Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Synthesis, Functionalization, Processing and Applications of Graphene Based High Performance Polymer Nanocomposites

Author(s): Tushar T. Hawal, Maharudra S. Patil, Siddalinga Swamy and Raviraj M. Kulkarni*

Volume 18, Issue 2, 2022

Published on: 04 June, 2021

Page: [167 - 181] Pages: 15

DOI: 10.2174/1573413717666210604155102

Price: $65

conference banner
Abstract

Graphene as a nanofiller has gained tremendous importance in polymer nanocomposites for many applications. The attractive properties of graphene related to mechanical, electrical, and thermal domains pose a lucrative means of reinforcing the polymers to obtain the needed properties. The rise in the use of polymers supports this trend and urge researchers to excavate the hidden plethora of nanocomposite materials for multifunctional applications. In this review, an overview is provided on graphene-based materials which have been used extensively in various fields such as batteries, aerospace, automobile, and biomedical fields. With the increasing trend of graphene usage by many researchers as a nanofiller in polymer composites, its types, processing methods are highlighted with suitable applications to assimilate the updates in the development of graphene nanocomposites.

Keywords: Graphene, nanographene, functionalization, synthesis, nanocomposites, polymer nanocomposites.

Graphical Abstract

[1]
Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos., Part B Eng., 2017, 2018(138), 122-139.
[http://dx.doi.org/10.1016/j.compositesb.2017.11.028]
[2]
Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review.Composites part A: Applied science and manufacturing; Elsevier Ltd., 2014, pp. 181-200.
[3]
Ma, J.; Meng, Q.; Zaman, I.; Zhu, S.; Michelmore, A.; Kawashima, N.; Wang, C.H.; Kuan, H.C. Development of polymer composites using modified, high-structural integrity graphene platelets. Compos. Sci. Technol., 2014, 91, 82-90.
[http://dx.doi.org/10.1016/j.compscitech.2013.11.017]
[4]
Rudnik, E. Properties and Applications.Compostable Polymer Materials; Elsevier, 2019, pp. 49-98.
[http://dx.doi.org/10.1016/B978-0-08-099438-3.00003-3]
[5]
Campbell, F.C. Thermoplastic composites: An unfulfilled promise.Manufacturing processes for advanced composites; Elsevier, 2004, pp. 357-397.
[http://dx.doi.org/10.1016/B978-185617415-2/50011-3]
[6]
Materials, S. C.; Campbell, F. C. Introduction to composite materials. 2010.
[7]
Chung, D.D.L. Composite materials.Engineering materials and processes; Springer London: London, 2010.
[http://dx.doi.org/10.1007/978-1-84882-831-5]
[8]
Bellucci, F.; Fabiani, D.; Montanari, G.C.; Testa, L. The processing of nanocomposites.Dielectric polymer nanocomposites; Nelson, J.K., Ed.; Springer US: Boston, MA , 2010; pp. 31-64.
[http://dx.doi.org/10.1007/978-1-4419-1591-7_2]
[9]
Monetta, T.; Acquesta, A.; Bellucci, F. Graphene/epoxy coating as multifunctional material for aircraft structures. 2015, 423-434.
[10]
Zhang, H.; Tang, Y. Graphene-based materials and their potential applications: A theoretical study; Elsevier Ltd, 2017.
[http://dx.doi.org/10.1016/B978-0-08-100785-3.00009-7]
[11]
Bothe, M.; Emmerling, F.; Pretsch, T. Poly (Ester Urethane) with Varying Polyester Chain Length : Polymorphism And. Macromol. Chem. Phys., 2013, 214, 2683-2693.
[http://dx.doi.org/10.1002/macp.201300464]
[12]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[http://dx.doi.org/10.1038/nnano.2009.58] [PMID: 19350030]
[13]
Izzaty, N.; Sastra, H. Y. The implementation of graphene composites for automotive: An industrial perspective the implementation of graphene composites for automotive: An industrial perspective. 2019.
[14]
Das, T.K.; Prusty, S. Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng., 2013, 52(4), 319-331.
[http://dx.doi.org/10.1080/03602559.2012.751410]
[15]
Das, T.K.; Prusty, S. Recent advances in applications of graphene. Int. J. Chem. Sci. Appl., 2013, 4(1), 2278-6015.
[16]
Kakaei, K.; Esrafili, M.D.; Ehsani, A. Atomic properties and electronic structure. Interface science and technology;, 2019, 27, 23-66.
[http://dx.doi.org/10.1016/B978-0-12-814523-4.00002-2]
[17]
Simon, D.A.; Bischoff, E.; Buonocore, G.G.; Cerruti, P.; Raucci, M.G.; Xia, H.; Schrekker, H.S.; Lavorgna, M.; Ambrosio, L.; Mauler, R.S. Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Mater. Des., 2017, 134, 103-110.
[http://dx.doi.org/10.1016/j.matdes.2017.08.032]
[18]
Joshi, S.; Arindom, R.; Dikshit, T.; Anish, B.; Deep, A.G.; Pallav, P. Conceptual paper on factors affecting the attitude of senior citizens towards purchase of smartphones. Indian J. Sci. Technol., 2015, 8(12), 83-89.
[http://dx.doi.org/10.17485/ijst/2015/v8i]
[19]
Mondal, S.; Khastgir, D. Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT. Compos., Part A Appl. Sci. Manuf., 2017, 102, 154-165.
[http://dx.doi.org/10.1016/j.compositesa.2017.08.003]
[20]
Yu, X.; Zhang, W.; Zhang, P.; Su, Z. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens. Bioelectron., 2017, 89(Pt 1), 72-84.
[http://dx.doi.org/10.1016/j.bios.2016.01.081] [PMID: 26856633]
[21]
Wang, Z.; Xiong, X.; Li, J.; Dong, M. Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys., 2021, 16, 100290.
[http://dx.doi.org/10.1016/j.mtphys.2020.100290]
[22]
Yılmaz, E. Preparation and characterization of polymer composites containing gold nanoparticles. 2011.
[23]
Martin, N.; Jorio, A.; Saito, R.; Dresselhaus, G. Graphene: Synthesis, properties, and phenomena.Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, , 2012.
[24]
Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci., 2010, 35(1), 52-71.
[http://dx.doi.org/10.1080/10408430903505036]
[25]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[26]
Edwards, R.S.; Coleman, K.S. Graphene synthesis: Relationship to applications. Nanoscale, 2013, 5(1), 38-51.
[http://dx.doi.org/10.1039/C2NR32629A] [PMID: 23160190]
[27]
Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett., 2016, 6(2), 65-83.
[http://dx.doi.org/10.1007/s40089-015-0176-1]
[28]
Russo, S. F., M.; Khodkov, T.; Koshino, M.; Yamamoto, M.; Taruch, S; Graphene - Synthesis, Characterization, Properties and Applications.InTech, 2011.
[29]
Akbar, F.; Kolahdouz, M.; Larimian, S.; Radfar, B.; Radamson, H.H. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. Electron., 2015, 26(7), 4347-4379.
[http://dx.doi.org/10.1007/s10854-015-2725-9]
[30]
Whitener, K.E.; Sheehan, P.E. Graphene synthesis. Diamond Related Materials, 2014, 46, 25-34.
[http://dx.doi.org/10.1016/j.diamond.2014.04.006]
[31]
Rao, C.N.R.; Subrahmanyam, K.S.; Ramakrishna Matte, H.S.S.; Maitra, U.; Moses, K.; Govindaraj, A. Graphene: Synthesis. Functionalization and properties, 2011, 25(30), 4107-4143.
[http://dx.doi.org/10.1142/S0217979211059358]
[32]
Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(22), 11700-11715.
[http://dx.doi.org/10.1039/C5TA00252D]
[33]
Inagaki, M.; Kang, F.; Toyoda, M.; Konno, H. Graphene. Advanced materials science and engineering of carbon; Elsevier, 2014, 2, 41-65.
[http://dx.doi.org/10.1016/B978-0-12-407789-8.00003-X]
[34]
Jariwala, D.; Srivastava, A.; Ajayan, P.M. Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol., 2011, 11(8), 6621-6641.
[http://dx.doi.org/10.1166/jnn.2011.5001] [PMID: 22103063]
[35]
Park, S.J.; Seo, M.K. Comprehension of Nanocomposites; Elsevier Inc., 2011, Vol. 18, pp. 777-819.
[http://dx.doi.org/10.1016/B978-0-12-375049-5.00010-4]
[36]
Shi, G.; Araby, S.; Gibson, C.T.; Meng, Q.; Zhu, S.; Ma, J. Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv. Funct. Mater., 2018, 1-44.
[http://dx.doi.org/10.1002/adfm.201706705]
[37]
Essabir, H.; Raji, M.; Bouhfid, R.; el Kacem Qaiss, A. Rheological properties of functionalized graphene and polymeric matrices-based nanocomposites; Elsevier Inc., 2018.
[38]
Akpan, E.I.; Shen, X.; Wetzel, B.; Friedrich, K. 2. Design and synthesis of polymer nanocomposites; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814064-2.00002-0]
[39]
Grennberg, H.; Jansson, U. Synthesis of graphene and derivatives; Elsevier Inc., 2012, Vol. 2, pp. 105-127.
[40]
Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M. The covalent functionalization of graphene on substrates. Angew. Chem. Int. Ed. Engl., 2015, 54(37), 10734-10750.
[http://dx.doi.org/10.1002/anie.201501473] [PMID: 26242633]
[41]
Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112(11), 6156-6214.
[http://dx.doi.org/10.1021/cr3000412] [PMID: 23009634]
[42]
Adeel, M.; Bilal, M.; Rasheed, T.; Sharma, A.; Iqbal, H.M.N. Graphene and graphene oxide: Functionalization and nano-biocatalytic system for enzyme immobilization and biotechnological perspective. Int. J. Biol. Macromol., 2018, 120(Pt B), 1430-1440.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.144] [PMID: 30261251]
[43]
Daukiya, L.; Seibel, J.; De Feyter, S. Advances in physics : X chemical modification of 2d materials using molecules and assemblies of molecules. Adv. Phys. X, 2019, 4(1), 1625723.
[http://dx.doi.org/10.1080/23746149.2019.1625723]
[44]
Lau, Y.J.; Khan, F.S.A.; Mubarak, N.M.; Lau, S.Y.; Chua, H.B.; Khalid, M.; Abdullah, E.C. Functionalized carbon nanomaterials for wastewater treatment; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-815749-7.00010-4]
[45]
Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev., 2015, 115(7), 2483-2531.
[http://dx.doi.org/10.1021/cr500537t] [PMID: 25692385]
[46]
Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol., 2016, 7(1), 1174-1196.
[http://dx.doi.org/10.3762/bjnano.7.109] [PMID: 27826492]
[47]
Liu, L.; Ryu, S.; Tomasik, M.R.; Stolyarova, E.; Jung, N.; Hybertsen, M.S.; Steigerwald, M.L.; Brus, L.E.; Flynn, G.W. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett., 2008, 8(7), 1965-1970.
[http://dx.doi.org/10.1021/nl0808684] [PMID: 18563942]
[48]
Bottari, G.; Herranz, M.Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D.M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev., 2017, 46(15), 4464-4500.
[http://dx.doi.org/10.1039/C7CS00229G] [PMID: 28702571]
[49]
Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. (Weinh.), 2016, 3(7), 1500413.
[http://dx.doi.org/10.1002/advs.201500413] [PMID: 27981018]
[50]
Hakimi, M.; Alimard, P.; Alimard, M.H.P. Graphene: And synthesis and applications and in biotechnology and - a and review. World Appl. Program., 2012, 2(6), 377-388.
[51]
Christian, K.K.; Cho, Y.; Chandra, V.; Kim, K.S. Noncovalent functionalization of graphene. In: Functionalization of graphene; Wiley Online Library, , 2014. 9783527335, pp. 199-218.
[http://dx.doi.org/10.1002/9783527672790.ch7]
[52]
Yang, G. hai; Bao, D. dan.; Liu, H.; Zhang, D. qing; Wang, N.; Li, H. tao. Functionalization of graphene and applications of the derivatives. J. Inorg. Organomet. Polym. Mater., 2017, 27(5), 1129-1141.
[http://dx.doi.org/10.1007/s10904-017-0597-6]
[53]
Tang, L.; Zhao, L.; Guan, L. 7 Graphene/polymer composite materials: Processing, properties and applications.Advanced Composite Materials: Properties and Applications; De Gruyter Open: Warsaw, Poland, 2017.
[54]
Zhang, M.; Su, L.; Mao, L. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon N. Y., 2006, 44(2), 276-283.
[http://dx.doi.org/10.1016/j.carbon.2005.07.021]
[55]
Liang, M.; Wong, K.L. Improving the long-term performance of composite insulators use nanocomposite: A review. Energy Procedia, 2016, 2017(110), 168-173.
[http://dx.doi.org/10.1016/j.egypro.2017.03.123]
[56]
Reed, C.W. (2010) The Chemistry and Physics of the Interface Region and Functionalization. In: Nelson J. (eds) Dielectric Polymer Nanocomposites. Springer, Boston, MA.
[http://dx.doi.org/10.1007/978-1-4419-1591-7] [http://dx.doi.org/10.1007/978-1-4419-1591-7.]
[57]
Gibson, G. Epoxy resins.Brydson’s Plast. Mater, 8th; Brydson’s Plast; Mater, 2016, pp. 773-797.
[58]
Vijayan, P. P.; Puglia, D.; Al-Maadeed, M. A. S. A.; Kenny, J. M.; Thomas, S. Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’ and ‘nano’ scale. Mater. Sci. Eng. Rep., 2017, 116, 1-29.
[http://dx.doi.org/10.1016/j.mser.2017.03.001]
[59]
Prolongo, S.G.; Gude, M.R.; Ureña, A. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment. Compos. Sci. Technol., 2011, 71(5), 765-771.
[http://dx.doi.org/10.1016/j.compscitech.2011.01.028]
[60]
Weber, I.; Schwartz, P. Monitoring bending fatigue in carbon-fibre / epoxy composite strands: A comparison between mechanical and resistance techniques. 2001, 61, 849-853.
[61]
Neill, A.O.; Archer, E.; Mcilhagger, A.; Lemoine, P.; Dixon, D. Polymer nanocomposites : In situ polymerization of polyamide 6 in the presence of graphene oxide. 2015, 1-10.
[62]
Hedicke-Höchstötter, K.; Lim, G.T.; Altstädt, V. Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos. Sci. Technol., 2009, 69(3-4), 330-334.
[http://dx.doi.org/10.1016/j.compscitech.2008.10.011]
[63]
Shen, Z.; Bateman, S.; Wu, D.Y.; McMahon, P.; Dell’Olio, M.; Gotama, J. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Compos. Sci. Technol., 2009, 69(2), 239-244.
[http://dx.doi.org/10.1016/j.compscitech.2008.10.017]
[64]
Shawky, H.A.; Chae, S.R.; Lin, S.; Wiesner, M.R. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 2011, 272(1-3), 46-50.
[http://dx.doi.org/10.1016/j.desal.2010.12.051]
[65]
Meng, H.; Sui, G.X.; Xie, G.Y.; Yang, R. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos. Sci. Technol., 2009, 69(5), 606-611.
[http://dx.doi.org/10.1016/j.compscitech.2008.12.004]
[66]
Pöllänen, M.; Suvanto, M.; Pakkanen, T.T. Cellulose reinforced high density polyethylene composites - morphology, mechanical and thermal expansion properties. Compos. Sci. Technol., 2013, 76, 21-28.
[http://dx.doi.org/10.1016/j.compscitech.2012.12.013]
[67]
Frone, A.N.; Perrin, F.X.; Radovici, C.; Panaitescu, D.M. Influence of branched or un-branched alkyl substitutes of POSS on morphology, thermal and mechanical properties of polyethylene. Compos., Part B Eng., 2013, 50, 98-106.
[http://dx.doi.org/10.1016/j.compositesb.2013.01.028]
[68]
Panaitescu, D.M.; Frone, A.N.; Spataru, I.C. Effect of nanosilica on the morphology of polyethylene investigated by AFM. Compos. Sci. Technol., 2013, 74, 131-138.
[http://dx.doi.org/10.1016/j.compscitech.2012.10.001]
[69]
Chang, B.P.; Akil, H.M.; Affendy, M.G.; Khan, A.; Nasir, R.B.M. Comparative study of wear performance of particulate and fiber-reinforced nano-zno/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater. Des., 2014, 63, 805-819.
[http://dx.doi.org/10.1016/j.matdes.2014.06.031]
[70]
Kim, H.; Kobayashi, S.; Abdurrahim, M.A.; Zhang, M.J.; Khusainova, A.; Hillmyer, M.A.; Abdala, A.A.; Macosko, C.W. Graphene/polyethylene nanocomposites : Effect of polyethylene functionalization and blending methods. Polymer (Guildf.), 2011, 52(8), 1837-1846.
[http://dx.doi.org/10.1016/j.polymer.2011.02.017]
[71]
Shen, B.; Zhai, W.; Tao, M.; Lu, D.; Zheng, W. Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos. Sci. Technol., 2013.
[http://dx.doi.org/10.1016/j.compscitech.2013.07.007]
[72]
Pickett, J. E.; Sargent, J. R. Chapter 10 lifetime predictions for hardcoated polycarbonate.153-169.
[73]
Sihn, S.; Kim, R.Y.; Huh, W.; Lee, K.H.; Roy, A.K. Improvement of damage resistance in laminated composites with electrospun nano-interlayers. Compos. Sci. Technol., 2008, 68(3–4), 673-683.
[http://dx.doi.org/10.1016/j.compscitech.2007.09.015]
[74]
François, D.; Pineau, A.; Zaoui, A. Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage; Springer, 2012.
[http://dx.doi.org/10.1007/978-94-007-2546-1]
[75]
Sadik, Z.; Arrakhiz, F.E.; Idrissi-Saba, H. Polypropylene material under simulated recycling: effect of degradation on mechanical, thermal and rheological properties. ACM Int. Conf. Proceeding Ser, 2018, pp. 3-9.
[http://dx.doi.org/10.1145/3234698.3234736]
[76]
Do, V.T.; Nguyen-Tran, H.D.; Chun, D.M. Effect of polypropylene on the mechanical properties and water absorption of carbon-fiber-reinforced-polyamide-6/polypropylene composite. Compos. Struct., 2016, 150, 240-245.
[http://dx.doi.org/10.1016/j.compstruct.2016.05.011]
[77]
Fu, S.; Yu, B.; Tang, W.; Fan, M.; Chen, F.; Fu, Q. Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated kevlar fibers. Compos. Sci. Technol., 2018, 163, 141-150.
[http://dx.doi.org/10.1016/j.compscitech.2018.03.020]
[78]
Ashenai Ghasemi, F.; Ghasemi, I.; Menbari, S.; Ayaz, M.; Ashori, A. Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym. Test., 2016, 53, 283-292.
[http://dx.doi.org/10.1016/j.polymertesting.2016.06.012]
[79]
Spoerk, M.; Savandaiah, C.; Arbeiter, F.; Sapkota, J.; Holzer, C. Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing. Polym. Compos., 2019, 40(2), 638-651.
[http://dx.doi.org/10.1002/pc.24701]
[80]
Schadler, L.S.; Brinson, L.C.; Sawyer, W.G. Polymer nanocomposites: A small part of the story. JOM, 2007, 59(3), 53-60.
[81]
Qiu, K.; Netravali, A.N. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos. Sci. Technol., 2012, 72(13), 1588-1594.
[http://dx.doi.org/10.1016/j.compscitech.2012.06.010]
[82]
Khan, U.; Ryan, K.; Blau, W.J.; Coleman, J.N. The effect of solvent choice on the mechanical properties of carbon nanotube-polymer composites. Compos. Sci. Technol., 2007, 67(15–16), 3158-3167.
[http://dx.doi.org/10.1016/j.compscitech.2007.04.015]
[83]
Li, S.; Zhang, X.; Zhao, J.; Meng, F.; Xu, G.; Yong, Z.; Jia, J.; Zhang, Z.; Li, Q. Enhancement of carbon nanotube fibres using different solvents and polymers. Compos. Sci. Technol., 2012, 72(12), 1402-1407.
[http://dx.doi.org/10.1016/j.compscitech.2012.05.013]
[84]
Guo, X.; Yang, H.; Zhu, X.; Lin, Z.; Zhang, L. Rheological properties and spray-drying behaviors of nano-SiC based aqueous slurry. Mech. Mater., 2012, 46, 11-15.
[http://dx.doi.org/10.1016/j.mechmat.2011.11.005]
[85]
Es-Saheb, M.; Elzatahry, A. Post-heat treatment and mechanical assessment of polyvinyl alcohol nanofiber sheet fabricated by electrospinning technique. Int. J. Polym. Sci., 2014, 2014(iv)
[http://dx.doi.org/10.1155/2014/605938]
[86]
Li, P.; Liu, D.; Zhu, B.; Li, B.; Jia, X.; Wang, L.; Li, G.; Yang, X. Synchronous effects of multiscale reinforced and toughened cfrp composites by mwnts-ep/psf hybrid nanofibers with preferred orientation. Compos., Part A Appl. Sci. Manuf., 2015, 68, 72-80.
[http://dx.doi.org/10.1016/j.compositesa.2014.09.010]
[87]
Díez-Pascual, A.M.; Naffakh, M.; Marco, C.; Ellis, G. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos., Part A Appl. Sci. Manuf., 2012, 43(4), 603-612.
[http://dx.doi.org/10.1016/j.compositesa.2011.12.026]
[88]
Ashrafi, B.; Díez-Pascual, A.M.; Johnson, L.; Genest, M.; Hind, S.; Martinez-Rubi, Y.; González-Domínguez, J.M.; Teresa Martínez, M.; Simard, B.; Gómez-Fatou, M.A.; Johnston, A. Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes. Compos., Part A Appl. Sci. Manuf., 2012, 43(8), 1267-1279.
[http://dx.doi.org/10.1016/j.compositesa.2012.02.022]
[89]
Ameduri, B.; Boutevin, B. Well-architectured fluoropolymers: Synthesis, properties and applications; Elsevier Inc., 2004.
[90]
Sanchez-Garcia, M.D.; Lagaron, J.M.; Hoa, S.V. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos. Sci. Technol., 2010, 70(7), 1095-1105.
[http://dx.doi.org/10.1016/j.compscitech.2010.02.015]
[91]
Mohan, V.B.; Lau, K. tak; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos., Part B Eng., 2017, 2018(142), 200-220.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.013]
[92]
Verma, D.; Goh, K.L. Chapter 11 - functionalized graphene-based nanocomposites for energy applications.Elsevier Inc. , 2019.
[http://dx.doi.org/10.1016/B978-0-12-814548-7.00011-8]
[93]
Hong, S.F.; Chen, L.C. Nano-prussian blue analogue/PEDOT:PSS Composites for electrochromic windows. Sol. Energy Mater. Sol. Cells, 2012, 104, 64-74.
[http://dx.doi.org/10.1016/j.solmat.2012.04.032]
[94]
Szymczyk, A. Graphene-based nanomaterials and their polymer nanocomposites; Elsevier Inc., 2019.
[95]
Bismarck, A.; Lee, A.F.; Saraç, A.S.; Schulz, E.; Wilson, K. Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate? Compos. Sci. Technol., 2005, 65(10), 1564-1573.
[http://dx.doi.org/10.1016/j.compscitech.2005.01.006]
[96]
Ratna, D. Handbook of thermoset resins; Shawbury, UK: ISmithers; , 2009, pp. 155-157.
[97]
Umer, R.; Li, Y.; Dong, Y.; Haroosh, H.J.; Liao, K. The effect of graphene oxide (go) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int. J. Adv. Manuf. Technol., 2015, 81(9–12), 2183-2192.
[http://dx.doi.org/10.1007/s00170-015-7427-1]
[98]
Ning, H.; Li, J.; Hu, N. Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon N. Y., 2015, 91, 224-233.
[http://dx.doi.org/10.1016/j.carbon.2015.04.054]
[99]
Rafiee, M.A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Fracture and fatigue in graphene nanocomposites. Small, 2010, 6(2), 179-183.
[http://dx.doi.org/10.1002/smll.200901480] [PMID: 19924737]
[100]
Jiang, S.D.; Bai, Z.M.; Tang, G.; Hu, Y.; Song, L. Fabrication and Characterization of Graphene Oxide-Reinforced Poly(Vinyl Alcohol)-Based Hybrid Composites by the Sol-Gel Method. Compos. Sci. Technol., 2014, 102, 51-58.
[http://dx.doi.org/10.1016/j.compscitech.2014.06.029]
[101]
Uddin, M.E.; Layek, R.K.; Kim, H.Y.; Kim, N.H.; Hui, D.; Lee, J.H. Preparation and Enhanced Mechanical Properties of Non-Covalently-Functionalized Graphene Oxide/Cellulose Acetate Nanocomposites. Compos., Part B Eng., 2016, 90, 223-231.
[http://dx.doi.org/10.1016/j.compositesb.2015.12.008]
[102]
Kim, J.; Kim, J.; Yim, B.S.; Kim, J.M. The Effects of Functionalized Graphene Nanosheets on the Thermal and Mechanical Properties of Epoxy Composites for Anisotropic Conductive Adhesives (ACAs). Microelectron. Reliab., 2012, 52(3), 595-602.
[http://dx.doi.org/10.1016/j.microrel.2011.11.002]
[103]
Yousefi, N.; Gudarzi, M.M.; Zheng, Q.; Lin, X.; Shen, X.; Jia, J.; Sharif, F.; Kim, J.K. Highly Aligned, Ultralarge-Size Reduced Graphene Oxide/Polyurethane Nanocomposites: Mechanical Properties and Moisture Permeability. Compos., Part A Appl. Sci. Manuf., 2013, 49, 42-50.
[http://dx.doi.org/10.1016/j.compositesa.2013.02.005]
[104]
Kang, H.; Tang, Y.; Yao, L.; Yang, F.; Fang, Q.; Hui, D. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos., Part B Eng., 2017, 112, 1-7.
[http://dx.doi.org/10.1016/j.compositesb.2016.12.035]
[105]
Paran, S.M.R.; Naderi, G.; Ghoreishy, M.H.R.; Heydari, A. Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber. Compos. Sci. Technol., 2018, 161(March), 57-65.
[http://dx.doi.org/10.1016/j.compscitech.2018.04.006]
[106]
Bao, C.; Song, L.; Wilkie, C.A.; Yuan, B.; Guo, Y.; Hu, Y.; Gong, X. Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J. Mater. Chem., 2012, 22(32), 16399-16406.
[http://dx.doi.org/10.1039/c2jm32500d]
[107]
Chieng, B. W.; Ibrahim, N. A.; Hussein, M. Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. 2014, 93-104.
[108]
El Achaby, M.; Arrakhiz, F.Z.; Vaudreuil, S.; Essassi, E.M.; Qaiss, A.; Bousmina, M. Preparation and characterization of melt-blended graphene nanosheets – poly ( vinylidene fluoride ) nanocomposites with enhanced properties. 2012, 1-11.
[109]
Istrate, O.M.; Paton, K.R.; Khan, U.; O’Neill, A.; Bell, A.P.; Coleman, J.N. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level. Carbon N. Y., 2014, 78(0), 243-249.
[http://dx.doi.org/10.1016/j.carbon.2014.06.077]
[110]
Müller, M.T.; Krause, B.; Kretzschmar, B.; Pötschke, P. Influence of feeding conditions in twin-screw extrusion of pp/mwcnt composites on electrical and mechanical properties. Compos. Sci. Technol., 2011, 71(13), 1535-1542.
[http://dx.doi.org/10.1016/j.compscitech.2011.06.003]
[111]
Song, P.; Cao, Z.; Cai, Y.; Zhao, L.; Fang, Z.; Fu, S. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer (Guildf.), 2011, 52(18), 4001-4010.
[http://dx.doi.org/10.1016/j.polymer.2011.06.045]
[112]
Yuan, B.; Bao, C.; Song, L.; Hong, N.; Liew, K.M.; Hu, Y. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J., 2013.
[http://dx.doi.org/10.1016/j.cej.2013.10.030]
[113]
Qin, S.; Chen, C.; Cui, M.; Zhang, A. RSc advances facile preparation of polyimide / graphene nanocomposites via an in situ polymerization approach. 2017, 3003-3011.
[114]
Chen, Y.; Li, D.; Yang, W.; Xiao, C.; Wei, M. Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymer (Guildf.), 2018, 140, 56-72.
[http://dx.doi.org/10.1016/j.polymer.2018.02.017]
[115]
Guo, Y.; Xu, G.; Yang, X.; Ruan, K.; Ma, T. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot. 2018, 3004-3015.
[http://dx.doi.org/10.1039/C8TC00452H]
[116]
Ma, J.; Li, Y.; Yin, X.; Xu, Y.; Yue, J.; Bao, J.; Zhou, T. Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by: In situ polymerization with enhanced mechanical properties and water vapor barrier properties. In: RSC Adv; , 2016. 6, pp. (55)49448-49458.
[117]
Wu, G.; Cheng, Y.; Wang, Z.; Wang, K. In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. Mater. Electron., 2016, 2-7.
[http://dx.doi.org/10.1007/s10854-016-5560-8]
[118]
Zhang, S.; Liu, P.; Zhao, X.; Xu, J. Preparation of poly (vinyl alcohol) -grafted graphene oxide/poly (vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization. Appl. Surf. Sci., 2016.
[http://dx.doi.org/10.1016/j.apsusc.2016.11.094]
[119]
Gupta, S.; McDonald, B.; Carrizosa, S.B.; Price, C. Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: Nanoscale morphology-promoted synergistic effects. Compos., Part B Eng., 2016, 92, 175-192.
[http://dx.doi.org/10.1016/j.compositesb.2016.02.049]
[120]
Zhao, X.; Li, Y.; Chen, W.; Li, S.; Zhao, Y.; Du, S. Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization. Compos. Sci. Technol., 2019, 171, 180-189.
[http://dx.doi.org/10.1016/j.compscitech.2018.12.023]
[121]
Hawal, T.T.; Patil, M.S.; Kulkarni, R.M.; Nandurkar, S.N. Synergetic effect of rubber on the tensile and flexural properties of graphene based epoxy-carbon fiber hybrid nanocomposite. Materials today: Proceedings; Elsevier Ltd., 2020, 27, 515-518.
[http://dx.doi.org/10.1016/j.matpr.2019.11.315]
[122]
Bansal, S.A.; Singh, A.P.; Kumar, A.; Kumar, S.; Kumar, N.; Goswamy, J.K. Improved mechanical performance of bisphenol-a graphene-oxide nano-composites. J. Compos. Mater., 2018, 52(16), 2179-2188.
[http://dx.doi.org/10.1177/0021998317741952]
[123]
Tan, Q.C.; Shanks, R.A.; Hui, D.; Kong, I. Functionalised graphene-multiwalled carbon nanotube hybrid poly(styrene-b-butadiene-b-styrene) nanocomposites. Compos., Part B Eng., 2016, 90, 315-325.
[http://dx.doi.org/10.1016/j.compositesb.2015.12.020]
[124]
Li, W.; Dichiara, A.; Bai, J. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol., 2013, 74, 221-227.
[http://dx.doi.org/10.1016/j.compscitech.2012.11.015]
[125]
Wang, F.; Drzal, L.T.; Qin, Y.; Huang, Z. Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos., Part A Appl. Sci. Manuf., 2016, 87, 10-22.
[http://dx.doi.org/10.1016/j.compositesa.2016.04.009]
[126]
Jancar, J.; Douglas, J.F.; Starr, F.W.; Kumar, S.K.; Cassagnau, P.; Lesser, A.J.; Sternstein, S.S.; Buehler, M.J. Current issues in research on structure property relationships in polymer nanocomposites. Polymer (Guildf.), 2010, 51(15), 3321-3343.
[http://dx.doi.org/10.1016/j.polymer.2010.04.074]
[127]
Young, R.J.; Liu, M.; Kinloch, I.A.; Li, S.; Zhao, X.; Vallés, C.; Papageorgiou, D.G. The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos. Sci. Technol., 2018, 154, 110-116.
[http://dx.doi.org/10.1016/j.compscitech.2017.11.007]
[128]
Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol., 2014, 97, 90-99.
[http://dx.doi.org/10.1016/j.compscitech.2014.03.014]
[129]
Kasar, A. K.; Menezes, P. L. Synthesis and recent advances in tribological applications of graphene. 2019.
[130]
Deng, Y.; Fang, C.; Chen, G. The developments of sno 2/graphene nanocomposites as anode materials for high performance lithium ion batteries : A review. J. Power Sources, 2016, 304, 81-101.
[http://dx.doi.org/10.1016/j.jpowsour.2015.11.017]
[131]
Zhang, C.; Liu, T.X. A review on hybridization modification of graphene and its polymer nanocomposites. Chin. Sci. Bull., 2012, 3010-3021.
[http://dx.doi.org/10.1007/s11434-012-5321-x]
[132]
Deng, H.; Liu, Y.; Gai, D.; Dikin, D.A.; Putz, K.W.; Chen, W.; Catherine Brinson, L.; Burkhart, C.; Poldneff, M.; Jiang, B.; Papakonstantopoulos, G.J. Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Compos. Sci. Technol., 2012, 72(14), 1725-1732.
[http://dx.doi.org/10.1016/j.compscitech.2012.03.020]
[133]
Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of graphene/polymers: A review. RSC Advances, 2015, 5(83), 68014-68051.
[http://dx.doi.org/10.1039/C5RA07989F]
[134]
Wypych, G. Current developments in some applications of graphene.Graphene; Elsevier, 2019, pp. 195-272.
[http://dx.doi.org/10.1016/B978-1-927885-51-2.50010-9]
[135]
Sun, W.; Wang, Y. Graphene-based nanocomposite anodes for lithium-ion batteries. Nanoscale, 2014, 6(20), 11528-11552.
[http://dx.doi.org/10.1039/C4NR02999B] [PMID: 25177843]
[136]
Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G. Electrochemistry communications in situ chemical synthesis of sno 2 – graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun., 2009, 11(10), 1849-1852.
[http://dx.doi.org/10.1016/j.elecom.2009.07.035]
[137]
Ji, L.; Meduri, P.; Agubra, V.; Xiao, X.; Alcoutlabi, M. Graphene-based nanocomposites for energy storage. Adv. Energy Mater., 2016, 6(16), 1502159.
[http://dx.doi.org/10.1002/aenm.201502159]
[138]
Wei, T.; Zhang, M.; Wu, P.; Tang, Y.; Li, L.; Shen, F.; Wang, X.; Lan, Y. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017, 34, 205-214.
[http://dx.doi.org/10.1016/j.nanoen.2017.02.028]
[139]
Zhang, Y.; Ma, Q.; Wang, S.; Liu, X.; Li, L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano, 2018, 12(5), 4824-4834.
[http://dx.doi.org/10.1021/acsnano.8b01549] [PMID: 29659252]
[140]
Ye, F.; Zhao, B.; Ran, R.; Shao, Z. A Polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. J. Power Sources, 2015, 290, 61-70.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.009]
[141]
Bigdeli, M.B.; Fasano, M. Thermal transmittance in graphene based networks for polymer matrix composites. Int. J. Therm. Sci., 2017, 117, 98-105.
[http://dx.doi.org/10.1016/j.ijthermalsci.2017.03.009]
[142]
Joshi, M.; Chatterjee, U. 8 - Polymer nanocomposite: An  advanced material for aerospace applications; Elsevier Ltd, 2016.
[http://dx.doi.org/10.1016/B978-0-08-100037-3.00008-0]
[143]
Kausar, A. Polyurethane composite foams in high- performance applications: A review. Polym. Plast. Technol. Eng., 2017, 0(0), 1-24.
[http://dx.doi.org/10.1080/03602559.2017.1329433]
[144]
Kumar, A.; Review, A. Review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci., 2019, 54(8), 5992-6026.
[http://dx.doi.org/10.1007/s10853-018-03244-3]
[145]
Manta, A.; Gresil, M.; Soutis, C. Graphene in aerospace composites: Characterising thermal response. AIP Conf. Proc., 2018, 1932(1), 020001.
[http://dx.doi.org/10.1063/1.5024145]
[146]
Scarselli, G.; Corcione, C.; Nicassio, F.; Maffezzoli, A. Adhesive joints with improved mechanical properties for aerospace applications. Int. J. Adhes. Adhes., 2017, 75, 174-180.
[http://dx.doi.org/10.1016/j.ijadhadh.2017.03.012]
[147]
Wan, S.; Hu, H.; Peng, J.; Li, Y.; Fan, Y.; Jiang, L.; Cheng, Q. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites. Nanoscale, 2016, 8(10), 5649-5656.
[http://dx.doi.org/10.1039/C6NR00562D] [PMID: 26895081]
[148]
Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Def. Technol., 2019.
[149]
Kausar, A.; Rafique, I.; Muhammad, B. Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym. Plast. Technol. Eng., 2017, 1438-1456.
[http://dx.doi.org/10.1080/03602559.2016.1276594]
[150]
Elmarakbi, A.; Azoti, W. State of the art on; Elsevier Inc., 2018.
[151]
Chandra, A. K.; Kumar, N. R. Polymer nanocomposites for automobile engineering applications. 2017.
[http://dx.doi.org/10.1007/978-3-662-53517-2_7]
[152]
Kausar, A. Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application. Adv. Mater. Sci., 2017, 17(3), 24-36.
[http://dx.doi.org/10.1515/adms-2017-0013]
[153]
Atif, R.; Shyha, I.; Inam, F. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites-A Review. Polymers (Basel), 2016, 8(8), E281.
[http://dx.doi.org/10.3390/polym8080281] [PMID: 30974558]
[154]
Bari, P.; Khan, S.; Njuguna, J. Elaboration of properties of graphene oxide reinforced epoxy nanocomposites. Int. J. Plast. Technol., 2017.
[155]
Idumah, C.I.; Hassan, A.; Bourbigot, S. Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J. Anal. Appl. Pyrolysis, 2017, 1-8.
[http://dx.doi.org/10.1016/j.jaap.2017.01.006]
[156]
Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; Pérez, G.; Jesdinszki, M.; Lindner, M.; Scheuerer, Z.; Castelló, S.; Schmid, M. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials (Basel), 2017, 7(4), E74.
[http://dx.doi.org/10.3390/nano7040074] [PMID: 28362331]
[157]
Naskar, A.K.; Keum, J.K.; Boeman, R.G. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol., 2016, 11(12), 1026-1030.
[http://dx.doi.org/10.1038/nnano.2016.262] [PMID: 27920443]
[158]
Yang, Z.; Liu, J.; Liao, R.; Yang, G.; Wu, X.; Tang, Z.; Guo, B.; Zhang, L.; Ma, Y.; Nie, Q.; Wang, F. Rational Design of Covalent Interfaces for Graphene/Elastomer Nanocomposites. Compos. Sci. Technol., 2016, 132, 68-75.
[http://dx.doi.org/10.1016/j.compscitech.2016.06.015]
[159]
Pattnaik, S.; Swain, K.; Lin, Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7813-7831.
[http://dx.doi.org/10.1039/C6TB02086K] [PMID: 32263772]
[160]
Silva, M.; Alves, N.M.; Paiva, M.C. Graphene-Polymer Nanocomposites for Biomedical Applications. Polym. Adv. Technol., 2018, 687-700.
[http://dx.doi.org/10.1002/pat.4164]
[161]
Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications.RSC Advances; Royal Society of Chemistry, 2015, pp. 37553-37567.
[162]
Xie, H.; Cao, T.; Rodríguez-Lozano, F.J.; Luong-Van, E.K.; Rosa, V. Graphene for the development of the next-generation of biocomposites for dental and medical applications.Dental Materials; The Academy of Dental Materials, 2017, pp. 765-774.
[163]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[164]
Carrow, J.K.; Gaharwar, A.K. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys., 2015, 216(3), 248-264.
[http://dx.doi.org/10.1002/macp.201400427]
[165]
Ding, X.; Liu, H.; Fan, Y. Graphene-based materials in regenerative medicine. Adv. Healthc. Mater., 2015, 4(10), 1451-1468.
[http://dx.doi.org/10.1002/adhm.201500203] [PMID: 26037920]
[166]
Yuan, H.; Meng, L.Y.; Park, S.J. A review: Synthesis and applications of graphene/chitosan nanocomposites. In: In: Carbon Letters; , 2016; pp. 11-17.
[167]
Wu, S.Y.; An, S.S.A.; Hulme, J. Current applications of graphene oxide in nanomedicine. Int. J. Nanomedicine, 2015, 10(Spec Iss), 9-24.
[http://dx.doi.org/10.2147/IJN.S88285] [PMID: 26345988]
[168]
Kausar, A. Applications of polymer/graphene nanocomposite membranes : A review. Mater. Res. Innov., 2018, 8917, 1-12.
[http://dx.doi.org/10.1080/14328917.2018.1456636]
[169]
Kumar, S.; Raj, S.; Kolanthai, E.; Sood, A.K.; Sampath, S.; Chatterjee, K. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl. Mater. Interfaces, 2015, 7(5), 3237-3252.
[http://dx.doi.org/10.1021/am5079732] [PMID: 25584679]
[170]
Thampi, S.; Muthuvijayan, V.; Parameswaran, R. Mechanical characterization of high-performance graphene oxide incorporated aligned fibroporous poly(carbonate urethane) membrane for potential biomedical applications. J. Appl. Polym. Sci., 2015, 132(16), 1-8.
[http://dx.doi.org/10.1002/app.41809]
[171]
Guo, H.; Lv, R.; Bai, S. Recent advances on 3d printing graphene-based composites. Nano Mater. Sci., 2019, 1(2), 101-115.
[http://dx.doi.org/10.1016/j.nanoms.2019.03.003]
[172]
Azhari, A.; Marzbanrad, E.; Yilman, D.; Toyserkani, E.; Pope, M.A. Binder-jet powder-bed additive manufacturing (3d printing) of thick graphene-based electrodes. Carbon N. Y., 2017, 119, 257-266.
[http://dx.doi.org/10.1016/j.carbon.2017.04.028]
[173]
Hensleigh, R.M.; Cui, H.; Oakdale, J.S.; Ye, J.C.; Campbell, P.G.; Duoss, E.B.; Spadaccini, C.M.; Zheng, X.; Worsley, M.A. Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz., 2018, 5(6), 1035-1041.
[http://dx.doi.org/10.1039/C8MH00668G]
[174]
Li, Y.; Feng, Z.; Huang, L.; Essa, K.; Bilotti, E.; Zhang, H.; Peijs, T.; Hao, L. Additive manufacturing high performance graphene-based composites: A review. Compos., Part A Appl. Sci. Manuf., 2018, 2019(124), 105483.
[http://dx.doi.org/10.1016/j.compositesa.2019.105483]
[175]
Lim, S.M.; Shin, B.S.; Kim, K. Characterization of products using additive manufacturing with graphene/photopolymer - resin nano-fluid. J. Nanosci. Nanotechnol., 2017, 17(8), 5492-5495.
[http://dx.doi.org/10.1166/jnn.2017.14159]
[176]
Manzanares Palenzuela, C.L.; Novotný, F.; Krupička, P.; Sofer, Z.; Pumera, M. 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal. Chem., 2018, 90(9), 5753-5757.
[http://dx.doi.org/10.1021/acs.analchem.8b00083] [PMID: 29658700]
[177]
Caminero, M.Á.; Chacón, J.M.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. Additive manufacturing of pla-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers (Basel), 2019, 11(5), E799.
[http://dx.doi.org/10.3390/polym11050799] [PMID: 31060241]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy