Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

轻度认知障碍老年人与工作记忆相关的神经和视网膜特征

卷 18, 期 3, 2021

发表于: 23 September, 2021

页: [185 - 195] 页: 11

弟呕挨: 10.2174/1567205018666210608114044

价格: $65

摘要

目的:本研究探讨轻度认知障碍(MCI)老年人神经活动与工作记忆(WM)视网膜结构的关系。 方法:对11例MCI老年人和29例健康对照组(60~73岁)进行检测。所有参与者在执行双背记忆任务时都进行了与事件相关的潜在记录(ERP)记录。采用光学相干断层扫描血管造影(OCT-A)检查视网膜的灌注和血管密度。 结果:结果显示,MCI组的WM表现与中央顶叶区(CP6和CP8)的ERP潜伏期呈负相关(ps<0.05)。左鼻血管和灌注密度与这两个中央顶叶区域的潜伏期呈负相关,仅与MCI组的WM表现呈正相关(ps<0.05)。 结论:对WM、中央顶叶脑活动、左鼻血管和视网膜灌注密度的发现有助于我们更好地了解WM与MCI相关的神经和视网膜基础。

关键词: 轻度认知障碍、视网膜灌注密度、视网膜血管密度、工作记忆、事件相关潜能、认知能力。

Next »
[1]
Orru G, Sampietro S, Catanzaro S, et al. Serial position effect in a free recall task: Differences between probable dementia of Alzheimer type (PDAT), vascular (VaD) and mixed etiology dementia (MED). Arch Gerontol Geriatr 2009; 49(1): 207-10.
[http://dx.doi.org/10.1016/j.archger.2009.09.030 ] [PMID: 19836634]
[2]
Belleville S, Gilbert B, Fontaine F, Gagnon L, Ménard E, Gauthier S. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: Evidence from a cognitive intervention program. Dement Geriatr Cogn Disord 2006; 22(5-6): 486-99.
[http://dx.doi.org/10.1159/000096316 ] [PMID: 17050952]
[3]
Desikan RS, Cabral HJ, Hess CP, et al. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 2009; 132(Pt 8): 2048-57.
[http://dx.doi.org/10.1093/brain/awp123 ] [PMID: 19460794]
[4]
Aurtenetxe S, García-Pacios J, Del Río D, et al. Maestú, F. Interference impacts working memory in mild cognitive impairment. Front Neurosci 2016; 10: 443.
[http://dx.doi.org/10.3389/fnins.2016.00443 ] [PMID: 27790082]
[5]
Gajewski PD, Falkenstein M. Age-related effects on ERP and oscillatory EEG dynamics in a 2-back task. J Psychophysiol 2014; 28: 162-77.
[http://dx.doi.org/10.1027/0269-8803/a000123]
[6]
Li SC, Lindenberger U, Sikström S. Aging cognition: From neuromodulation to representation. Trends Cogn Sci 2001; 5(11): 479-86.
[http://dx.doi.org/10.1016/S1364-6613(00)01769-1 ] [PMID: 11684480]
[7]
Baddeley A. Working memory. Science 1992; 255(5044): 556-9.
[http://dx.doi.org/10.1126/science.1736359 ] [PMID: 1736359]
[8]
Missonnier P, Gold G, Leonards U, et al. Aging and working memory: Early deficits in EEG activation of posterior cortical areas. J Neural Transm (Vienna) 2004; 111(9): 1141-54.
[http://dx.doi.org/10.1007/s00702-004-0159-2 ] [PMID: 15338330]
[9]
Nissim NR, O’Shea AM, Bryant V, Porges EC, Cohen R, Woods AJ. Frontal structural neural correlates of working memory performance in older adults. Front Aging Neurosci 2017; 8: 328.
[http://dx.doi.org/10.3389/fnagi.2016.00328 ] [PMID: 28101053]
[10]
Hedden T, Gabrieli JD. Insights into the ageing mind: A view from cognitive neuroscience. Nat Rev Neurosci 2004; 5(2): 87-96.
[http://dx.doi.org/10.1038/nrn1323 ] [PMID: 14735112]
[11]
Schapkin SA, Gajewski PD, Freude G. Age differences in memory-based task switching with and without cues. J Psychophysiol 2014; 28: 187-201.
[http://dx.doi.org/10.1027/0269-8803/a000125]
[12]
Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol 1958; 55(4): 352-8.
[http://dx.doi.org/10.1037/h0043688 ] [PMID: 13539317]
[13]
Delorme A, Rousselet GA, Macé MJM, Fabre-Thorpe M. Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes. Brain Res Cogn Brain Res 2004; 19(2): 103-13.
[http://dx.doi.org/10.1016/j.cogbrainres.2003.11.010 ] [PMID: 15019707]
[14]
Fraga FJ, Ferreira LA, Falk TH, Johns E, Phillips ND. 2017 International Conference on Acoustics, Speech and Signal Processing (ICASSP). March 5-9, 2017; 2017; pp. 964-8.
[15]
Fraga FJ, Mamani GQ, Johns E, Tavares G, Falk TH, Phillips NA. Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Comput Methods Programs Biomed 2018; 164: 1-13.
[http://dx.doi.org/10.1016/j.cmpb.2018.06.011 ] [PMID: 30195417]
[16]
Hou F, Liu C, Yu Z, et al. Yang, A. Age-related alterations in electroencephalography connectivity and network topology during n-back working memory task. Front Hum Neurosci 2018; 12: 484.
[http://dx.doi.org/10.3389/fnhum.2018.00484 ] [PMID: 30574079]
[17]
Polich J. Meta-analysis of P300 normative aging studies. Psychophysiology 1996; 33(4): 334-53.
[http://dx.doi.org/10.1111/j.1469-8986.1996.tb01058.x ] [PMID: 8753933]
[18]
Saliasi E, Geerligs L, Lorist MM, Maurits NM. The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One 2013; 8(5)e63701
[http://dx.doi.org/10.1371/journal.pone.0063701 ] [PMID: 23667658]
[19]
Lubitz AF, Niedeggen M, Feser M. Aging and working memory performance: Electrophysiological correlates of high and low performing elderly. Neuropsychologia 2017; 106: 42-51.
[http://dx.doi.org/10.1016/j.neuropsychologia.2017.09.002 ] [PMID: 28889995]
[20]
Missonnier P, Deiber MP, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience 2007; 150(2): 346-56.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.009 ] [PMID: 17996378]
[21]
Mamani GQ, Fraga FJ, Tavares G, Johns E, Phillips ND. In 2017 Healthcare Innovations and Point of Care Technologies (HI-POCT Proceedings of the 2017 HI-POCT. Bethesda, Maryland, USA. 2017; pp. 237-40..
[22]
Deiber MP, Missonnier P, Bertrand O, et al. Distinction between perceptual and attentional processing in working memory tasks: A study of phase-locked and induced oscillatory brain dynamics. J Cogn Neurosci 2007; 19(1): 158-72.
[http://dx.doi.org/10.1162/jocn.2007.19.1.158 ] [PMID: 17214572]
[23]
Cabrera DeBuc D, Gaca-Wysocka M, Grzybowski A, Kanclerz P. Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: Recent insights, challenges, and opportunities. J Clin Med 2019; 8(7): 996.
[http://dx.doi.org/10.3390/jcm8070996 ] [PMID: 31323964]
[24]
Ikram MK, Cheung CY, Wong TY, Chen CP. Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2012; 83(9): 917-22.
[http://dx.doi.org/10.1136/jnnp-2011-301628 ] [PMID: 22733082]
[25]
Lim JK, Li QX, He Z, et al. Nguyen, C.T. The eye as a biomarker for Alzheimer’s disease. Front Neurosci 2016; 10: 536.
[http://dx.doi.org/10.3389/fnins.2016.00536 ] [PMID: 27909396]
[26]
Maalikjy Akkawi N, Borroni B, Agosti C, et al. Volume cerebral blood flow reduction in pre-clinical stage of Alzheimer disease: Evidence from an ultrasonographic study. J Neurol 2005; 252(5): 559-63.
[http://dx.doi.org/10.1007/s00415-005-0689-z ] [PMID: 15726249]
[27]
Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007; 48(5): 2285-9.
[http://dx.doi.org/10.1167/iovs.06-1029 ] [PMID: 17460292]
[28]
Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst) 2015; 1(2): 144-51.
[http://dx.doi.org/10.1016/j.dadm.2015.01.004 ] [PMID: 27239502]
[29]
Snyder PJ, Johnson LN, Lim YY, et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement (Amst) 2016; 4: 169-78.
[http://dx.doi.org/10.1016/j.dadm.2016.09.001 ] [PMID: 27830174]
[30]
Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement (Amst) 2015; 1(1): 5-13.
[http://dx.doi.org/10.1016/j.dadm.2014.11.004 ] [PMID: 27239488]
[31]
Danesh-Meyer HV, Birch H, Ku JY, Carroll S, Gamble G. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 2006; 67(10): 1852-4.
[http://dx.doi.org/10.1212/01.wnl.0000244490.07925.8b ] [PMID: 17130422]
[32]
Cheng DL, Thompson L, Snyder PJ. A potential association between retinal changes, subjective memory impairment, and anxiety in older adults at risk for Alzheimer’s disease: A 27-Month Pilot Study. Front Aging Neurosci 2019; 11: 288.
[http://dx.doi.org/10.3389/fnagi.2019.00288 ] [PMID: 31736739]
[33]
Guo L, Duggan J, Cordeiro MF. Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 2010; 7(1): 3-14.
[http://dx.doi.org/10.2174/156720510790274491 ] [PMID: 20205667]
[34]
Zhang L, Xu Y, Zhu Y. Relationships between optic nerve damage and the severity of cognitive impairment in patients with mild cognitive impairment and Alzheimer’s disease. Biomed Res (Aligarh) 2017; •••: 28.
[35]
Pehlivanoglu D, Jain S, Ariel R, Verhaeghen P. The ties to unbind: Age-related differences in feature (un)binding in working memory for emotional faces. Front Psychol 2014; 5: 253.
[http://dx.doi.org/10.3389/fpsyg.2014.00253 ] [PMID: 24795660]
[36]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379 ] [PMID: 22002422]
[37]
Benarroch EE. The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology 2009; 73(20): 1699-704.
[http://dx.doi.org/10.1212/WNL.0b013e3181c2937c ] [PMID: 19917994]
[38]
Granholm EL, Panizzon MS, Elman JA, et al. Kremen, W.S. Pupillary responses as a biomarker of early risk for Alzheimer’s disease. J Alzheimers Dis 2017; 56(4): 1419-28.
[http://dx.doi.org/10.3233/JAD-161078 ] [PMID: 28157098]
[39]
van der Meer E, Beyer R, Horn J, et al. Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology 2010; 47(1): 158-69.
[http://dx.doi.org/10.1111/j.1469-8986.2009.00884.x ] [PMID: 19761522]
[40]
Frost S, Kanagasingam Y, Sohrabi H, et al. Pupil response biomarkers for early detection and monitoring of Alzheimer’s disease. Curr Alzheimer Res 2013; 10(9): 931-9.
[http://dx.doi.org/10.2174/15672050113106660163 ] [PMID: 24117119]
[41]
Granholm EL, Panizzon MS, Elman JA, et al. Pupillary responses as a biomarker of early risk for Alzheimer’s disease. J Alzheimers Dis 2017; 56(4): 1419-28.
[http://dx.doi.org/10.3233/JAD-161078 ] [PMID: 28157098]
[42]
Brown L, Sherbenou RJ, Johnsen SK. Test of Nonverbal Intelligence. Third Edition Examiner’s Manual. Austin, TX: Pro-Ed. 1997.
[43]
Lu J, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: A population-based study. J Geriatr Psychiatry Neurol 2011; 24(4): 184-90.
[http://dx.doi.org/10.1177/0891988711422528 ] [PMID: 22228824]
[44]
Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 2005; 62(7): 1160-3.
[http://dx.doi.org/10.1001/archneur.62.7.1160 ] [PMID: 16009779]
[45]
Lee LP, Har AWY, Ngai CH, Lai DWL, Lam BYH, Chan CCH. Audiovisual integrative training for augmenting cognitive- motor functions in older adults with mild cognitive impairment. BMC Geriatr 2020; 20(1): 64.
[http://dx.doi.org/10.1186/s12877-020-1465-8 ] [PMID: 32066384]
[46]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: Clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303 ] [PMID: 10190820]
[47]
Yeung PY, Wong LL, Chan CC, Leung JL, Yung CY. A validation study of the Hong Kong version of Montreal Cognitive Assessment (HK-MoCA) in Chinese older adults in Hong Kong. Hong Kong Med J 2014; 20(6): 504-10.
[http://dx.doi.org/10.12809/hkmj144219 ] [PMID: 25125421]
[48]
Gevins A, Smith ME, Le J, et al. High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalogr Clin Neurophysiol 1996; 98(4): 327-48.
[http://dx.doi.org/10.1016/0013-4694(96)00288-X ] [PMID: 8641154]
[49]
Deiber MP, Ibañez V, Missonnier P, et al. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI. Neurobiol Aging 2009; 30(9): 1444-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.021 ] [PMID: 18179844]
[50]
de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 2015; 1: 5.
[http://dx.doi.org/10.1186/s40942-015-0005-8 ] [PMID: 27847598]
[51]
Suwan Y, Geyman LS, Fard MA, et al. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus POAG and healthy controls: An OCTA study. Asia Pac J Ophthalmol (Phila) 2018; 7(2): 84-9.
[PMID: 29165935]
[52]
Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 2018; 102(2): 233-7.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310476 ] [PMID: 28600299]
[53]
Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease Biomed Res Int 2015; 2015.
[http://dx.doi.org/10.1155/2015/748212]
[54]
Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5(1): 49-62.
[http://dx.doi.org/10.1006/nimg.1996.0247 ] [PMID: 9038284]
[55]
Berryhill ME. Insights from neuropsychology: Pinpointing the role of the posterior parietal cortex in episodic and working memory. Front Integr Nuerosci 2012; 6: 31.
[http://dx.doi.org/10.3389/fnint.2012.00031 ] [PMID: 22701406]
[56]
Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, Petersen SE. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci 1996; 16(2): 808-22.
[http://dx.doi.org/10.1523/JNEUROSCI.16-02-00808.1996 ] [PMID: 8551361]
[57]
Moretti VD. Atrophy and lower regional perfusion of temporo-parietal brain areas are correlated with impairment in memory performances and increase of EEG upper alpha power in prodromal Alzheimer’s disease. Am J Neurodegener Dis 2015; 4(1): 13-27.
[PMID: 26389016]
[58]
Jiang ZY. Study on EEG power and coherence in patients with mild cognitive impairment during working memory task. J Zhejiang Univ Sci B 2005; 6(12): 1213-9.
[http://dx.doi.org/10.1631/jzus.2005.B1213 ] [PMID: 16358382]
[59]
Querques G, Borrelli E, Sacconi R, De Vitis L, Leocani L, Santangelo R, et al. Bandello, F. 2019. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep 2019; 9: 1-10.
[http://dx.doi.org/10.1038/s41598-018-37271-6]
[60]
Pham TQ, Kifley A, Mitchell P, Wang JJ. Relation of age-related macular degeneration and cognitive impairment in an older population. Gerontology 2006; 52(6): 353-8.
[http://dx.doi.org/10.1159/000094984 ] [PMID: 16902306]
[61]
Appaji A, Nagendra B, Chako DM, et al. Relation between retinal vascular abnormalities and working memory impairment in patients with schizophrenia and bipolar disorder. Asian J Psychiatr 2020; 49101942
[http://dx.doi.org/10.1016/j.ajp.2020.101942 ] [PMID: 32070935]
[62]
Patton N, Pattie A, MacGillivray T, et al. The association between retinal vascular network geometry and cognitive ability in an elderly population. Invest Ophthalmol Vis Sci 2007; 48(5): 1995-2000.
[http://dx.doi.org/10.1167/iovs.06-1123 ] [PMID: 17460252]
[63]
Williams MA, McGowan AJ, Cardwell CR, et al. Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimers Dement (Amst) 2015; 1(2): 229-35.
[http://dx.doi.org/10.1016/j.dadm.2015.04.001 ] [PMID: 26634224]
[64]
Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: A rationale based on homology between cerebral and retinal microvasculatures. J Anat 2005; 206(4): 319-48.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00395.x ] [PMID: 15817102]
[65]
Jorge L, Canário N, Quental H, Bernardes R, Castelo-Branco M. Is the retina a mirror of the aging brain? Aging of neural retina layers and primary visual cortex across the lifespan. Front Aging Neurosci 2020; 11: 360.
[http://dx.doi.org/10.3389/fnagi.2019.00360 ] [PMID: 31998115]
[66]
den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH. Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement (Amst) 2017; 10: 49-55.
[http://dx.doi.org/10.1016/j.dadm.2017.10.005 ] [PMID: 29201990]
[67]
Hill AC, Laird AR, Robinson JL. Gender differences in working memory networks: A BrainMap meta-analysis. Biol Psychol 2014; 102: 18-29.
[http://dx.doi.org/10.1016/j.biopsycho.2014.06.008 ] [PMID: 25042764]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy