Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Cyclodextrin Nanosponge Based Babchi Oil Hydrogel Ameliorates Imiquimod-induced Psoriasis in Swiss Mice: An Impact on Safety and Efficacy

Author(s): Sunil Kumar, Babu Lal Jangir and Rekha Rao*

Volume 14, Issue 3, 2022

Published on: 31 May, 2021

Page: [226 - 242] Pages: 17

DOI: 10.2174/1876402913666210531110225

Price: $65

Abstract

Background: Psoriasis, a chronic autoimmune disease, involves the integration of biological and molecular events by hyperproliferation of the epidermal keratinocytes and generation of inflammation markers. Owing to severe complications of synthetic corticosteroids, there is a strong need for a potential and safe alternative. Babchi oil (natural essential oil; BO) may prove to be a promising natural agent for psoriasis.

Objective: The aim of the present work was to investigate the safety and efficacy of cyclodextrin nanosponge based babchi oil (BONS) hydrogel on skin annexes.

Methods: Babchi Oil Nanosponge Hydrogel (BONS-HG) was fabricated and evaluated. Cell viability studies have been carried out on THP1 cell lines to evaluate cytocompatibility. Irritation potential and in vivo visualization of cutaneous uptake of BONS-HG were carried out using Hen’s Egg Chorioallantoic Membrane Test (HET-CAM) and Confocal Laser Scanning Microscopy (CLSM), respectively. The nano hydrogel was tested in vivo using imiquimod-induced psoriasis mouse model.

Results: The in vitro irritation potential of BONS-HG indicated no sign of erythema or irritation, suggesting the safety of prepared hydrogel as topical formulation. CLSM studies advocated targeting of BO to epidermis and dermis. Along with histopathological assessment, evaluation of oxidative stress markers revealed the significant antipsoriatic activity (p< 0.001) of the prepared BONS-HG.

Conclusion: The present study amalgamated the advantages of natural essential oil with this approach for skin targeting and provided an effective and safe topical alternative for psoriasis.

Keywords: Bakuchiol, imiquimod-induced psoriasis, oxidative stress, skin inflammation, THP1 cell line, skin targeting.

Graphical Abstract

[1]
Michalek, I.M.; Loring, B.; John, S.M. Global report on psoriasis; World Health Organization, 2016.
[2]
Raghuwanshi, N.; Yadav, T.C.; Srivastava, A.K.; Raj, U.; Varadwaj, P.; Pruthi, V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater. Sci. Eng. C, 2019, 95, 57-71.
[http://dx.doi.org/10.1016/j.msec.2018.10.061] [PMID: 30573271]
[3]
Kaur, A.; Katiyar, S.S.; Kushwah, V.; Jain, S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine (Lond.), 2017, 13(4), 1473-1482.
[http://dx.doi.org/10.1016/j.nano.2017.02.009] [PMID: 28259803]
[4]
Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release, 2007, 123(2), 148-154.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.005] [PMID: 17884226]
[5]
Alalaiwe, A.; Hung, C-F.; Leu, Y-L.; Tahara, K.; Chen, H-H.; Hu, K-Y.; Fang, J-Y. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur. J. Pharm. Sci., 2018, 124, 114-126.
[http://dx.doi.org/10.1016/j.ejps.2018.08.031] [PMID: 30153523]
[6]
Langasco, R.; Tanrıverdi, S.T.; Özer, Ö.; Roldo, M.; Cossu, M.; Rassu, G.; Giunchedi, P.; Gavini, E. Prolonged skin retention of clobetasol propionate by bio-based microemulsions: A potential tool for scalp psoriasis treatment. Drug Dev. Ind. Pharm., 2018, 44(3), 398-406.
[http://dx.doi.org/10.1080/03639045.2017.1395458] [PMID: 29098874]
[7]
Rapalli, V.K.; Singhvi, G.; Dubey, S.K.; Gupta, G.; Chellappan, D.K.; Dua, K. Emerging landscape in psoriasis management: From topical application to targeting biomolecules. Biomed. Pharmacother., 2018, 106, 707-713.
[http://dx.doi.org/10.1016/j.biopha.2018.06.136] [PMID: 29990862]
[8]
Thakur, K.; Sharma, G.; Singh, B.; Chhibber, S.; Katare, O.P. Current state of nanomedicines in the treatment of topical infectious disorders. Recent. Pat. Antiinfect. Drug Discov., 2018, 13(2), 127-150.
[http://dx.doi.org/10.2174/1574891X13666180529103804] [PMID: 29807522]
[9]
Madan, J.R.; Khude, P.A.; Dua, K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int. J. Pharm. Investig., 2014, 4(2), 60-64.
[http://dx.doi.org/10.4103/2230-973X.133047] [PMID: 25006550]
[10]
Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces, 2018, 164, 281-290.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[11]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[12]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[http://dx.doi.org/10.2174/1389200218666170222145240] [PMID: 28228078]
[13]
Chilajwar, S.V.; Pednekar, P.P.; Jadhav, K.R.; Gupta, G.J.; Kadam, V.J. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv., 2014, 11(1), 111-120.
[http://dx.doi.org/10.1517/17425247.2014.865013] [PMID: 24298891]
[14]
Pradhan, M.; Alexander, A.; Singh, M.R.; Singh, D.; Saraf, S.; Saraf, S. Ajazuddin, Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother., 2018, 107, 447-463.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[15]
Kumar, S.; Rao, R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: A review. J. Incl. Phenom. Macrocycl. Chem., 2019, 94, 11-30.
[http://dx.doi.org/10.1007/s10847-019-00903-z]
[16]
Kumar, S. Pooja; Trotta, F.; Rao, R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics10040169]
[17]
Kumar, S.; Prasad, M.; Rao, R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater. Sci. Eng. C, 2021, 119, 111605.
[http://dx.doi.org/10.1016/j.msec.2020.111605] [PMID: 33321649]
[18]
Conte, C.; Caldera, F.; Catanzano, O.; D’Angelo, I.; Ungaro, F.; Miro, A.; Pellosi, D.S.; Trotta, F.; Quaglia, F. β-cyclodextrin nanosponges as multifunctional ingredient in water-containing semisolid formulations for skin delivery. J. Pharm. Sci., 2014, 103(12), 3941-3949.
[http://dx.doi.org/10.1002/jps.24203] [PMID: 25322671]
[19]
Sharma, R.; Walker, R.B.; Pathak, K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J. Pharm. Educ. Res., 2011, 45(1), 25-31.
[20]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: Review Fitoterapia, 2013, 90, 44-56.
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[21]
Kumar, S.; Rao, R. Psoralen: A promising boon in topical manifestations. IJP, 2016, 3(9), 375-383.
[22]
Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J. Food Drug Anal.,, 2019, 27(1), 60-70.
[http://dx.doi.org/10.1016/j.jfda.2018.07.006] [PMID: 30648595]
[23]
Amenta, R.; Camarda, L.; Di Stefano, V.; Lentini, F.; Venza, F. Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia, 2000, 71(Suppl. 1), S13-S20.
[http://dx.doi.org/10.1016/S0367-326X(00)00172-6] [PMID: 10930708]
[24]
Herman, A.; Herman, A.P. Topically used herbal products for the treatment of psoriasis - mechanism of action, drug delivery, clinical studies. Planta Med., 2016, 82(17), 1447-1455.
[http://dx.doi.org/10.1055/s-0042-115177] [PMID: 27574899]
[25]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[26]
Marwaha, T. K. Formulation development of anti-psoriatic topical babchi oil emulgel., RRJoHS, 2013, 2 (2), 1-10..
[http://dx.doi.org/10.37591/rrjohs.v2i2.993]
[27]
Ali, J.; Akhtar, N.; Sultana, Y.; Baboota, S.; Ahuja, A. Antipsoriatic microemulsion gel formulations for topical drug delivery of babchi oil (Psoralea corylifolia). Methods Find. Exp. Clin. Pharmacol., 2008, 30(4), 277-285.
[http://dx.doi.org/10.1358/mf.2008.30.4.1185802] [PMID: 18773122]
[28]
Sharma, R.; Rao, R.; Kumar, S.; Mahant, S.; Khatkar, S. Therapeutic potential of citronella essential oil: A review. Curr. Drug Discov. Technol., 2019, 16(4), 330-339.
[http://dx.doi.org/10.2174/1570163815666180718095041] [PMID: 30019646]
[29]
Yadav, E.; Kumar, S.; Mahant, S.; Vohra, P.; Rao, R. Microsponge based gel of tea tree oil for dermatological microbial infections. Nat. Prod. J., 2020, 10(3), 286-297.
[http://dx.doi.org/10.2174/2210315508666180605080426]
[30]
Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res., 2017, 29(3), 201-213.
[http://dx.doi.org/10.1080/10412905.2016.1232665]
[31]
Wadhwa, G.; Kumar, S.; Chhabra, L.; Mahant, S.; Rao, R. Essential oil–cyclodextrin complexes: An updated review. J. Incl. Phenom. Macrocycl. Chem., 2017, 89(1-2), 39-58.
[http://dx.doi.org/10.1007/s10847-017-0744-2]
[32]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays., Assay guidance manual; Eli Lilly & company and the national center for advancing translational sciences. 2016.
[33]
Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem., 2012, 114(8), 785-796.
[http://dx.doi.org/10.1016/j.acthis.2012.01.006] [PMID: 22341561]
[34]
Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol., 2014, 23(1), 37-45.
[http://dx.doi.org/10.1016/j.intimp.2014.08.002] [PMID: 25130606]
[35]
Cao, Y.P.; Ma, P.C.; Liu, W.D.; Zhou, W.Q.; Tao, Y.; Zhang, M.L.; Li, L.J.; Chen, Z.Y. Evaluation of the skin sensitization potential of chemicals in THP-1/keratinocyte co-cultures. Immunopharmacol. Immunotoxicol., 2012, 34(2), 196-204.
[http://dx.doi.org/10.3109/08923973.2011.591800] [PMID: 21721923]
[36]
Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol., 1985, 23(2), 287-291.
[http://dx.doi.org/10.1016/0278-6915(85)90030-4] [PMID: 4040077]
[37]
Luepke, N.P.; Kemper, F.H. The HET-CAM test: An alternative to the draize eye test. Food Chem. Toxicol., 1986, 24(6-7), 495-496.
[http://dx.doi.org/10.1016/0278-6915(86)90099-2]
[38]
Mahboobian, M.M.; Seyfoddin, A.; Aboofazeli, R.; Foroutan, S.M.; Rupenthal, I.D. Brinzolamide-loaded nanoemulsions: Ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm. Dev. Technol., 2019, 24(5), 600-606.
[http://dx.doi.org/10.1080/10837450.2018.1547748] [PMID: 30472913]
[39]
Campos, P.M.B.G.M.; Benevenuto, C.G.; Calixto, L.S.; Melo, M.O.; Pereira, K.C.; Gaspar, L.R. spirulina, palmaria palmata, cichorium intybus, and medicago sativa extracts in cosmetic formulations: an integrated approach of in vitro toxicity and in vivo acceptability studies. Cutan. Ocul. Toxicol., 2019, 38(4), 322-329.
[http://dx.doi.org/10.1080/15569527.2019.1579224] [PMID: 30821523]
[40]
McKenzie, B.; Kay, G.; Matthews, K.H.; Knott, R.M.; Cairns, D. The hen’s egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: Quantification using Photoshop® and ImageJ. Int. J. Pharm., 2015, 490(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.023] [PMID: 25980731]
[41]
Savian, A.L.; Rodrigues, D.; Weber, J.; Ribeiro, R.F.; Motta, M.H.; Schaffazick, S.R.; Adams, A.I.; de Andrade, D.F.; Beck, R.C.; da Silva, C.B. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mater. Sci. Eng. C, 2015, 46, 69-76.
[http://dx.doi.org/10.1016/j.msec.2014.10.011] [PMID: 25491961]
[42]
Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm., 2013, 443(1-2), 262-272.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[43]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release, 2004, 99(1), 53-62.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.015] [PMID: 15342180]
[44]
Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv., 2016, 23(4), 1204-1213.
[http://dx.doi.org/10.3109/10717544.2015.1110845] [PMID: 26592918]
[45]
Sunkari, S.; Thatikonda, S.; Pooladanda, V.; Challa, V.S.; Godugu, C. Protective effects of ambroxol in psoriasis like skin inflammation: Exploration of possible mechanisms. Int. Immunopharmacol., 2019, 71, 301-312.
[http://dx.doi.org/10.1016/j.intimp.2019.03.035] [PMID: 30933843]
[46]
Agrawal, U.; Mehra, N.K.; Gupta, U.; Jain, N.K. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J. Drug Target., 2013, 21(5), 497-506.
[http://dx.doi.org/10.3109/1061186X.2013.771778] [PMID: 23594093]
[47]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[48]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[49]
Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 177(2), 751-766.
[http://dx.doi.org/10.1016/S0021-9258(18)57021-6] [PMID: 18110453]
[50]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[51]
Kono, Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys., 1978, 186(1), 189-195.
[http://dx.doi.org/10.1016/0003-9861(78)90479-4] [PMID: 24422]
[52]
Wills, E.D. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J., 1966, 99(3), 667-676.
[http://dx.doi.org/10.1042/bj0990667] [PMID: 5964963]
[53]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[54]
Rahman, M.; Akhter, S.; Ahmad, J.; Ahmad, M.Z.; Beg, S.; Ahmad, F.J. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin. Drug Deliv., 2015, 12(4), 635-652.
[http://dx.doi.org/10.1517/17425247.2015.982088] [PMID: 25439967]
[55]
Panonnummal, R.; Jayakumar, R.; Sabitha, M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur. J. Pharm. Sci., 2017, 96, 193-206.
[http://dx.doi.org/10.1016/j.ejps.2016.09.007] [PMID: 27615594]
[56]
Kubo, M.; Dohi, T.; Odani, T.; Tanaka, H.; Iwamura, J. Cytotoxicity of Corylifoliae fructus. I. Isolation of the effective compound and the cytotoxicity. Yakugaku Zasshi, 1989, 109(12), 926-931.
[http://dx.doi.org/10.1248/yakushi1947.109.12_926] [PMID: 2630635]
[57]
Rangari, V.D.; Agrawal, S.R. Chemistry & pharmacology of psoralea corylifolia. Indian Drugs, 1992, 29, 662-662.
[58]
Liu, Y.; Flynn, T.J. CYP3A4 inhibition by Psoralea corylifolia and its major components in human recombinant enzyme, differentiated human hepatoma HuH-7 and HepaRG cells. Toxicol. Rep., 2015, 2, 530-534.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.006] [PMID: 28962388]
[59]
Anadón, A.; Martínez, M.A.; Castellano, V.; Martínez-Larrañaga, M.R. The role of in vitro methods as alternatives to animals in toxicity testing. Expert Opin. Drug Metab. Toxicol., 2014, 10(1), 67-79.
[http://dx.doi.org/10.1517/17425255.2014.854329] [PMID: 24160258]
[60]
Kumar, N.; Kumar, S.; Singh, S.P.; Rao, R. Enhanced protective potential of novel citronella essential oil microsponge hydrogel against anopheles stephensi mosquito. J. Asia Pac. Entomol., 2021, 24(1), 61-69.
[http://dx.doi.org/10.1016/j.aspen.2020.11.005]
[61]
Doukas, A.G.; Soukos, N.S.; Babusis, S.; Appa, Y.; Kollias, N. Fluorescence excitation spectroscopy for the measurement of epidermal proliferation. Photochem. Photobiol., 2001, 74(1), 96-102.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0096:FESFTM>2.0.CO;2] [PMID: 11460544]
[62]
Sharma, G.; Devi, N.; Thakur, K.; Jain, A.; Katare, O.P. Lanolin-based organogel of salicylic acid: Evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv. Transl. Res., 2018, 8(2), 398-413.
[http://dx.doi.org/10.1007/s13346-017-0364-9] [PMID: 28224375]
[63]
Singh, P.; Ren, X.; Guo, T.; Wu, L.; Shakya, S.; He, Y.; Wang, C.; Maharjan, A.; Singh, V.; Zhang, J. Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym., 2018, 190, 23-30.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.044] [PMID: 29628242]
[64]
Panonnummal, R.; Sabitha, M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol., 2018, 110, 245-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.112] [PMID: 29054520]
[65]
Hengge, U.R.; Ruzicka, T.; Schwartz, R.A.; Cork, M.J. Adverse effects of topical glucocorticosteroids. J. Am. Acad. Dermatol., 2006, 54(1), 1-15.
[http://dx.doi.org/10.1016/j.jaad.2005.01.010] [PMID: 16384751]
[66]
Hawkes, J.E.; Gudjonsson, J.E.; Ward, N.L. The snowballing literature on imiquimod-induced skin inflammation in mice: A critical appraisal. J. Invest. Dermatol., 2017, 137(3), 546-549.
[http://dx.doi.org/10.1016/j.jid.2016.10.024] [PMID: 27955901]
[67]
Schmitt, J.; Wozel, G. The psoriasis area and severity index is the adequate criterion to define severity in chronic plaque-type psoriasis. Dermatology, 2005, 210(3), 194-199.
[http://dx.doi.org/10.1159/000083509] [PMID: 15785046]
[68]
Carlin, C.S.; Feldman, S.R.; Krueger, J.G.; Menter, A.; Krueger, G.G.A.A. 50% reduction in the psoriasis area and severity index (pasi 50) is a clinically significant endpoint in the assessment of psoriasis. J. Am. Acad. Dermatol., 2004, 50(6), 859-866.
[http://dx.doi.org/10.1016/j.jaad.2003.09.014] [PMID: 15153885]
[69]
Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release, 2017, 254, 44-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.385] [PMID: 28344018]
[70]
Ormerod, A.D.; Weller, R.; Copeland, P.; Benjamin, N.; Ralston, S.H.; Grabowksi, P.; Herriot, R. Detection of nitric oxide and nitric oxide synthases in psoriasis. Arch. Dermatol. Res., 1998, 290(1-2), 3-8.
[http://dx.doi.org/10.1007/s004030050268] [PMID: 9522994]
[71]
Tekin, N.S.; Ilter, N.; Sancak, B.; Ozden, M.G.; Gurer, M.A. Nitric oxide levels in patients with psoriasis treated with methotrexate. Mediators Inflamm., 2006, 2006(3), 16043.
[http://dx.doi.org/10.1155/MI/2006/16043]
[72]
Weller, R.; Ormerod, A. Increased expression of inducible nitric oxide (NO) synthase. Br. J. Dermatol., 1997, 136(1), 136-137.
[http://dx.doi.org/10.1111/j.1365-2133.1997.tb08768.x] [PMID: 9039317]
[73]
Sun, Y.; Zhang, J.; Huo, R.; Zhai, T.; Li, H.; Wu, P.; Zhu, X.; Zhou, Z.; Shen, B.; Li, N. Paeoniflorin inhibits skin lesions in imiquimod-induced psoriasis-like mice by downregulating inflammation. Int. Immunopharmacol., 2015, 24(2), 392-399.
[http://dx.doi.org/10.1016/j.intimp.2014.12.032] [PMID: 25576402]
[74]
Ueyama, A.; Yamamoto, M.; Tsujii, K.; Furue, Y.; Imura, C.; Shichijo, M.; Yasui, K. Mechanism of pathogenesis of imiquimod-induced skin inflammation in the mouse: A role for interferon-alpha in dendritic cell activation by imiquimod. J. Dermatol., 2014, 41(2), 135-143.
[http://dx.doi.org/10.1111/1346-8138.12367] [PMID: 24387343]
[75]
Uva, L.; Miguel, D.; Pinheiro, C.; Antunes, J.; Cruz, D.; Ferreira, J.; Filipe, P. Mechanisms of Action of Topical Corticosteroids in Psoriasis. Int. J. Endocrinol., 2012, 2012, 561018.
[http://dx.doi.org/10.1155/2012/561018]
[76]
Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol., 2003, 17(6), 663-669.
[http://dx.doi.org/10.1046/j.1468-3083.2003.00751.x] [PMID: 14761133]
[77]
Kadam, D.P.; Suryakar, A.N.; Ankush, R.D.; Kadam, C.Y.; Deshpande, K.H. Role of oxidative stress in various stages of psoriasis. Indian J. Clin. Biochem., 2010, 25(4), 388-392.
[http://dx.doi.org/10.1007/s12291-010-0043-9] [PMID: 21966111]
[78]
Kobayashi, T.; Matsumoto, M.; Iizuka, H.; Suzuki, K.; Taniguchi, N. Superoxide dismutase in psoriasis, squamous cell carcinoma and basal cell epithelioma: An immunohistochemical study. Br. J. Dermatol., 1991, 124(6), 555-559.
[http://dx.doi.org/10.1111/j.1365-2133.1991.tb04950.x] [PMID: 2064938]
[79]
Iizuka, H.; Takahashi, H. Psoriasis, involucrin, and protein kinase C. Int. J. Dermatol., 1993, 32(5), 333-338.
[http://dx.doi.org/10.1111/j.1365-4362.1993.tb01467.x] [PMID: 8505157]
[80]
Sikar Aktürk, A.; Özdoğan, H.K.; Bayramgürler, D.; Çekmen, M.B.; Bilen, N.; Kıran, R. Nitric oxide and malondialdehyde levels in plasma and tissue of psoriasis patients. J. Eur. Acad. Dermatol. Venereol., 2012, 26(7), 833-837.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04164.x] [PMID: 21749467]
[81]
Carini, M.; Aldini, G.; Piccone, M.; Facino, R.M. Fluorescent probes as markers of oxidative stress in keratinocyte cell lines following UVB exposure. Farmaco, 2000, 55(8), 526-534.
[http://dx.doi.org/10.1016/S0014-827X(00)00037-9] [PMID: 11132730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy