Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel Dipeptides Bearing Sulfonamide as Antimalarial and Antitrypanosomal Agents: Synthesis and Molecular Docking

Author(s): Ogechi Chinelo Ekoh*, Uchechukwu Okoro, David Ugwu, Rafat Ali, Sunday Okafor, Daniel Ugwuja and Solomon Attah

Volume 18, Issue 3, 2022

Published on: 15 June, 2021

Page: [394 - 405] Pages: 12

DOI: 10.2174/1573406417666210604101201

Price: $65

Abstract

Objective: Currently, there is a problem of ineffective chemotherapy to trypanosomiasis and the increasing emergence of malaria drug-resistant parasites. The research aimed at the development of new dipeptide-sulfonamides as antiprotozoal agents.

Background: Protozoan parasites cause severe diseases, with African human trypanosomiasis (HAT) and malaria standing on top of the list. The noted deficiencies of existing antitrypanosomal drugs and the worldwide resurgence of malaria, accompanied by the springing up of widespread drug-resistant protozoan parasites, represent a huge challenge in infectious disease treatment in tropical regions.

Methods: To discover new antiprotozoal agents, ten novel p-nitrobenzenesulphonamide derivatives incorporating dipeptide moiety were synthesized by the condensation reaction of 3-methyl-2-(4- nitrophenylsulphonamido)pentanoic acid (6) with substituted acetamides (4a-j) using peptide coupling reagents, characterized using 1H and 13C NMR, FTIR, HRMS and investigated for their antimalarial and antitrypanosomal activities in vivo employing standard methods.

Results: At 100 mg/kg body weight, N-(2-(2,6-dimethylphenylamino)-2-oxoethyl)-3-methyl-2-(4- nitrophenylsulfonamido)pentanamide showed the highest activity by inhibiting P. berghei parasite by 79.89%, which was comparable with the standard drug (artemether-lumefantrine 79.77%). In the antitrypanosomal study, N-(2-(4-chlorophenylamino)-2-oxoethyl)-3-methyl-2-(4-nitrophenylsulfonamido) pentanamide, N-(2-(4-fluorophenylamino)-2-oxoethyl)-3-methyl-2-(4-nitrophenylsulfonamido) pentanamide and N-(2-(3-chlorophenylamino)-2-oxoethyl)-3-methyl-2-(4-nitrophenylsulfonamido) pentanamide were most potent in clearing Trypanosome brucei in mice, but they were less active than the standard drug (diminazene aceturate). Molecular docking results demonstrated good binding affinity among the reported derivatives and target proteins in the active place of the protein. The outcome of hematological analysis, liver, and kidney function tests showed that the new compounds had no adverse effect on the blood and organs.

Conclusion: The results of this research showed that the new compounds demonstrated interesting antitrypanosomal and antimalarial potentials. However, further research should be carried out on the synthesized derivatives as promising drug candidates for trypanosomiasis and malaria.

Keywords: Sulphonamide, dipeptide, antimalarial, antitrypanosomal, glycine, molecular docking.

Graphical Abstract

[1]
Cox, F.E.G. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors, 2010, 3(1), 5.
[http://dx.doi.org/10.1186/1756-3305-3-5] [PMID: 20205846]
[2]
Murray, C.J.L.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet, 2012, 379(9814), 413-431.
[http://dx.doi.org/10.1016/S0140-6736(12)60034-8] [PMID: 22305225]
[3]
Neha, B.; Vinoth, R.; Drishti, A.; Wadi, I.; Gosh, P.C.; Gupta, R.D. Synthesis and antimalarial evaluation of [1,2,3]-triazole-tethered sulfonamide-berberine hybrids. Med. Chem. and Drug Discov, 2018, 3, 9790-9793.
[4]
Imwong, M.; Suwannasin, K.; Kunasol, C.; Sutawong, K.; Mayxay, M.; Rekol, H.; Smithuis, F.M.; Hlaing, T.M.; Tun, K.M.; van der Pluijm, R.W.; Tripura, R.; Miotto, O.; Menard, D.; Dhorda, M.; Day, N.P.J.; White, N.J.; Dondorp, A.M. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: A molecular epidemiology observational study. Lancet Infect. Dis., 2017, 17(5), 491-497.
[http://dx.doi.org/10.1016/S1473-3099(17)30048-8] [PMID: 28161569]
[5]
Witschel, M.; Rottmann, M.; Kaiser, M.; Brun, R. Agrochemicals against malaria, sleeping sickness, leishmaniasis and Chagas disease. PLoS Negl. Trop. Dis., 2012, 6(10)e1805
[http://dx.doi.org/10.1371/journal.pntd.0001805] [PMID: 23145187]
[6]
Roush, W.R.; Gwaltney, S.L.; Cheng, J.; Scheidt, K.A.; Mckerrow, J.H.; Hansell, E. Synthesis of New disulphonamides from different substituted diamino pyridine; J.A.C., 1998, p. 120.
[7]
Shet, P.M.; Vaidya, V.P.; Mahadevan, K.M.; Shivananda, M.K.; Sreenivasa, S.; Vijaya-Kumar, G.R. Synthesis, characterization and antimicrobial studies of novel sulphonamides containing substituted naphthofuroyl group. Res. J. Chem. Sci, 2013, 3, 15-20.
[8]
Kolaczek, A.; Fusiarz, I.; Lawecka, J.; Branowska, D. Biological activity and synthesis of sulfonamide derivatives: A brief review. Chemik, 2014, 68, 620-628.
[9]
Shah, S.S.A.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev. Med. Chem., 2013, 13(1), 70-86.
[http://dx.doi.org/10.2174/138955713804484749] [PMID: 22625411]
[10]
Al-Mohammed, N.N.; Alias, Y.; Abdullah, Z.; Shakir, R.M.; Taha, E.M.; Hamid, A.A. Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules, 2013, 18(10), 11978-11995.
[http://dx.doi.org/10.3390/molecules181011978] [PMID: 24077176]
[11]
Eze, F.U.; Okoro, U.C.; Ugwu, D.I.; Okafor, S.N. Biological activity evaluation of some new benzenesulphonamide derivatives. Front Chem., 2019, 7, 634.
[http://dx.doi.org/10.3389/fchem.2019.00634] [PMID: 31620427]
[12]
Al-Said, M.S.; Ghorab, M.M.; Al-Qasoumi, S.I.; El-Hossary, E.M.; Noaman, E. Synthesis and in vitro anticancer screening of some novel 4-[2-amino-3-cyano-4-substituted-5,6,7,8-tetrahydroquinolin-1-(4H)-yl]benzenesulfonamides. Eur. J. Med. Chem., 2010, 45(7), 3011-3018.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.030] [PMID: 20413187]
[13]
Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[14]
Siddique, M.; Saeed, A.B.; Ahmad, S.; Dogar, N.A. Synthesis and biological evaluation of hydrazide based sulphonamides. J. Scient. Innovat. Res., 2013, 2, 628-634.
[15]
Boechat, N.; Pinheiro, L.C.; Santos-Filho, O.A.; Silva, I.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules, 2011, 16(9), 8083-8097.
[http://dx.doi.org/10.3390/molecules16098083] [PMID: 21934646]
[16]
ALiGamal, A.; Anas, A.A.; Ansar, A.M.; Azeddine, I.; Abdul-Malik, A. Synhesis and antimalarial activity of new quinazolinone-4-derivatives. Res. Pharm. Health Sci., 2016, 2(4), 227-233.
[17]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[18]
Ugwu, D.I.; Okoro, U.C.; Mishra, N.K. Synthesis, characterization and in vitro antitrypanosomal activities of new carboxamides bearing quinoline moiety. PLoS One, 2018, 13(1)e0191234
[http://dx.doi.org/10.1371/journal.pone.0191234] [PMID: 29324817]
[19]
Hosseinzadeh, N.; Seraj, S.; Bakhshi-Dezffoli, M.E.; Hasani, M.; Khoshneviszadeh, M.; Fallah-Bonekohal, S.; Abdollahi, M.; Foroumadi, A.; Shafiee, A. Synthesis and antidiabetic evaluation of benzenesulfonamide derivatives. Iran. J. Pharm. Res., 2013, 12(2), 325-330.
[PMID: 24250607]
[20]
Selvam, P.; Murugesh, N.; Chandramohan, M.; Debyser, Z.; Witvrouw, M. Design, synthesis and anti-HIV activity of novel isatinsulphonamides. Indian J. Pharm. Sci., 2008, 70(6), 779-782.
[http://dx.doi.org/10.4103/0250-474X.49121] [PMID: 21369440]
[21]
Kanda, Y.; Kawanishi, Y.; Oda, K.; Sakata, T.; Mihara, S.I.; Asakura, K.; Kanemasa, T.; Ninomiya, M.; Fujimoto, M.; Konoike, T. Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorg. Med. Chem., 2001, 9(4), 897-907.
[http://dx.doi.org/10.1016/S0968-0896(00)00305-9] [PMID: 11354672]
[22]
Jain, P.; Saravanan, C.; Singh, S.K. Sulphonamides: Deserving class as MMP inhibitors? Eur. J. Med. Chem., 2013, 60, 89-100.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.016] [PMID: 23287054]
[23]
Dunn, M. Ben. Peptide chemistry and drug design; John wiley &sons. Inc.: Hoboken, New jersey, 2015, p. 11.
[24]
Buğday, N.; Küçükbay, F.Z.; Küçükbay, H.; Bua, S.; Bartolucci, G.; Leitans, J.; Kazaks, A.; Tars, K.; Supuran, C.T. Synthesis of novel dipeptide sulfonamide conjugates with effective carbonic anhydrase I, II, IX, and XII inhibitory properties. Bioorg. Chem., 2018, 81, 311-318.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.032] [PMID: 30176570]
[25]
Küçükbay, H.; Buğday, N.; Küçükbay, F.Z.; Berrino, E.; Bartolucci, G.; Del Prete, S.; Capasso, C.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg. Chem., 2019, 83, 414-423.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.003] [PMID: 30419497]
[26]
Panda, S.S.; İbrahim, M.A.; Küçükbay, H.; Meyers, M.J.; Sverdrup, F.M.; El-Feky, S.A.; Katritzky, A.R. Synthesis and antimalarial bioassay of quinine - peptide conjugates. Chem. Biol. Drug Des., 2013, 82(4), 361-366.
[http://dx.doi.org/10.1111/cbdd.12134] [PMID: 23497252]
[27]
Mollica, A.; Paradisi, M.P.; Varani, K.; Spisani, S.; Lucente, G. Chemotactic peptides: fMLF-OMe analogues incorporating proline-methionine chimeras as N-terminal residue. Bioorg. Med. Chem., 2006, 14(7), 2253-2265.
[http://dx.doi.org/10.1016/j.bmc.2005.11.001] [PMID: 16303307]
[28]
Ibrahim, M.A.; Panda, S.S.; Oliferenko, A.A.; Oliferenko, P.V.; Girgis, A.S.; Elagawany, M.; Küçükbay, F.Z.; Panda, C.S.; Pillai, G.G.; Samir, A.; Tämm, K.; Hall, C.D.; Katritzky, A.R. Macrocyclic peptidomimetics with antimicrobial activity: synthesis, bioassay, and molecular modeling studies. Org. Biomol. Chem., 2015, 13(36), 9492-9503.
[http://dx.doi.org/10.1039/C5OB01400J] [PMID: 26256838]
[29]
Buğday, N.; Küçükbay, F.Z.; Apohan, E.; Küçükbay, H.; Serindağ, Ö.; Yeşilada, A. Synthesis and evaluation of novel benzimidazole conjugates incorporating amino acids and dipeptide moieties. Lett. Org. Chem., 2017, 14, 198-206.
[http://dx.doi.org/10.2174/1570178614666170203093406]
[30]
Sanchez, A.; Vazquez, A. Bioactive peptides: A review. Food Qual. Saf, 2017, 1, 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[31]
Ugwuja, D.I.; Okoro, U.C.; Soman, S.S.; Soni, R.; Okafor, S.N.; Ugwu, D.I. New peptide derived antimalaria and antimicrobial agents bearing sulphonamide moiety. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1388-1399.
[http://dx.doi.org/10.1080/14756366.2019.1651313] [PMID: 31392901]
[32]
Ezugwu, J.A; Okoro, U.C.; Ezeokonkwo, M.A. Synthesis and biological evaluation of Val–Val dipeptide–sulfonamide conjugates., Arch Pharma, 2020, e2000074.
[33]
Sharma, R.; Soman, S.S. Design and synthesis of novel diamide derivatives of glycine as antihyperglycemic agents. Synth. Commun., 2016, 46(1), 307-317.
[http://dx.doi.org/10.1080/00397911.2016.1203435]
[34]
Peters, W.; Portus, J.H.; Robinson, B.L. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann. Trop. Med. Parasitol., 1975, 69(2), 155-171.
[http://dx.doi.org/10.1080/00034983.1975.11686997] [PMID: 1098584]
[35]
Waako, P.J.; Gumede, B.; Smith, P.; Folb, P.I. The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum L. and Momordica foetida Schumch. Et Thonn. J. Ethnopharmacol., 2005, 99(1), 137-143.
[http://dx.doi.org/10.1016/j.jep.2005.02.017] [PMID: 15848033]
[36]
Teka, F.; Getachew, T.; Workineh, S. Evaluation of in vivo antitrypanosomal activity of crude extracts of Artemisia abyssinica against a Trypanosome congolense isolate. BMC Compl. Alternat. Med., 2014, 14, 117.
[http://dx.doi.org/10.1186/1472-6882-14-117]
[37]
Ene, A.C.; Atawodi, S.E.; Ameh, D.A.; Nnamani, C.N.; Apeh, Y.E.O. Antitrypanosomal effects of petroliume ether, chloroform and methanol extracts of Artemisia maciveraeLinn. Indian Exp. Biol., 2009, 47(9), 81-986.
[38]
Herbert, W.J.; Lumsden, W.H.R. Trypanosoma brucei: A rapid “matching” method for estimating the host’s parasitemia. Exp. Parasitol., 1976, 40(3), 427-431.
[http://dx.doi.org/10.1016/0014-4894(76)90110-7] [PMID: 976425]
[39]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[40]
Kaplan, A.; Teeng, L.L. Selected methods of clinical chemistry. AACC, 1982, 9, 357-363. W.R. Faulkner and S. Meits
[41]
de Souza, N.B.; de Andrade, I.M.; Carneiro, P.F.; Jardim, G.A.; de Melo, I.M.; da Silva Júnior, E.N.; Krettli, A.U. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparumin vitro and in mice malaria studies. Mem. Inst. Oswaldo Cruz, 2014, 109(5), 546-552.
[http://dx.doi.org/10.1590/0074-0276130603] [PMID: 25099332]
[42]
Chibueze, P.I.; Chukwuemeka, A.A.; Kingsley, O.C.; Sandra, C.A. In vivo evaluation of antiplasmodial activity of hydroethanolic stem extract of Baphia pubescens in Plasmodium berghei infected albino mice. J HerbMed Pharmacol, 2016, 5(4), 149-152.
[43]
Antia, R.E.; Olayemi, J.O.; Aina, O.O.; Ajaiyeoba, E.O. In vitro and in vivo animal model antitrypanosomal evaluation of ten medicinal plant extracts from southwest Nigeria. Afr. J. Biotechnol., 2009, 8(7), 1437-1440.
[44]
Feyera, T.; Terefe, G.; Shibeshi, W. Evaluation of in vivo antitrypanosomal activity of crude extracts of Artemisia abyssinica against aTrypanosoma congolense isolate. BMC Complement. Altern. Med., 2014, 14, 117.
[http://dx.doi.org/10.1186/1472-6882-14-117] [PMID: 24684992]
[45]
Lathia, T.B.; Joshi, R. Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics? Indian J. Med. Sci., 2004, 58(6), 239-244.
[PMID: 15226575]
[46]
Mojisola, C.C.; Akhere, A. OmonkhuaOlusegun, M.A. Effects of Anogeissus leiocarpuson haematological parameters of mice infected with Plasmodium berghei. J. Plant Stud., 2013, 2(2), 13-21.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy