Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Preparation of Optically Active Biphenyl Compounds via an Albumin- Mediated Asymmetric Nitroaldol Reaction

Author(s): Kazutsugu Matsumoto*, Ryota Kitabayashi, Naoki Fukuchi and Noriyuki Suka

Volume 19, Issue 2, 2022

Published on: 31 May, 2021

Page: [118 - 125] Pages: 8

DOI: 10.2174/1570178618666210531093928

open access plus

Abstract

Human serum albumin (HSA) was found to catalyze the asymmetric nitroaldol reaction of biphenyl aldehydes with nitromethane to afford the corresponding optically active 2-nitro alcohols. Careful optimization of the conditions for the reaction of 4-phenylbenzaldehyde with nitromethane in water at a neutral pH improved both the reactivity and the enantioselectivity. Finally, the reaction of 4-phenylbenzaldehyde (56 mg, 0.30 mmol) in nitromethane (2.8 mL) and water (1.1 mL) using HSA (68 mg) at 5 °C for 240 h gave (R)-1-([1,1'-biphenyl]-4-yl)-2-nitroethanol in 71% yield (52 mg), with an ee up to 85% ee. Subsequent recrystallization improved the ee up to 95%. The reaction was useful in a preparative-scale operation, and the biocatalyst could be reused several times. The procedure was also applicable to other substrates with different substitution patterns. Although the nitroaldol reaction of 2-phenylbenzaldehyde with nitromethane proceeded with low enantioselectivity to afford the corresponding (R)-2-nitroalcohols (35% ee), the reactions of the substrates bearing Br, Me, OMe, or CN group at the 4'-position of the benzene ring gave the corresponding optically active compounds with high enantioselectivities (80-88% ee).

Keywords: Asymmetric nitroaldol reaction, biocatalysis, human serum albumin, 2-nitro alcohols, optically active biaryl compounds, reaction in water.

Graphical Abstract

[1]
Longmire, J.M.; Zhu, G.; Zhang, X. Tetrahedron Lett., 1997, 38, 375-378.
[http://dx.doi.org/10.1016/S0040-4039(96)02329-5]
[2]
Xiao, K-J.; Lin, D.W.; Miura, M.; Zhu, R-Y.; Gong, W.; Wasa, M.; Yu, J-Q. J. Am. Chem. Soc., 2014, 136(22), 8138-8142.
[http://dx.doi.org/10.1021/ja504196j] [PMID: 24815880]
[3]
Jia, J.; Fan, D.; Zhang, J.; Zhang, Z.; Zhang, W. Adv. Synth. Catal., 2018, 360, 3793-3800.
[http://dx.doi.org/10.1002/adsc.201800774]
[4]
Li, C.Y.; Cheng, S.Z.D.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Mann, I.K.; Chien, L-C.; Harris, F.W.; Lotz, B. J. Am. Chem. Soc., 2000, 122, 72-79.
[http://dx.doi.org/10.1021/ja993249t]
[5]
Goto, H.; Akagi, K. JP Patent 2006131758, 2006.
[6]
Goto, H.; Akagi, K. JP Patent 2006219639, 2006.
[7]
Takeshima, K. JP Patent 2006265111, 2006.
[8]
Parvez, M.M.; Haraguchi, N.; Itsuno, S. Macromolecules, 2014, 47, 1922-1928.
[http://dx.doi.org/10.1021/ma5001018]
[9]
Ye, H-T.; Ren, C-Y.; Hou, G-F.; Yu, Y-H.; Xu, X.; Gao, J-S.; Yan, P-F.; Ng, S-W. Cryst. Growth Des., 2014, 14, 3309-3318.
[http://dx.doi.org/10.1021/cg500197v]
[10]
Xu, X.; Yu, Y-H.; Hou, G-F.; Li, X-W.; Ren, C-Y.; Ma, D-S. Polyhedron, 2016, 112, 61-66.
[http://dx.doi.org/10.1016/j.poly.2016.03.037]
[11]
Huang, J-H.; Hou, G-F.; Ma, D-S.; Yu, Y-H.; Jiang, W-H.; Huang, Q.; Gao, J-S. RSC Advances, 2017, 7, 18650-18657.
[http://dx.doi.org/10.1039/C7RA00337D]
[12]
Siebenhaar, B.; Casagrande, B.; Eliu, V. US Patent 6194606, 2001.
[13]
Chen, S.; Fahmi, N.E.; Wang, L.; Bhattacharya, C.; Benkovic, S.J.; Hecht, S.M. J. Am. Chem. Soc., 2013, 135(35), 12924-12927.
[http://dx.doi.org/10.1021/ja403007r] [PMID: 23941571]
[14]
Kano, M.; Nakanowatari, J. JP Patent 62209191, 1987.
[15]
Shibata, T.; Kimura, M. JP Patent 01113329, 1989.
[16]
Ishibashi, S.; Kobayashi, S.; Urano, F.; Negishi, T. JP Patent 03024036, 1991.
[17]
Bühlmayer, P.; Furet, P.; Criscone, L.; de Gasparo, M.; Whitebread, S.; Schmidlin, T.; Lattmann, R.; Wood, J.V. Bioorg. Med. Chem. Lett., 1994, 4, 29-34.
[http://dx.doi.org/10.1016/S0960-894X(01)81117-3]
[18]
Waldmann, H.; He, Y-P.; Tan, H.; Arve, L.; Arndt, H-D. Chem. Commun. (Camb.), 2008, (43), 5562-5564.
[http://dx.doi.org/10.1039/b811583d] [PMID: 18997952]
[19]
Locke, J.B.; Finn, J.; Hilgers, M.; Morales, G.; Rahawi, S.; Kedar, G.C.; Picazo, J.J. Im, W.; Shaw, K.J.; Stein. J.L. Antimicrob. Agents Chemother., 2010, 54(12), 5337-5343.
[http://dx.doi.org/10.1128/AAC.00663-10]
[20]
Tomokawa, J.; Akiyama, M. WO Patent 2015037460, 2015.
[21]
Otake, N.; Matsuda, D.; Shimono, R.; Tabuse, H.; Moriya, M.; Kobashi, Y.; Matsuda, Y.; Tamaoki, T. WO Patent 2017057642, 2016.
[22]
Gassmeyer, S.K.; Wetzig, J.; Muegge, C.; Assmann, M.; Enoki, J.; Hilterhaus, L.; Zuhse, R.; Miyamoto, K.; Liese, A.; Kourist, R. ChemCatChem, 2016, 8, 916-921.
[http://dx.doi.org/10.1002/cctc.201501205]
[23]
Qin, B.; Xiao, X.; Liu, X.; Huang, J.; Wen, Y.; Feng, X. J. Org. Chem., 2007, 72(24), 9323-9328.
[http://dx.doi.org/10.1021/jo701898r] [PMID: 17973533]
[24]
Panov, I.; Drabina, P.; Padelková, Z.; Simůnek, P.; Sedlák, M. J. Org. Chem., 2011, 76(11), 4787-4793.
[http://dx.doi.org/10.1021/jo200703j] [PMID: 21534600]
[25]
Boobalan, R.; Lee, G-H.; Chen, C. Adv. Synth. Catal., 2012, 354, 2511-2520.
[http://dx.doi.org/10.1002/adsc.201200337]
[26]
Balaraman, K.; Vasanthan, R.; Kesavan, V. Synthesis, 2012, 44, 2455-2462.
[http://dx.doi.org/10.1055/s-0031-1289811]
[27]
Zhao, C.; Liu, F.; Gou, S. Tetrahedron Asymmetry, 2014, 25, 278-283.
[http://dx.doi.org/10.1016/j.tetasy.2014.01.005]
[28]
Scharnagel, D.; Prause, F.; Kaldun, J.; Haase, R.G.; Breuning, M. Chem. Commun. (Camb.), 2014, 50(50), 6623-6625.
[http://dx.doi.org/10.1039/C4CC02429J] [PMID: 24824405]
[29]
Li, J-L.; Liu, L.; Pei, Y-N.; Zhu, H-J. Tetrahedron, 2014, 70, 9077-9083.
[http://dx.doi.org/10.1016/j.tet.2014.10.005]
[30]
Khong, D.T.; Judeh, Z.M.A. Synthesis, 2016, 48, 2271-2279.
[http://dx.doi.org/10.1055/s-0035-1561634]
[31]
Rexiti, R.; Lu, J.; Wang, G.; Sha, F.; Wu, X-Y. Tetrahedron Asymmetry, 2016, 27, 923-929.
[http://dx.doi.org/10.1016/j.tetasy.2016.07.015]
[32]
Nováková, G.; Drabina, P.; Frumarova, B.; Sedlak, M. Adv. Synth. Catal., 2016, 358, 2541-2552.
[http://dx.doi.org/10.1002/adsc.201600198]
[33]
Yoshizawa, A.; Feula, A.; Male, L.; Leach, A.G.; Fossey, J.S. Sci. Rep., 2018, 8(1), 1-16.
[http://dx.doi.org/10.1038/s41598-018-24784-3] [PMID: 29311619]
[34]
Kowalczyk, R.; Kwiatkowski, P.; Skarzewski, J.; Jurczak, J. J. Org. Chem., 2009, 74(2), 753-756.
[http://dx.doi.org/10.1021/jo802107b] [PMID: 19132945]
[35]
Lang, K.; Park, J.; Hong, S. Angew. Chem. Int. Ed., 2012, 51, 1620-1624.
[http://dx.doi.org/10.1002/anie.201107785]
[36]
Wei, Y-L.; Yang, K.F.; Li, F.; Zheng, Z-J.; Xu, Z.; Xu, L-W. RSC Advances, 2014, 4, 37859-37867.
[http://dx.doi.org/10.1039/C4RA06056C]
[37]
Aboul-Enein, H.Y.; Ali, I. J. Pharm. Biomed. Anal., 2002, 27(3-4), 441-446.
[http://dx.doi.org/10.1016/S0731-7085(01)00575-1] [PMID: 11755745]
[38]
Ali, I.; Aboul-Enein, H.Y. Biomed. Chromatogr., 2003, 17(2-3), 113-117.
[http://dx.doi.org/10.1002/bmc.220] [PMID: 12717799]
[39]
Ali, I.; Aboul-Enein, H.Y. J. Sep. Sci., 2006, 29(6), 762-769.
[http://dx.doi.org/10.1002/jssc.200500372] [PMID: 16830488]
[40]
Ali, I.; Al-Othman, Z.A. Al-Zaʹabi. M. Biomed. Chromatogr., 2012, 26, 1001-1008.
[http://dx.doi.org/10.1002/bmc.2690] [PMID: 22237804]
[41]
Ali, I.; Al-Othman, Z.A.; Nagae, N.; Gaitonde, V.D.; Dutta, K.K. J. Sep. Sci., 2012, 35(23), 3235-3249.
[http://dx.doi.org/10.1002/jssc.201200454] [PMID: 23184368]
[42]
Woods, R.M.; Patel, D.C.; Lim, Y.; Breitbach, Z.S.; Gao, H.; Keene, C.; Li, G.; Kürti, L.; Armstrong, D.W. J. Chromatogr. A, 2014, 1357, 172-181.
[http://dx.doi.org/10.1016/j.chroma.2014.04.080] [PMID: 24835594]
[43]
Ikai, T.; Nagata, N.; Awata, S.; Wada, Y.; Maeda, K.; Mizuno, M.; Swager, T.M. RSC Advances, 2018, 8, 20483-20487.
[http://dx.doi.org/10.1039/C8RA04434A]
[44]
Matsumoto, K.; Asakura, S. Tetrahedron Lett., 2014, 55, 6919-6921.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.109]
[45]
Benedetti, F.; Berti, F.; Bidoggia, S. Org. Biomol. Chem., 2011, 9(12), 4417-4420.
[http://dx.doi.org/10.1039/c0ob01219j] [PMID: 21562657]
[46]
Nakamura, H.; Kitamura, H.; Shinji, O.; Saito, K.; Shirakawa, Y.; Takahashi, S. Appl. Phys. Lett., 2012, 101, 261110/1-261110/3.
[http://dx.doi.org/10.1063/1.4773298]
[47]
Wang, Y.; Peterson, E.M.; Harris, J.M.; Appusamy, K.; Guruswamy, S.; Blair, S. J. Phys. Chem. C, 2017, 121, 11650-11657.
[http://dx.doi.org/10.1021/acs.jpcc.7b01934]
[48]
Tang, X.; Zhu, Z.; Liu, R.; Tang, Y. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219, 576-581.
[http://dx.doi.org/10.1016/j.saa.2019.04.042] [PMID: 31085436]
[49]
David, C.; Szalai, E.; Baeyens-Volant, D. Ber. Bunsenges. Phys. Chem, 1982, 86, 710-716.
[http://dx.doi.org/10.1002/bbpc.19820860807]
[50]
Nozawa, T.; Takahashi, K.; Kameoka, S.; Narumi, T.; Yasuoka, K. Mol. Simul., 2015, 41, 927-935.
[http://dx.doi.org/10.1080/08927022.2014.998210]
[51]
Novikov, I.V.; Tikhomirova, T.V.; Aleksandriiskii, V.V.; Burmistov, V.A.; Shaposhnikov, G.P.; Koifman, O.I. Russ. J. Gen. Chem., 2018, 88, 1958-1962.
[http://dx.doi.org/10.1134/S1070363218090360]
[52]
Yoshizawa, A.; Takahashi, Y.; Nishizawa, A.; Takeuchi, K.; Sagisaka, M.; Takahashi, K.; Hazawa, M.; Kashiwakura, I. Chem. Lett., 2009, 38, 530-531.
[http://dx.doi.org/10.1246/cl.2009.530]
[53]
Takahashi, Y.; Hazawa, M.; Takahashi, K.; Nishizawa, A.; Yoshizawa, A.; Kashiwakura, I. Invest. New Drugs, 2011, 29(4), 659-665.
[http://dx.doi.org/10.1007/s10637-010-9411-9] [PMID: 20237829]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy