Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Research Article

Enhancement of the Anti-biofilm Activity of Gold Nanoparticles- Itraconazole Conjugates in Resistant Candida glabrata

Author(s): Ensieh Lotfali, Mahsa Fattahi*, Reza Ghasemi, Farzan Zakermashhadi, Mohammad Shafiei, Mojgan Borzouie and Mohammad Mahdi Rabiei

Volume 16, Issue 2, 2021

Published on: 27 July, 2021

Page: [137 - 147] Pages: 11

DOI: 10.2174/2772434416666210607144543

Price: $65

Abstract

Introduction: Onychomycosis, also called tinea unguium, is a common fungal infection affecting the nails. After dermatophytes, Candida species are recognized as second-line pathogens responsible for this infection. The treatment of onychomycosis requires a long time and is associated with high rates of recurrence. Antifungal medicines conjugated with gold (Au-NP) nanoparticle are the possible platforms for the reduction of drug resistance.

Methods: In the present study, we reported the in-vitro antifungal activity of itraconazole (ITZ) – Au conjugates, time-kill studies, and biofilm-producing ability of six ITZ-resistant C. glabrata.

Results: 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) quantitative results revealed that four out of six resistant isolates studied able to form biofilms in vitro. ITZ-Au conjugates were more effective than ITZ or Au nanoparticle alone, and the time-kill tests pointed to the suitable effect of ITZ-Au conjugate.

Conclusion: The present study concluded that ITZ-Au conjugates have an inhibitory effect on the biofilm of resistant C. glabrata isolates. Further studies are needed to compare the ex-vivo onychomycosis model.

Keywords: Candida glabrata, biofilm, nanoparticles, onychomycosis, itraconazole, drug resistance.

Graphical Abstract

[1]
Jayatilake JA, Tilakaratne WM, Panagoda GJ. Candidal onychomycosis: A mini-review. Mycopathologia 2009; 168(4): 165-73.
[http://dx.doi.org/10.1007/s11046-009-9212-x] [PMID: 19484505]
[2]
Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001; 9(7): 327-35.
[http://dx.doi.org/10.1016/S0966-842X(01)02094-7] [PMID: 11435107]
[3]
Yang Y-L. Virulence factors of Candida species. J Microbiol Immunol Infect 2003; 36(4): 223-8.
[PMID: 14723249]
[4]
Gupta AK, Versteeg SG, Shear NH. Onychomycosis in the 21st century: An update on diagnosis, epidemiology, and treatment. J Cutan Med Surg 2017; 21(6): 525-39.
[http://dx.doi.org/10.1177/1203475417716362] [PMID: 28639462]
[5]
Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104: 104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[6]
Gupta AK, Gregurek-Novak T. Efficacy of itraconazole, terbinafine, fluconazole, griseofulvin and ketoconazole in the treatment of Scopulariopsis brevicaulis causing onychomycosis of the toes. Dermatology 2001; 202(3): 235-8.
[http://dx.doi.org/10.1159/000051643] [PMID: 11385230]
[7]
Aggarwal R, Targhotra M, Kumar B, Sahoo PK, Chauhan MK. Treatment and management strategies of onychomycosis. J Mycol Med 2020; 30(2): 100949.
[http://dx.doi.org/10.1016/j.mycmed.2020.100949] [PMID: 32234349]
[8]
Dhamoon RK, Popli H, Gupta M. Novel drug delivery strategies for the treatment of onychomycosis. Pharm Nanotechnol 2019; 7(1): 24-38.
[http://dx.doi.org/10.2174/2211738507666190228104031] [PMID: 31092174]
[9]
Del Rosso JQ. The role of topical antifungal therapy for onychomycosis and the emergence of newer agents. J Clin Aesthet Dermatol 2014; 7(7): 10-8.
[PMID: 25053979]
[10]
Monteiro DR, Silva S, Negri M, et al. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses 2013; 56(6): 672-80.
[http://dx.doi.org/10.1111/myc.12093] [PMID: 23773119]
[11]
Luiza Ribeiro de Souza A, Priscila KC, Kolenyak dos Santos F, et al. Nanotechnology-based drug delivery systems for dermatomycosis treatment. Curr Nanosci 2012; 8(4): 512-9.
[http://dx.doi.org/10.2174/157341312801784311]
[12]
Hussain MA, Ahmed D, Anwar A, et al. Combination therapy of clinically approved antifungal drugs is enhanced by conjugation with silver nanoparticles. Int Microbiol 2019; 22(2): 239-46.
[http://dx.doi.org/10.1007/s10123-018-00043-3] [PMID: 30810990]
[13]
Lotfali E, Shahverdi AR, Mohammadi R, et al. In vitro activity of two nanoparticles on clinical isolates of Candida parapsilosis, showing resistance against antifungal agents in children. Arch Clin Infect Dis 2017; 12(4): e13853.
[14]
Sami A. Antifungal effect of gold nanoparticles on fungi isolated from Onychomycosis patients. Al-Azhar J Pharm Sci 2019; 60(2): 26-42.
[http://dx.doi.org/10.21608/ajps.2019.70234]
[15]
Wayne P. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 and Supplement S 2008. Available from: https://www.clsi.org/media/1461/m27a3_sample.pdf.
[16]
Meletiadis J, Meis JF, Mouton JW, Donnelly JP, Verweij PE. Comparison of NCCLS and 3-(4,5-dimethyl-2-Thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. J Clin Microbiol 2000; 38(8): 2949-54.
[http://dx.doi.org/10.1128/JCM.38.8.2949-2954.2000] [PMID: 10921957]
[17]
Modiri M, Khodavaisy S, Barac A, et al. Comparison of biofilm-producing ability of clinical isolates of Candida parapsilosis species complex. J Mycol Med 2019; 29(2): 140-6.
[http://dx.doi.org/10.1016/j.mycmed.2019.02.003] [PMID: 30871787]
[18]
Bizerra FC, Nakamura CV, de Poersch C, et al. Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 2008; 8(3): 442-50.
[http://dx.doi.org/10.1111/j.1567-1364.2007.00347.x] [PMID: 18248413]
[19]
Nasrollahi A, Pourshamsian K, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimen 2011; 1(3): 233-9.
[20]
Roling EE, Klepser ME, Wasson A, Lewis RE, Ernst EJ, Pfaller MA. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbiol Infect Dis 2002; 43(1): 13-7.
[http://dx.doi.org/10.1016/S0732-8893(02)00361-9] [PMID: 12052624]
[21]
Halteh P, Scher RK, Lipner SR. Over-the-counter and natural remedies for onychomycosis: Do they really work? Cutis 2016; 98(5): E16-25.
[PMID: 28040821]
[22]
Botek G. Fungal nail infection: Assessing the new treatment options. Cleve Clin J Med 2003; 70(2): 110-114, 117-118.
[http://dx.doi.org/10.3949/ccjm.70.2.110] [PMID: 12636343]
[23]
Gupta AK, Bluhm R, Summerbell R. Pityriasis versicolor. J Eur Acad Dermatol Venereol 2002; 16(1): 19-33.
[http://dx.doi.org/10.1046/j.1468-3083.2002.00378.x] [PMID: 11952286]
[24]
Gupta AK, Daigle D, Carviel JL. The role of biofilms in onychomycosis. J Am Acad Dermatol 2016; 74(6): 1241-6.
[http://dx.doi.org/10.1016/j.jaad.2016.01.008] [PMID: 27012826]
[25]
Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol 2009; 35(4): 340-55.
[http://dx.doi.org/10.3109/10408410903241436] [PMID: 19863383]
[26]
Kuhn DM, Ghannoum MA. Candida biofilms: Antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 2004; 5(2): 186-97.
[27]
Percival SL, Emanuel C, Cutting KF, Williams DW. Microbiology of the skin and the role of biofilms in infection. Int Wound J 2012; 9(1): 14-32.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00836.x] [PMID: 21973162]
[28]
Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal biofilms and drug resistance. Emerg Infect Dis 2004; 10(1): 14-9.
[http://dx.doi.org/10.3201/eid1001.030119] [PMID: 15078591]
[29]
Pierce CG, Thomas DP, López-Ribot JL. Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J Antimicrob Chemother 2009; 63(3): 473-9.
[http://dx.doi.org/10.1093/jac/dkn515] [PMID: 19098294]
[30]
Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: Recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 2002; 47(4): 629-31.
[http://dx.doi.org/10.1067/mjd.2002.124699] [PMID: 12271316]
[31]
Odom RB, Aly R, Scher RK, et al. A multicenter, placebo-controlled, double-blind study of intermittent therapy with itraconazole for the treatment of onychomycosis of the fingernail. J Am Acad Dermatol 1997; 36(2): 231-5.
[http://dx.doi.org/10.1016/S0190-9622(97)70286-X] [PMID: 9039174]
[32]
Gupta AK, De Doncker P, Scher RK, et al. Itraconazole for the treatment of onychomycosis. Int J Dermatol 1998; 37(4): 303-8.
[http://dx.doi.org/10.1046/j.1365-4362.1998.00360.x] [PMID: 9585906]
[33]
Bonifaz A, Carrasco-Gerard E, Saúl A. Itraconazole in onychomycosis: Intermittent dose schedule. Int J Dermatol 1997; 36(1): 70-2.
[http://dx.doi.org/10.1046/j.1365-4362.1997.00025.x] [PMID: 9071625]
[34]
Hay RJ, Clayton YM, Moore MK, Midgely G. An evaluation of itraconazole in the management of onychomycosis. Br J Dermatol 1988; 119(3): 359-66.
[http://dx.doi.org/10.1111/j.1365-2133.1988.tb03229.x] [PMID: 2846030]
[35]
Kim K-J, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009; 22(2): 235-42.
[http://dx.doi.org/10.1007/s10534-008-9159-2] [PMID: 18769871]
[36]
Jebali A, Hajjar FHE, Pourdanesh F, et al. Silver and gold nanostructures: Antifungal property of different shapes of these nanostructures on Candida species. Med Mycol 2014; 52(1): 65-72.
[PMID: 23968285]
[37]
Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 2016; 6(1): 26667.
[http://dx.doi.org/10.1038/srep26667] [PMID: 27220400]
[38]
Rónavári A, Igaz N, Gopisetty MK, et al. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomed 2018; 13: 695-703.
[39]
Ahmad T, Wani IA, Lone IH, et al. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 2013; 48(1): 12-20.
[http://dx.doi.org/10.1016/j.materresbull.2012.09.069]
[40]
Zawrah M, El-Moez S, Center D. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J 2011; 8(4): 37-44.
[41]
Patel NR, Damann K, Leonardi C, Sabliov CM. Itraconazole-loaded poly(lactic-co-glycolic) acid nanoparticles for improved antifungal activity. Nanomedicine 2010; 5(7): 1037-50.
[http://dx.doi.org/10.2217/nnm.10.68] [PMID: 20874019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy