struct., 2006, 3, 1-20.
[84]
Zainuddin, S.; Hosur, M.V.; Zhou, Y.; Kumar, A.; Jeelani, S. Durability study of neat/nanophase GFRP composites subjected to different environmental conditioning. Mater. Sci. Eng. A, 2010, 527, 3091-3099.
[http://dx.doi.org/10.1016/j.msea.2010.02.022]
[85]
Maneeratana, V.; Florida, Uo. Alkoxide-based precursors for direct electrospinning of alumina fibers; University of Florida, 2007.
[86]
Turova, N.Y. The chemistry of metal alkoxides; Springer, 2002.
[87]
Zhao, H.; Hao, T-H.; Hu, G-H.; Shi, D.; Huang, Da. Jiang, Tao.; Qun-Chao, Zhang. Preparation and characterization of polyurethanes with cross-linked siloxane in the side chain by sol-gel reactions. Materials (Basel), 2017, 10, 247-15.
[http://dx.doi.org/10.3390/ma10030247]
[88]
Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci., 2010, 35, 357-401.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003]
[89]
Naz, A.; Kausar, A.; Siddiq, M.; Choudhary, M.A. Comparative review on structure, properties, fabrication techniques, and relevance of polymer nanocomposites reinforced with carbon nanotube and graphite fillers. Polym. Plast. Technol. Eng., 2016, 55, 171-198.
[http://dx.doi.org/10.1080/03602559.2015.1055504]
[90]
Shin, S-Y.A.; Simon, L.C.; Soares, J.B.; Scholz, G. Polyethylene–clay hybrid nanocomposites: In situ polymerization using bifunctional organic modifiers. Polymer (Guildf.), 2003, 44, 5317-5321.
[http://dx.doi.org/10.1016/S0032-3861(03)00564-0]
[91]
Lawal, G.I.; Balogun, S.A.; Akpan, E.I. Review of green polymer nanocomposites. J. Miner. Mater. Charact. Eng., 2012, 11, 385-416.
[http://dx.doi.org/10.4236/jmmce.2012.114028]
[92]
Byrne, M.T.; Gun’ko, Y.K. Recent advances in research on carbon nanotube-polymer composites. Adv. Mater., 2010, 22(15), 1672-1688.
[http://dx.doi.org/10.1002/adma.200901545] [PMID: 20496401]
[93]
Kasaliwal, G.R.; Pegel, S.; Gldel, A.; Pischke, P.; Heinrich, G. Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer (Guildf.), 2010, 51, 2708-2720.
[http://dx.doi.org/10.1016/j.polymer.2010.02.048]
[94]
Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer (Guildf.), 2011, 52, 5-25.
[http://dx.doi.org/10.1016/j.polymer.2010.11.042]
[95]
Alig, I.; Ptschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer (Guildf.), 2012, 53, 4-28.
[http://dx.doi.org/10.1016/j.polymer.2011.10.063]
[96]
Meyyappan, M. Carbon nanotubes: Science and applications. CRC Press, 2004, p. 310.
[http://dx.doi.org/10.1201/9780203494936]
[97]
Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties, and uses of a new class of materials. Mater. Sci. Eng. Rep., 2000, 28, 1-63.
[http://dx.doi.org/10.1016/S0927-796X(00)00012-7]
[98]
Ray Sinha, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 2003, 28, 1539-1641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[99]
Giannelis, E.P. Polymer layered silicate nanocomposites. Adv. Mater., 1996, 8, 29-35.
[http://dx.doi.org/10.1002/adma.19960080104]
[100]
Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep., 2005, 409, 47-99.
[http://dx.doi.org/10.1016/j.physrep.2004.10.006]
[101]
Beatrice, C.A.G.; Branciforti, M.C.; Alves, R.M.V.; Bretas, R.E.S. Rheological, mechanical, optical, and transport properties of blown films of polyamide 6/residual monomer/montmorillonite nanocomposites. J. Appl. Polym. Sci., 2010, 116, 3581-3592.
[http://dx.doi.org/10.1002/app.31898]
[102]
Chen, T.K.; Tien, Y.I.; Wei, K.H. Synthesis and characterization of novel segmented polyurethane clay nanocomposite via poly(epsilon-caprolactone)/clay. J. Polym. Sci. A Polym. Chem., 1999, 37, 2225-2233.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2225:AID-POLA37>3.0.CO;2-Z]
[103]
Zhao, J.; Morgan, A.B.; Harris, J.D. Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer (Guildf.), 2005, 46, 8641-8660.
[http://dx.doi.org/10.1016/j.polymer.2005.04.038]
[104]
Giannelis, E.P. Polymer-layered silicate nanocomposites: Synthesis, properties, and applications. Appl. Organomet. Chem., 1998, 680, 675-680.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<675:AID-AOC779>3.0.CO;2-V]
[105]
Schadler, L.S. Ch-2, polymer-based and polymer-filled nanocomposites.Nanocomposite science and technology; Wiley-VCH, 2003, pp. 77-153.
[106]
Liu, L.; Grunlan, J.C. Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater., 2007, 17, 2343-2348.
[http://dx.doi.org/10.1002/adfm.200600785]
[107]
Bitinis, N.; Hernandez, M.; Verdejo, R.; Kenny, J.M.; Lopez-Manchado, M.A. Recent advances in clay/polymer nanocomposites. Adv. Mater., 2011, 23(44), 5229-5236.
[http://dx.doi.org/10.1002/adma.201101948] [PMID: 22299134]
[108]
Sonia, A.; Priya Dasan, K. Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging applications: A study based on barrier and biodegradation behavior. J. Food Eng., 2013, 118, 78-89.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.03.020]
[109]
Henrique, P.; Camargo, C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure properties, and new application opportunities. Mater. Res., 2009, 12, 1-39.
[http://dx.doi.org/10.1590/S1516-14392009000100002]
[110]
Ray, S.S. Recent trends and future outlooks in the field of clay-containing polymer nanocomposites. Macromol. Chem. Phys., 2014, 215, 1162-1179.
[http://dx.doi.org/10.1002/macp.201400069]
[111]
Suter, J.L.; Groen, D.; Coveney, P.V. Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Adv. Mater., 2015, 27(6), 966-984.
[http://dx.doi.org/10.1002/adma.201403361] [PMID: 25488829]
[112]
Zaïri, F.; Gloaguen, J.M.; Naït-Abdelaziz, M.; Mesbah, A.; Lefebvre, J.M. Study of the effect of size and clay structural parameters on the yield and post-yield response of polymer/clay nanocomposites via multiscale micromechanical modeling. Acta Mater., 2011, 59, 3851-3863.
[http://dx.doi.org/10.1016/j.actamat.2011.03.009]
[113]
Kausar, A. Review on polymer/halloysite nanotube nanocomposite. Polym. Plast. Technol. Eng., 2018, 57, 548-564.
[http://dx.doi.org/10.1080/03602559.2017.1329436]
[114]
LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer layered silicate nanocomposites: An overview. Appl. Clay Sci., 1999, 5, 11-29.
[http://dx.doi.org/10.1016/S0169-1317(99)00017-4]
[115]
Alvi, F.; Ram, M.K.; Basnayaka, P.A.; Stefanakos, E.; Goswami, Y.; Kumar, A. Graphene-polyethylene dioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta, 2011, 56, 9406-9412.
[http://dx.doi.org/10.1016/j.electacta.2011.08.024]
[116]
Radmilović, V.V.; Carraro, C.; Uskoković, P.S.; Radmilović, V.R. Structure and properties of polymer nanocomposite films with carbon nanotubes and graphene. Polym. Compos., 2017, 38, E490-E497.
[http://dx.doi.org/10.1002/pc.24079]
[117]
Lyu, M.; Choi, T.G. Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf., 2015, 16, 213-220.
[http://dx.doi.org/10.1007/s12541-015-0029-x]
[118]
Lalwani, G.; Patel, S.C.; Sitharaman, B. Two- and three-dimensional all-carbon nanomaterial assemblies for tissue engineering and regenerative medicine. Ann. Biomed. Eng., 2016, 44(6), 2020-2035.
[http://dx.doi.org/10.1007/s10439-016-1623-5] [PMID: 27126776]
[119]
Lalwani, G.; Henslee, A.M.; Farshid, B.; Parmar, P.; Lin, L.; Qin, Y.X.; Kasper, F.K.; Mikos, A.G.; Sitharaman, B. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater., 2013, 9(9), 8365-8373.
[http://dx.doi.org/10.1016/j.actbio.2013.05.018] [PMID: 23727293]
[120]
Greiner, A.; Wendorff, J.H.; Yarin, A.L.; Zussman, E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl. Microbiol. Biotechnol., 2006, 71(4), 387-393.
[http://dx.doi.org/10.1007/s00253-006-0356-z] [PMID: 16767464]
[121]
Stergiou, C.A.; Stimoniaris, A.Z.; Delides, C.G. Hybrid nanocomposites with organoclay and carbon-based fillers for emi suppression. IEEE Trans. on EMC, 2015, 57, 470-476.
[http://dx.doi.org/10.1109/TEMC.2014.2384014]
[122]
Mallick, P.K. Fiber-reinforced composites, materials, manufacturing, and design; CRC press, 2007.
[123]
Raz, K.; Zahalka, M.; Chval, Z. Injection molding quality improvement by advanced virtual simulations. Manufacturing Technology, 2017, 17, 79-83.
[http://dx.doi.org/10.21062/ujep/x.2017/a/1213-2489/MT/17/1/79]
[124]
White, J.R. Polymer aging: Physics, chemistry or engineering? Time to reflect. C. R. Chim., 2006, 9, 1396-1408.
[http://dx.doi.org/10.1016/j.crci.2006.07.008]
[125]
Sobków, D.; Czaja, K. Influence of accelerated aging conditions on the process of polyolefines degradation. Polymer (Guildf.), 2003, 48, 627-632.
[126]
Gijsman, P. Review on the thermo-oxidative degradation of polymers during processing and in service. E-Polymers, 2008, 8, 1-34.
[http://dx.doi.org/10.1515/epoly.2008.8.1.727]
[127]
Gogate, P.R.; Prajapat, A.L. Depolymerization using sonochemical reactors: A critical review. Ultrason. Sonochem., 2015, 27, 480-494.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.019] [PMID: 26186870]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy