Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

2-Quinolone-Based Derivatives as Antibacterial Agents: A Review

Author(s): Oussama Moussaoui*, Said Chakroune, Youssef Kandri Rodi and El Mestafa El Hadrami

Volume 19, Issue 3, 2022

Published on: 02 June, 2021

Page: [331 - 351] Pages: 21

DOI: 10.2174/1570193X18666210602162255

Price: $65

Abstract

Abstract: The chemistry of 2-quinolones derivatives has received more attention in organic chemistry and medicinal chemistry. Moreover, several advancements in the application of this family of compounds are considered to be of great utility. In recent years, a variety of new, effective, and novel synthetic approaches (including green chemistry, catalyzed and microwave-assisted synthesis) have been discovered and developed for the designing of safe and non-toxic 2-quinolone-based scaffolds to investigate their antibacterial activities. This review summarizes the results of the literature on the synthesis strategies of 2-quinolones derivatives and their reactivity, as well as their antibacterial evaluations against different bacteria strains.

Keywords: 2-quinolone derivatives, synthesis, antibacterial activity, fluoroquinolone, antibiotics, antibacterial resistance.

Graphical Abstract

[1]
Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-dipolar cyclo-addition reactions. Chem. Rev., 1998, 98(2), 863-910.
[http://dx.doi.org/10.1021/cr970324e] [PMID: 11848917]
[2]
Komeilizadeh, H. Does nature prefer heterocycles? Iran. J. Pharm. Res., 2006, 4(5), 229-230.
[3]
Barros, A.I.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem., 2011, 128(1), 165-172.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.013] [PMID: 25214344]
[4]
Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C.M.; Nguon, C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.; Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.; Runcharoen, R.; Hien, T.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Phu, N.H.; Htut, Y.; Han, K.T.; Aye, K.H.; Mokuolu, O.A.; Olaosebikan, R.R.; Folaranmi, O.O.; Mayxay, M.; Khanthavong, M.; Hongvanthong, B.; Newton, P.N.; Onyamboko, M.A.; Fanello, C.I.; Tshefu, A.K.; Mishra, N.; Valecha, N.; Phyo, A.P.; Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.; Peshu, J.; Faiz, M.A.; Ghose, A.; Hossain, M.A.; Samad, R.; Rahman, M.R.; Hasan, M.M.; Islam, A.; Miotto, O.; Amato, R.; MacInnis, B.; Stalker, J.; Kwiatkowski, D.P.; Bozdech, Z.; Jeeyapant, A.; Cheah, P.Y.; Sakulthaew, T.; Chalk, J.; Intharabut, B.; Silamut, K.; Lee, S.J.; Vihokhern, B.; Kunasol, C.; Imwong, M.; Tarning, J.; Taylor, W.J.; Yeung, S.; Woodrow, C.J.; Flegg, J.A.; Das, D.; Smith, J.; Venkatesan, M.; Plowe, C.V.; Stepniewska, K.; Guerin, P.J.; Dondorp, A.M.; Day, N.P.; White, N.J. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2014, 371(5), 411-423.
[http://dx.doi.org/10.1056/NEJMoa1314981] [PMID: 25075834]
[5]
Xing, G.; Pan, L.; Yi, C.; Li, X.; Ge, X.; Zhao, Y.; Liu, Y.; Li, J.; Woo, A.; Lin, B.; Zhang, Y.; Cheng, M. Design, synthesis and biological evaluation of 5-(2-amino-1-hydroxyethyl)-8-hydroxy-quinolin-2(1H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg. Med. Chem., 2019, 27(12), 2306-2314.
[http://dx.doi.org/10.1016/j.bmc.2018.10.043] [PMID: 30392952]
[6]
Badaoui, M.I.; Alabdul Magid, A.; Benkhaled, M.; Bensouici, C.; Harakat, D.; Voutquenne-Nazabadioko, L.; Haba, H. Pyrroloqui-nolone A, a new alkaloid and other phytochemicals from Atractylis cancellata L. with antioxidant and anticholinesterase activities. Nat. Prod. Res., 2019, 1-7.
[http://dx.doi.org/10.1080/14786419.2019.1682575] [PMID: 31698943]
[7]
Govender, H.; Mocktar, C.; Koorbanally, N.A. Synthesis and bioactivity of quinoline-3-carbox amide derivatives. J. Het. Chem., 2018, 55(4), 1002-1009.
[http://dx.doi.org/10.1002/jhet.3132]
[8]
Mohamed, H.A.E.; Al-Shareef, H.F. Design, synthesis, anti-proliferative evaluation and cell cycle analysis of hybrid 2-quinolones. Anticancer. Agents Med. Chem., 2019, 19(9), 1132-1140.
[http://dx.doi.org/10.2174/1871520619666190319142934] [PMID: 30892164]
[9]
Ge, X.; Woo, A.Y.; Xing, G.; Lu, Y.; Mo, Y.; Zhao, Y.; Lan, Y.; Li, J.; Yan, H.; Pan, L.; Zhang, Y.; Lin, B.; Cheng, M. Synthesis and biological evaluation of β2-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur. J. Med. Chem., 2018, 152, 424-435.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.041] [PMID: 29751236]
[10]
Deronic, A.; Tahvili, S.; Leanderson, T.; Ivars, F. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: Blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth. BMC Cancer, 2016, 16, 440.
[http://dx.doi.org/10.1186/s12885-016-2481-0] [PMID: 27400708]
[11]
Hochegger, P.; Faist, J.; Seebacher, W.; Saf, R.; Mäser, P.; Kaiser, M.; Weis, R. Synthesis and structure-activity relationships for new 6-fluoroquinoline derivatives with antiplasmodial activity. Bioorg. Med. Chem., 2019, 27(10), 2052-2065.
[http://dx.doi.org/10.1016/j.bmc.2019.03.061] [PMID: 30962114]
[12]
Aly, A.A.; Hassan, A.A.; Mohamed, A.H.; Osman, E.M.; Bräse, S.; Nieger, M.; Ibrahim, M.A.A.; Mostafa, S.M. Synthesis of 3,3′-methylenebis(4-hydroxyquinolin-2(1H)-ones) of prospective anti-COVID-19 drugs. Mol. Divers., 2021, 25(1), 461-471.
[http://dx.doi.org/10.1007/s11030-020-10140-z] [PMID: 32926254]
[13]
Grossman, R.F.; Hsueh, P.R.; Gillespie, S.H.; Blasi, F. Community-acquired pneumonia and tuberculosis: Differential diagnosis and the use of fluoroquinolones. Int. J. Infect. Dis., 2014, 18, 14-21.
[http://dx.doi.org/10.1016/j.ijid.2013.09.013] [PMID: 24211230]
[14]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[15]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[16]
Sekgota, K.C.; Majumder, S.; Isaacs, M.; Mnkandhla, D.; Hoppe, H.C.; Khanye, S.D.; Kriel, F.H.; Coates, J.; Kaye, P.T. Application of the Morita-Baylis-Hillman reaction in the synthesis of 3-[(N-cycloalkylbenzamido)methyl]-2-quinolones as potential HIV-1 integrase inhibitors. Bioorg. Chem., 2017, 75, 310-316.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.015] [PMID: 29080495]
[17]
Gasser, M.; Zingg, W.; Cassini, A.; Kronenberg, A. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in Switzerland. Lancet Infect. Dis., 2019, 19(1), 17-18.
[http://dx.doi.org/10.1016/S1473-3099(18)30708-4] [PMID: 30449661]
[18]
Hooper, D.C. Mode of action of fluoroquinolones. Drugs, 1999, 58(Suppl. 2), 6-10.
[http://dx.doi.org/10.2165/00003495-199958002-00002] [PMID: 10553698]
[19]
Kocahan, S.; Doğan, Z. Mechanisms of Alzheimer’s disease patho-genesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, Tau protein and other risk factors. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[20]
Dingqiao, Y.; Kailing, J.; Jingning, L.; Feng, X. Synthesis and characterization of quinoline derivatives via the Friedländer reaction. Tetrahedron, 2007, 63(32), 7654-7658.
[http://dx.doi.org/10.1016/j.tet.2007.05.037]
[21]
Arya, K.; Agarwal, M. Microwave prompted multigram synthesis, structural determination, and photo-antiproliferative activity of fluorinated 4-hydroxyquinolinones. Bioorg. Med. Chem. Lett., 2007, 17(1), 86-93.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.082] [PMID: 17046250]
[22]
Smiley, J.A.; Benkovic, S.J. Expression of an orotate decarboxy-lating catalytic antibody confers 5-fluoroorotate sensitivity to a pyrimidine auxotrophic Escherichia coli: An example of intracellular prodrug activation. J. Am. Chem. Soc., 1995, 117, 3877-3878.
[http://dx.doi.org/10.1021/ja00118a028]
[23]
Xue, W.; Li, X.; Ma, G.; Zhang, H.; Chen, Y.; Kirchmair, J.; Xia, J.; Wu, S. N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides bearing heteroaromatic rings as novel antibacterial agents: Design, synthesis, biological evaluation and target identification. Eur. J. Med. Chem., 2020, 188112022
[http://dx.doi.org/10.1016/j.ejmech.2019.112022] [PMID: 31901744]
[24]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[25]
Schmitz, F.J.; Higgins, P.G.; Mayer, S.; Fluit, A.C.; Dalhoff, A. Activity of quinolones against gram-positive cocci: Mechanisms of drug action and bacterial resistance. Eur. J. Clin. Microbiol. Infect. Dis., 2002, 21(9), 647-659.
[http://dx.doi.org/10.1007/s10096-002-0788-z] [PMID: 12373497]
[26]
Hong, W.D.; Gibbons, P.D.; Leung, S.C.; Amewu, R.; Stocks, P.A.; Stachulski, A.; Horta, P.; Cristiano, M.L.S.; Shone, A.E.; Moss, D.; Ardrey, A.; Sharma, R.; Warman, A.J.; Bedingfield, P.T.P.; Fisher, N.E.; Aljayyoussi, G.; Mead, S.; Caws, M.; Berry, N.G.; Ward, S.A.; Biagini, G.A.; O’Neill, P.M.; Nixon, G.L. Rational design, synthesis, and biological evaluation of heterocyclic quinolones targeting the respiratory chain of Mycobacterium tuberculosis. J. Med. Chem., 2017, 60(9), 3703-3726.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01718] [PMID: 28304162]
[27]
Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Kumar, P.P. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes. J. Mol. Struct., 2017, 1131, 51-72.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.035]
[28]
(a)Staskun, B. The conversion of benzoylacetanilides into 2- and 4-hydroxyquinolines. J. Org. Chem., 1964, 29, 1153.
(b)Kumar, K.; Sai, S.; Gilbert, T.M.; Klumpp, D. Knorr cycliza-tions and distonic superelectrophiles. J. Org. Chem., 2007, 72, 9761.
[29]
Cheng, C-C.; Yan, S-J. Organic reactions. John Wiley and Sons: New York, 1982, 28, pp. 37;
[30]
Coppola, G.M.; Hardtmann, G.E. The chemistry of 2H-3,1-benzoxazine-2,4(1H)dione(isatoic anhydride). 7. Reactions with anions of active methylenes to form quinolines. J. Heterocycl. Chem., 1979, 16, 1605-1610.
[http://dx.doi.org/10.1002/jhet.5570160817]
[31]
(a)Klásek, A.; Mrkvicka, V.; Pevec, A.; Kosmrlj, J. Novel tandem hydration/ cyclodehydration of a-thio cyanatoketones to 2-oxo-3- thiazolines, application to thiazolo[5,4-c]quinoline-2,4(3aH,5H)dione synthesis. J. Org. Chem., 2004, 69, 5646-5651.,
[http://dx.doi.org/10.1021/jo0493370] [PMID: 15307735]
(b)Abass, M.; Mostafa, B.B. Synthesis and evaluation of molluscicidal and larvicidal activities of some novel enaminones derived from 4-hydroxyquinolinones: Part IX. Bioorg. Med. Chem., 2005, 13(22), 6133-6144.
[http://dx.doi.org/10.1016/j.bmc.2005.06.038] [PMID: 16039861]
[32]
Zhou, W.; Zhang, L.; Jiao, N. The tandem reaction combining radical and ionic processes: An efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron, 2009, 65, 1982-1987.
[http://dx.doi.org/10.1016/j.tet.2009.01.027]
[33]
Doléans-Jordheim, A.; Veron, J.B.; Fendrich, O.; Bergeron, E.; Montagut-Romans, A.; Wong, Y-S.; Furdui, B.; Freney, J.; Dumontet, C.; Boumendjel, A. 3-Aryl-4-methyl-2-quinolones tar-geting multiresistant Staphylococcus aureus bacteria. ChemMedChem, 2013, 8(4), 652-657.
[http://dx.doi.org/10.1002/cmdc.201200551] [PMID: 23436688]
[34]
Israa, H. Transition metal complexes of bidentate ligand N-aminoquinolino-2-one and anthranilic hydrazide. Res. J. Chem. Sci., 2013, 3(12), 50.
[35]
Zhang, J.; Han, X.; Lu, X. Synthesis of 2-quinolinones through palladium (II) acetate catalyzed cyclization of N-(2-formylaryl) alkynamides. Synlett, 2015, 26, 1744-1748.
[http://dx.doi.org/10.1055/s-0034-1380751]
[36]
Vacala, T.; Bejcek, L.P.; Williams, C.G.; Williamson, A.C.; Vadola, P.A. Gold-catalyzed hydroarylation of N-aryl alkynamides for the synthesis of 2-quinolinones. J. Org. Chem., 2017, 82(5), 2558-2569.
[http://dx.doi.org/10.1021/acs.joc.6b02984] [PMID: 28169539]
[37]
Biswas, A.; Giri, D.; Das, D.; De, A.; Patra, S.K.; Samanta, R. A mild rhodium catalyzed direct synthesis of quinolones from pyridones: Application in the detection of nitroaromatics. J. Org. Chem., 2017, 82(20), 10989-10996.
[http://dx.doi.org/10.1021/acs.joc.7b01932] [PMID: 28901761]
[38]
Ahn, B.H.; Lee, I.Y.; Lim, H.N. Step-economical synthesis of 3-amido-2-quinolones by dendritic copper powder-mediated one-pot reaction. Org. Biomol. Chem., 2018, 16(42), 7851-7860.
[http://dx.doi.org/10.1039/C8OB01994K] [PMID: 30303225]
[39]
Hou, J.; Ee, A.; Feng, W.; Xu, J-H.; Zhao, Y.; Wu, J. Visible-light-driven alkyne hydro-/carbocarboxylation using CO2 via iridium/cobalt dual catalysis for divergent heterocycle synthesis. J. Am. Chem. Soc., 2018, 140(15), 5257-5263.
[http://dx.doi.org/10.1021/jacs.8b01561] [PMID: 29596743]
[40]
Thakur, V.; Sharma, A. Yamini, Sharma N.; Das. P.; Supported palladium nanoparticles‐catalyzed synthesis of 3‐substituted 2‐quinolones from 2‐iodoanilines and alkynes using oxalic acid as C1 source. Adv. Synth. Catal., 2019, 361, 426.
[http://dx.doi.org/10.1002/adsc.201801127]
[41]
Singh, K.; Malviya, B.K.; Verma, V.P.; Badsara, S.S.; Bhardwaj, V.K.; Sharma, S. Cationic Pd (II) catalyzed regioselective intramolecular hydroarylation for the efficient synthesis of 4- aryl-2-quinolones. Tetrahedron, 2019, 75, 2506-2520.
[http://dx.doi.org/10.1016/j.tet.2019.03.026]
[42]
Gorman, R.M.; Hurst, T.E.; Petersen, W.F.; Taylor, R.J.K. A copper(II)-mediated radical cross-dehydrogenative coupling/sulf-inic acid elimination approach to 2-quinolones. Tetrahedron, 2019, 75(49)130711
[http://dx.doi.org/10.1016/j.tet.2019.130711]
[43]
Tangella, Y.; Manasa, K.L.; Krishna, N.H.; Sridhar, B.; Kamal, A.; Nagendra Babu, B. Regioselective ring expansion of isatins with in situ generated α-aryldiazomethanes: Direct access to viridicatin alkaloids. Org. Lett., 2018, 20(12), 3639-3642.
[http://dx.doi.org/10.1021/acs.orglett.8b01417] [PMID: 29874092]
[44]
Ghosh, S.; Chattopadhyay, S.K. Metal‐free synthesis of 4‐aryl‐2‐quinolone derivatives by iodine-mediated intramolecular c−h amidation. Adv. Synth. Catal., 2019, 361(20), 4727-4738.
[http://dx.doi.org/10.1002/adsc.201900530]
[45]
Kim, A.R.; Lim, H.N. One-pot copper-catalyzed three-component reaction: A modular approach to functionalized 2-quinolones. RSC Advances, 2020, 10(13), 7855-7866.
[http://dx.doi.org/10.1039/D0RA01352H]
[46]
Zhu, B-H.; Zhang, Y-Q.; Xu, H-J.; Li, L.; Deng, G-C.; Qian, P-C.; Deng, C.; Ye, L-W. Regio- and stereoselective synthesis of diverse 3,4-dihydro-2-quinolones through catalytic hydrative cyclization of imine- and carbonyl-ynamides with water. ACS Catal., 2021, 11(3), 1706-1713.
[http://dx.doi.org/10.1021/acscatal.0c04786]
[47]
Morel, A.F.; Larghi, E.L.; Selvero, M.M. Mild, efficient and selective silver carbonate mediated O-alkylation of 4-hydroxy-2-quinolones: Synthesis of 2,4- dialkoxyquinolines. Synlett, 2005, 2755-2758.
[48]
Deng, X.Q.; Wei, C.X.; Song, M.X.; Sun, Z.G.; Quan, Z.S.; Chai, K.Y. Synthesis and studies on anticonvulsant and antidepressant activities of 5-alkoxy-tetrazolo[1,5-a] quinolones. Bull. Korean Chem. Soc., 2010, 31, 447.
[http://dx.doi.org/10.5012/bkcs.2010.31.02.447]
[49]
Ahvale, A.B.; Prokopcova, H.; Sefcovicova, J.; Steinschifter, W.; Taeubl, A.E.; Uray, G.; Stadlbauer, W. 4‐Cyano‐6,7‐dimethoxy-carbostyrils with solvent‐ and ph-independent high fluorescence quantum yields and emission maxima. Eur. J. Org. Chem., 2008, 3, 563.
[http://dx.doi.org/10.1002/ejoc.200700855]
[50]
(a)Baba, F.Y.; Sert, Y.; Rodi, K.Y.; Hayani, S.; Mague, J.T.; Prim, D.; Marrot, J.; Ouazzani, F.O.; Sebbar, N.K.; Essassi, E.M. Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, molecular docking studies and DFT calculations, and antioxidant activity of 2-oxo-1,2-dihydroquinoline- 4-carboxylate derivatives. J. Mol. Struct., 2019, 1188, 255-268.,
[http://dx.doi.org/10.1016/j.molstruc.2019.03.103]
(b)Hayani, S.; Sert, Y.; Baba, F.Y.; Benhiba, F.; Chahdi, F.O.; Laraqui, F.; Mague, J.T.; El Ibrahimi, B.; Sebbar, N.K.; Rodi, K.Y.; Essassi, E.M. New alkyl (cyclohexyl) 2-oxo-1-(prop-2-yn-1-yl)-1, 2-dihydroquinoline-4-carboxylates: Synthesis, crystal struc-ture, spectroscopic characterization, hirshfeld surface analysis, molecular docking studies and DFT calculations. J. Mol. Struct., 2021, 1227129520
[http://dx.doi.org/10.1016/j.molstruc.2020.129520]
[51]
Rodi, K.Y.; Baba, F.Y.; Mague, J.T.; Chraibi, M.; Benbrahim, F.K.; Ouazzani, F.O.; Ouzidan, Y.; Essassi, E.M. New quinolone-based compounds: Synthesis, crystal structures and biological activities. Chem. Chem. Eng. Biotechnol., 2019, 20(3), 487-500.
[52]
Chen, C-L.; Chen, I-L.; Cen, J-J.; Wel, D-C.; Hsieh, H-J.; Chang, K-M.; Tzeng, C-C.; Wang, T-C. Studies on the aalkylation of quinolin-2(1H)-one derivatives. J. Chil. Chem. Soc., 2015, 60(1), 2812-2816.
[http://dx.doi.org/10.4067/S0717-97072015000100008]
[53]
Elenicha, O.V.; Lytvyn, R.Z.; Skripskaya, O.V.; Lyavinets, O.S.; Pitkovych, K.E.; Yagodinets, P.I.; Obushak, M.D. Synthesis of nitrogen-containing heterocycles on the basis of 3-(4-acetyl-phenyl)-1-methylquinolin-2(1H)-one. Russ. J. Org. Chem., 2016, 52, 373-378.
[http://dx.doi.org/10.1134/S1070428016030131]
[54]
Li, J.L.; Hu, D.C.; Liang, X.P.; Wang, Y.C.; Wang, H.S.; Pan, Y.M. Praseodymium(III)-catalyzed regioselective synthesis of C3-N-substituted coumarins with coumarins and azides. J. Org. Chem., 2017, 82(17), 9006-9011.
[http://dx.doi.org/10.1021/acs.joc.7b01410] [PMID: 28795564]
[55]
Grzelakowska, A.; Kolińska, J.; Sokołowska, J. Novel 7‐male-imido‐2(1H)‐quinolones as potential fluorescent sensors for the detection of sulphydryl groups. Color. Technol., 2018, 134, 148.
[http://dx.doi.org/10.1111/cote.12326]
[56]
Selvero, M.M.; Ledesma, G.N.; Abram, U.; Schulz-Lang, E.; Morel, A.F.; Larghi, L.E. 2,2,2-trifluoroethanol-promoted access to symmetrically 3,3-disubstituted quinoline-2,4-diones. J. Fluor. Chem., 2020, 234109520
[http://dx.doi.org/10.1016/j.jfluchem.2020.109520]
[57]
Refouvelet, B.; Guyon, C.; Jacquot, Y.; Girard, C.; Fein, H.; Bévalot, F.; Robert, J.F.; Heyd, B.; Mantion, G.; Richert, L.; Xicluna, A. Synthesis of 4-hydroxycoumarin and 2,4-quinolinediol derivatives and evaluation of their effects on the viability of HepG2 cells and human hepatocytes culture. Eur. J. Med. Chem., 2004, 39(11), 931-937.
[http://dx.doi.org/10.1016/j.ejmech.2004.07.006] [PMID: 15501542]
[58]
Mukhopadhyay, S.; Pan, S.C. An organocatalytic asymmetric Mannich reaction for the synthesis of 3,3-disubstituted-3,4-dihydro-2-quinolones. Org. Biomol. Chem., 2018, 16(30), 5407-5411.
[http://dx.doi.org/10.1039/C8OB01399C] [PMID: 30024000]
[59]
Onysko, M.; Filak, I.; Lendel, V. Halogeno heterocyclization of 2-(allylthio)quinolin-3-carbal dehyde and 2-(propargylthio)quinolin-3-carbal dehyde. Heterocycl. Commun., 2016, 22(5), 295-299.
[http://dx.doi.org/10.1515/hc-2016-0141]
[60]
Yadav, J.S.; Reddy, B.V.S.; Reddy, U.V.S.; Krishna, A.D. Iodine/MeOH as a novel and versatile reagent system for the synthesis of α-ketothiocyanates. Tetrahedron Lett., 2007, 48, 5243.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.143]
[61]
Moussaoui, O.; Bhadane, R.; Sghyar, R.; El Hadrami, E.M.; El Amrani, S.; Ben Tama, A.; Kandri Rodi, Y.; Chakroune, S.; Salo-Ahen, O.M.H. Novel amino acid derivatives of quinolines as potential antibacterial and fluorophore agents. Sci. Pharm., 2020, 88, 57.
[http://dx.doi.org/10.3390/scipharm88040057]
[62]
Ukrainets, I.V.; Sidorenko, L.V.; Gorokhova, O.V.; Slobodzyan, S.V. 4-Hydroxy-2-quinolones. 97.Simple synthesis of the esters of 4-halo-substituted 2-oxo-1,2-dihydroquino line-3-carboxylic acids. Chem. Heterocycl. Compd., 2006, 42, 882-885.
[http://dx.doi.org/10.1007/s10593-006-0174-3]
[63]
Ukrainets, V.I.; Sidorenko, V.L.; Slobodzyan, V.S.; Rybakov, B.V.; Chernyshev, V.V. 4-Hydroxy-quinol-2-ones.87. Unusual synthesis of 1-R-4-hydroxy-2-oxo-1,2 dihydro quinolone-3-carboxylic acid pyridylamides. Chem. Heterocycl. Compd., 2005, 41, 1158-1166.
[http://dx.doi.org/10.1007/s10593-005-0296-z]
[64]
Fiala, W.; Stadlbauer, W. Nucleophilic chlorination of 3-formyl-4-hydroxy-quinolin-2(1H)-ones. J. prakt. Chern., 1993, 335, 128-134.
[65]
el-Taweel, F.M.; Ibrahim, D.A.; Hanna, M.A. Synthesis of some new quinoline derivatives: New routes to synthesize poly-substituted 2(1H)-quinolone derivatives. Boll. Chim. Farm., 2001, 140(5), 287-296.
[PMID: 11680080]
[66]
Hao, F.; Asahara, H.; Nishiwaki, N. A direct and vicinal functionalization of the 1-methyl-2-quinolone framework: 4-alkoxylation and 3-chlorination. Org. Biomol. Chem., 2016, 14(22), 5128-5135.
[http://dx.doi.org/10.1039/C6OB00868B] [PMID: 27181022]
[67]
El-Taweel, F.M.A.A.; Sowellim, S.Z.A.; Elagamey, A.G.A. Reactions with 2(1H)-quinolinone and coumarine derivatives: new routes to polysubstituted 2(1H)-quinolinone and coumarine derivatives. Bull. Chem. Soc. Jpn., 1995, 68, 905-910.
[http://dx.doi.org/10.1246/bcsj.68.905]
[68]
Girges, M.M.; Hanna, M.A.; Hassan, H.M.; Moawad, E.B. Synthesis of some new 3-substituted-4-hydroxy-1-methyl-quinolin-2-one derivatives as potential antibacterial and antifungal agents. Chem. Commun., 1988, 53, 3179-3183.
[http://dx.doi.org/10.1135/cccc19883179]
[69]
Nishimura, T.; Igarashi, J.; Sunagawa, M. Conformational analysis of tandospirone in aqueous solution: lead evolution of potent dopamine D4 receptor ligands. Bioorg. Med. Chem. Lett., 2001, 11(9), 1141-1144.
[http://dx.doi.org/10.1016/S0960-894X(01)00167-6] [PMID: 11354362]
[70]
Igoe, N.; Bayle, E.D.; Tallant, C.; Fedorov, O.; Meier, J.C.; Savitsky, P.; Rogers, C.; Morias, Y.; Scholze, S.; Boyd, H.; Cunoosamy, D.; Andrews, D.M.; Cheasty, A.; Brennan, P.E.; Müller, S.; Knapp, S.; Fish, P.V. Design of a chemical probe for the bromodomain and plant homeodomain finger-containing (BRPF) family of proteins. J. Med. Chem., 2017, 60(16), 6998-7011.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00611] [PMID: 28714688]
[71]
Haga, T.; Nagano, H.; Morita, K.; Sato, M. 1-Alkyl-6-fluoro-7- nitroquinolin-2(1H)-ones. JP 61194072A, 1986.
[72]
Roschger, P.; Flala, W.; Stadlbauer, W. Nucleophilic substitution and ring closure reactions of 4-chloro-3-nitro-2-quinolones. J. Heterocycl. Chem., 1992, 29, 225-231.
[http://dx.doi.org/10.1002/jhet.5570290141]
[73]
Buckle, D.R.; Cantello, B.C.C.; Smith, H.; Spicer, B.A. 4-hydroxy-3-nitro-2-quinolones and related compounds as inhibitors of allergic reactions. J. Med. Chem., 1975, 18(7), 726-732.
[http://dx.doi.org/10.1021/jm00241a017] [PMID: 1151993]
[74]
Audisio, D.; Messaoudi, S.; Cegielkowski, L.; Peyrat, J.F.; Brion, J.D.; Methy-Gonnot, D.; Radanyi, C.; Renoir, J.M.; Alami, M. Discovery and biological activity of 6BrCaQ as an inhibitor of the Hsp90 protein folding machinery. ChemMedChem, 2011, 6(5), 804-815.
[http://dx.doi.org/10.1002/cmdc.201000489] [PMID: 21374821]
[75]
Shukla, N.M.; Malladi, S.S.; Mutz, C.A.; Balakrishna, R.; David, S.A. Structure-activity relationships in human toll-like receptor 7-active imidazoquinoline analogues. J. Med. Chem., 2010, 53(11), 4450-4465.
[http://dx.doi.org/10.1021/jm100358c] [PMID: 20481492]
[76]
Täubl, A.E.; Langhans, K.; Kappe, T.; Stadlbauer, W. Thermolytic ring closure reactions of 4-azido-3-phenylsulfanyl and 4-azido-3-phenylsulfonyl-2-quin olones to 12H-quinolino-[3,4-b][1,4]benzo thiazin-6(5H)-ones. J. Heterocycl. Chem., 2002, 39(6), 1259-1264.
[http://dx.doi.org/10.1002/jhet.5570390621]
[77]
Aizikovich, A.; Kuznetsov, V.; Gorohovsky, S.; Levy, A.; Meir, S.; Byk, G.; Gellerman, G. A new application of diphenylphos-phorylazide (DPPA) reagent: Convenient transformations of quinolin-4-one, pyridin-4-one and quinazolin-4-one derivatives into the 4-azido and 4-amino counterparts. Tetrahedron Lett., 2004, 45, 4241.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.032]
[78]
Khan, K.A.; Shoeb, A. 4-Hydroxy-2(1H)-quinolinone 1 reacts with dimethylsulfoxide 50 in acetic anhydride at 100 °C to afford 3-dimethylsulfonioquinoline-2,4-dionate 51 as the main product. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 1985, 24, 62.
[79]
Kappe, T.; Korbuly, G.; Pongratz, E. Ylide von heterocyclen, IV. sulfoniumund pyridinium-ylide des cumarins und des 2-chinolons. Monatsh. Chem., 1983, 114, 303.
[http://dx.doi.org/10.1007/BF00798953]
[80]
Bergman, J.; Pettersson, B.; Hasimbegovic, V.; Svensson, P.H. Thionations using a P4S10-pyridine complex in solvents such as acetonitrile and dimethyl sulfone. J. Org. Chem., 2011, 76(6), 1546-1553.
[http://dx.doi.org/10.1021/jo101865y] [PMID: 21341727]
[81]
Selig, P.; Bach, T. Cyclobutane ring opening reactions of 1,2,2a,8b-tetrahydrocyclobuta[c]-quino lin-3(4H)-ones. Synth., 2008, 14, 2177-2182.
[82]
Priya, N.; Gupta, A.; Chand, K.; Singh, P.; Kathuria, A.; Raj, H.G.; Parmar, V.S.; Sharma, S.K. Characterization of 4-methyl-2-oxo-1,2-dihydroquinolin-6-yl acetate as an effective antiplatelet agent. Bioorg. Med. Chem., 2010, 18(11), 4085-4094.
[http://dx.doi.org/10.1016/j.bmc.2010.04.011] [PMID: 20447827]
[83]
Sun, Y.; Zhang, N.; Wang, J.; Guo, Y.; Sun, B.; Liu, W.; Zhou, H.; Yang, C. Synthesis and biological evaluation of quinolinone compounds as SARS CoV 3CLpro inhibitors. Chin. J. Chem., 2013, 31(9), 1199-1206.
[PMID: 32313409]
[84]
Kondratenko, N.B.; Kolomejcev, A.A.; Mogilevskaya, B.O.; Varlamova, N.M. Yagupolskii, L.M. Poly(nitro- and trifluoro-methylsulphonyl) substituted diphenylamines. ZH Org. Khim. (Rus.), 1986, 22(8), 1721-1729.
[85]
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. A simple catalytic method for the conversion of aryl bromides to arylamines.Angew. Chem. Int. Ed Engl., 1995, 34 , 1348-1350.,
[http://dx.doi.org/10.1002/anie.199513481]
[86]
Dubrovin, A.N.; Mikhalev, A.I.; Ukhov, S.V.; Konshina, T.M.; Makhmudov, R.R.; Vakhrina, N.I. Synthesis and properties 2- substituted cinchoninic acid amides, Mod. Probl. Sci. Educ., 2012, (4), 303.,
[87]
Shivaraj, Y.; Naveen, M.H.; Vijayakumar, G.R.; Aruna Kumar, D.B. Design, synthesis and antibacterial activity studies of novel quinoline carboxamide derivatives. J. Korean Chem. Soc., 2013, 57(2), 241-245.
[http://dx.doi.org/10.5012/jkcs.2013.57.2.241]
[88]
Kumar, A.; Fernandes, J.; Kumar, P. Synthesis, antimicrobial and antitubercular activities of some novel carboxamide derivatives of 2-quinolones. Orient. J. Chem., 2014, 4, 1993-1997.
[http://dx.doi.org/10.13005/ojc/300462]
[89]
Moussaoui, O.; Touimi, G.B.; Bennani, B.; Bentama, A.; Chakroune, S.; Rodi, Y.K.; Boukir, A. Synthesis of a new serie of quinoline-carboxamides based on methylated aminoesters: NMR characterization and antimicrobial activity. Mediterr. J. Chem., 2019, 9, 326-336.
[http://dx.doi.org/10.13171/mjc941911231077sc]
[90]
Filali Baba, Y.; Gökce, H. KandriRodi, Y.; Hayani, S.; OuazzaniChahdi, F.; Boukir, A.; BoukJasinskiir, J.P.; Kaur, M.; Hökelek, T.; Sebbar, N. K.; Essassi, E. M. Syntheses of novel 2-oxo-1,2- dihydroquinoline derivatives: Molecular and crystal structures, spectroscopic characterizations, Hirshfeld surface analyses, molecular docking studies and density functional theory calculations. J. Mol. Struct., 2020, 1217128461
[http://dx.doi.org/10.1016/j.molstruc.2020.128461]
[91]
Hao, F.; Asahara, H.; Nishiwaki, N. Direct amino-halogenation and aziridination of the 2-quinolone framework by sequential treatment of 3-nitro-2-quinolone with amine and N-halosuccinimide. Tetrahedron, 2017, 73(9), 1255-1264.
[http://dx.doi.org/10.1016/j.tet.2017.01.028]
[92]
Gumus, A.; Gumus, S. Synthesis of triazole-coupled quinoline-based fluorescent sensor.The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2019, (7), pp. 58-62.,
[93]
El-Sheref, E.M.; Aly, A.A.; Ameen, M.A.; Brown, A. Synthesis of new 4-(1,2,3 triazolo) quinolin-2(1H)-ones via Cu-catalyzed [3 + 2] cycloaddition. Monatsh. Chem., 2019, 150, 747-756.
[http://dx.doi.org/10.1007/s00706-018-2342-4]
[94]
Sakharov, P.A.; Khlebnikov, A.F.; Rostovskii, N.V.; Panikorovskii, T.L.; Novikov, M.S. 2H-azirines as C–C annulation reagents in Cu-catalyzed synthesis of furo[3,2-c]quinolone Derivatives. Org. Lett., 2019, 21(10), 3615-3619.
[http://dx.doi.org/10.1021/acs.orglett.9b01043] [PMID: 31063384]
[95]
Aly, A.A.; Ishak, E.A.; Shwaky, A.M.; Mohamed, A.H. Formation of furo[3,2-c]quinolone-2-carbo nitriles and 4-oxo-4,5-dihydro-furo[3,2-c]quinolone-2-carboxamides from reaction of quinoline-2,4-diones with 2-[bis(methylthio)methylene] malononitrile. Monatsh. Chem., 2020, 151, 223-229.
[http://dx.doi.org/10.1007/s00706-019-02541-0]
[96]
El-Sheref, E.M.; Aly, A.A.; Mourad, A-F.E.; Brown, A.B.; Bräse, S.; Bakheet, M.E.M. Synthesis of pyrano[3,2-c]quinoline-4-carboxylates and 2-(4-oxo-1,4-dihydroquinolin-3-yl)fumarates. Chem. Pap., 2018, 72, 181-190.
[http://dx.doi.org/10.1007/s11696-017-0269-6]
[97]
Ramadan, M.; Abd El-Aziz, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; Fathy, H.M.; Aly, A.A. Design and synthesis of new pyranoquinolinone heteroannulated to triazolo-pyrimidine of potential apoptotic antiproliferative activity. Bioorg. Chem., 2020, 105104392
[http://dx.doi.org/10.1016/j.bioorg.2020.104392] [PMID: 33137557]
[98]
Katagi, M.S.; Fernandes, J.; Mamledesai, S.; Satyanarayana, D.; Bolakatti, G. Synthesis and evaluation of quinoline-2 (1 h) -one fused oxazole as an in vitro reactivator of organophosphorus compound inhibited acetylcholinestrase. J. Pharm. Res., 2015, 14(2), 51-56.
[http://dx.doi.org/10.18579/jpcrkc/2015/14/2/79084]
[99]
Yamamoto, y.; Hirako, N.; Yasui, T. A combined experimental and computational study on the palladium-catalyzed sequential [2+2+1] spirocyclization/arene C-H activation of 4-iodo-2-quinolones with diphenylacetylene. Bull. Chem. Soc. Jpn., 2021, 94(2), 623-631.
[http://dx.doi.org/10.1246/bcsj.20200328]
[100]
Xia, J.; Feng, B.; Wen, G.; Xue, W.; Ma, G.; Zhang, H.; Wu, S. Bacterial lipoprotein biosynthetic pathway as a potential target for structure-based design of antibacterial agents. Curr. Med. Chem., 2020, 27(7), 1132-1150.
[http://dx.doi.org/10.2174/0929867325666181008143411] [PMID: 30360704]
[101]
Govender, H.; Mocktar, C.; Kumalo, H.M.; Koorbanally, N.A. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Relat. Elem., 2019, 194, 1074.
[http://dx.doi.org/10.1080/10426507.2019.1618298]
[102]
Elenich, O.V.; Lytvyn, R.Z.; Blinder, O.V.; Skripskaya, O.V.; Lyavinets, O.S.; Pitkovych, K.E.; Obushak, M.D.; Yagodinets, P.I. Synthesis and antimicrobial activity of 3-phenyl-1methylquinolin-2-one derivatives. Pharm. Chem. J., 2019, 52, 969-974.
[http://dx.doi.org/10.1007/s11094-019-01935-y]
[103]
Ghosh, S.; Verma, A.; Mukerjee, A.; Mandal, M.K. Synthesis, characterization and antimicrobial evaluation of some novel 1,2,4-triazolo[3,4-b] [1,3,4] thiadiazine bearing substituted phenyl-quinolin-2-one moiety. Arab. J. Chem., 2019, 12(8), 3046-3053.
[http://dx.doi.org/10.1016/j.arabjc.2015.07.003]
[104]
Ferretti, M.D.; Neto, A.T.; Morel, A.F.; Kaufman, T.S.; Larghi, E.L. Synthesis of symmetrically substituted 3,3-dibenzyl-4-hydroxy-3,4-dihydro-1H-quinolin-2-ones, as novel quinoline deri-vatives with antibacterial activity. Eur. J. Med. Chem., 2014, 81, 253-266.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.024] [PMID: 24852274]
[105]
Som, S. Derivatives of 2-quinolones: Synthesis, characterization and antibacterial evaluation. WJPPS J., 2015, 4(4), 1368-1376.
[106]
Abid, K.K.; Al-Bayati, R.H.; Faeq, A.A. Transition metal complexes of new n-amino quinolone derivative, synthesis, characterization, thermal study and antimicrobial properties. Am. J. Chem., 2016, 6(2), 29-35.
[107]
Stepanenko, I.S.; Yamashkin, S.A.; Kostina Yuliya, A.; Batarsheva, A.A.; Mironov, M.A. A new group of compounds derived from 4-,5-, 6- and 7-aminoindoles with antimicrobial activity. Res. Results Pharmacol., 2018, 4(3), 17-26.
[http://dx.doi.org/10.3897/rrpharmacology.4.29905]
[108]
Jayashree, B.S.; Thomas, S.; Nayak, Y. Design and synthesis of 2-quinolones as antioxidants and antimicrobials: A rational approach. Med. Chem. Res., 2010, 19, 193-209.
[http://dx.doi.org/10.1007/s00044-009-9184-x]
[109]
O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents, 2010, 35(1), 30-38.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.06.031] [PMID: 19748233]
[110]
Saour, K.Y.; Al-Bayati, R.I.; Hadi, M.K. synthesis of new coumarin and 2-quinolone derivatives with expected biological activities. Iraqi J. Pharm Sci., 2012, 21, 42-50.
[111]
Deng, Q.; Ji, Q-G.; Ge, Z-Q.; Liu, X-F.; Yang, D.; Yuan, L-J. Synthesis and biological evaluation of novel quinolin-2(1H)-one derivatives as potential antimicrobial agents. Med. Chem. Res., 2014, 23, 5224-5236.
[http://dx.doi.org/10.1007/s00044-014-1107-9]
[112]
Patel, P.K.C.; Patel, R.V.; Mahajan, D.H.; Parikh, P.A.; Mehta, G.N.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Different heterocycles functionalized s-triazine analogues: Design, synthesis and in vitro antimicrobial, antituberculosis, and anti-HIV assessment. J. Heterocycl. Chem., 2014, 51, 1641-1658.
[http://dx.doi.org/10.1002/jhet.1769]
[113]
Parmar, N.J.; Pansuriya, B.R.; Parmar, B.D.; Barad, H.A. Solvent-free, one-pot synthesis and biological evaluation of some new dipyrazolo [3,4-b:4′,3′-e] pyranylquinolones and their precursors. Med. Chem. Res., 2013, 23, 42-56.
[http://dx.doi.org/10.1007/s00044-013-0608-2]
[114]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis, characterization and pharmacological activities of 2-[4-cyano-(3-trifluoromethyl) phenyl amino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoropiperazinyl)-s-triazines. J. Fluor. Chem., 2011, 132(9), 617-627.
[http://dx.doi.org/10.1016/j.jfluchem.2011.06.021]
[115]
Khamkhenshorngphanuch, T.; Kulkraisri, K.; Janjamratsaeng, A.; Plabutong, N.; Thammahong, A.; Manadee, K.; Na Pombejra, S.; Khotavivattana, T. Synthesis and antimicrobial activity of novel 4-hydroxy-2-quinolone analogs. Molecules, 2020, 25(13), 3059.
[http://dx.doi.org/10.3390/molecules25133059] [PMID: 32635479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy