Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Progress in the Electrochemical Analysis of Flavonoids: A Scientometric Analysis in CiteSpace

Author(s): Jingzhou Zhang*, Zaifu Zhou and Qingxin Kong

Volume 18, Issue 1, 2022

Published on: 25 May, 2021

Page: [43 - 54] Pages: 12

DOI: 10.2174/1573412917666210525153519

Price: $65

Abstract

Background: Flavonoids are a large class of phenolic compounds, which generally refer to two benzene rings (A ring, B ring) with phenolic hydroxyl groups connected to each other through three central carbon atoms, that is, a series of C6-C3-C6 basic core compounds. Due to its potential medicinal value, the research on flavonoids has aroused great interest.

Methods: This review aims to identify the research progress and development trends of electrochemical analysis of flavonoids. We retrieved published papers (1998-2020) from the Scientific Citation Index Expanded (SCIE) database of the WoS with a topic search related to the electrochemical analysis of flavonoids.

Results: In this paper, the research progress in electrochemical analysis of flavonoids has been reviewed. The antioxidant activity of flavonoids has attracted considerable attention because it directly affects the application of flavonoids. Different analytical methods also received the attention of researchers, such as cyclic voltammetry and capillary electrophoresis. This is because the advanced analysis technology can be useful for evaluating the property of flavonoids.

Conclusion: The research progress and development trends were analyzed based on CiteSpace software of text mining and visualization. Most research papers on this topic were published in the years 2004-2005, 2011-2013 and 2016-2018. Different countries are conducting research on the electrochemical analysis of flavonoids, which are not related to each other.

Keywords: Electrochemical analysis, flavonoids, sensor, knowledge domain, citespace, herbal medicine.

Graphical Abstract

[1]
Liu, Z.; Xue, Q.; Guo, Y. Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens. Bioelectron., 2017, 89(Pt 1), 444-452.
[http://dx.doi.org/10.1016/j.bios.2016.04.056] [PMID: 27133027]
[2]
Sebastian, N.; Yu, W-C.; Balram, D. Synthesis of amine-functionalized multi-walled carbon nanotube/3D rose flower-like zinc oxide nanocomposite for sensitive electrochemical detection of flavonoid morin. Anal. Chim. Acta, 2020, 1095, 71-81.
[http://dx.doi.org/10.1016/j.aca.2019.10.026] [PMID: 31864632]
[3]
Zhang, X.; Li, D.; Dong, C.; Shi, J.; Sun, Y.; Ye, B.; Xu, Y. Molybdenum sulfide-based electrochemical platform for high sensitive detection of taxifolin in Chinese medicine. Anal. Chim. Acta, 2020, 1099, 85-93.
[http://dx.doi.org/10.1016/j.aca.2019.11.057] [PMID: 31986281]
[4]
Siva Prasad, M.; Chen, R.; Ni, H.; Kiran Kumar, K. Directly grown of 3d-nickel oxide nano flowers on tio2 nanowire arrays by hydrothermal route for electrochemical determination of naringenin flavonoid in vegetable samples. Arab. J. Chem., 2020, 13(1), 1520-1531.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.004]
[5]
Chiorcea-Paquim, A-M.; Enache, T.A.; De Souza Gil, E.; Oliveira-Brett, A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf., 2020, 19(4), 1680-1726.
[http://dx.doi.org/10.1111/1541-4337.12566] [PMID: 33337087]
[6]
Sarakhman, O.; Švorc, Ľ. A review on recent advances in the applications of boron-doped diamond electrochemical sensors in food analysis. Crit. Rev. Anal. Chem., 2020, 1-23.
[http://dx.doi.org/10.1080/10408347.2020.1828028] [PMID: 33028086]
[7]
Wu, T.; Yu, C.; Li, R. Determination of flavonoids in flos chrysanthemi and flos chrysanthemi indici by capillary electrophoresis. Instrum. Sci. Technol., 2017, 45(4), 412-422.
[http://dx.doi.org/10.1080/10739149.2016.1258572]
[8]
Feng, H.; He, Y.; La, L.; Hou, C.; Song, L.; Yang, Q.; Wu, F.; Liu, W.; Hou, L.; Li, Y.; Wang, C.; Li, Y. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J. Ethnopharmacol., 2020, 256112785
[http://dx.doi.org/10.1016/j.jep.2020.112785] [PMID: 32222576]
[9]
Yang, H.; Li, B.; Cui, R.; Xing, R.; Liu, S. Electrochemical sensor for rutin detection based on au nanoparticle-loaded helical carbon nanotubes. J. Nanopart. Res., 2017, 19(10), 354.
[http://dx.doi.org/10.1007/s11051-017-4046-9]
[10]
Qian, J.; Kai, G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J. Pharm. Biomed. Anal., 2020, 190113548
[http://dx.doi.org/10.1016/j.jpba.2020.113548] [PMID: 32861928]
[11]
Xing, R.; Yang, H.; Li, S.; Yang, J.; Zhao, X.; Wang, Q.; Liu, S.; Liu, X. A sensitive and reliable rutin electrochemical sensor based on palladium phthalocyanine-mwcnts-nafion nanocomposite. J. Solid State Electrochem., 2017, 21(5), 1219-1228.
[http://dx.doi.org/10.1007/s10008-016-3447-5]
[12]
Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y-L.; Zhou, C.; Wang, C.; Ruan, S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta, 2019, 1081, 51-58.
[http://dx.doi.org/10.1016/j.aca.2019.06.055] [PMID: 31446963]
[13]
Zhou, J.; Zheng, Y.; Zhang, J.; Karimi-Maleh, H.; Xu, Y.; Zhou, Q.; Fu, L.; Wu, W. Characterization of the electrochemical profiles of lycoris seeds for species identification and infrageneric relationships. Anal. Lett., 2020, 53(15), 2517-2528.
[http://dx.doi.org/10.1080/00032719.2020.1746327]
[14]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C-T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]
[15]
Cheng, H.; Weng, W.; Xie, H.; Liu, J.; Luo, G.; Huang, S.; Sun, W.; Li, G. Au-Pt@Biomass porous carbon composite modified electrode for sensitive electrochemical detection of baicalein. Microchem. J., 2020, 154104602
[http://dx.doi.org/10.1016/j.microc.2020.104602]
[16]
Liu, C.; Huang, J.; Wang, L. Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Mikrochim. Acta, 2018, 185(9), 414.
[http://dx.doi.org/10.1007/s00604-018-2947-7] [PMID: 30116901]
[17]
Yalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wang, P.; Hu, G. Taraxacum-like Mg-Al-Si@porous carbon nanoclusters for electrochemical rutin detection. Mikrochim. Acta, 2019, 186(6), 379.
[http://dx.doi.org/10.1007/s00604-019-3369-x] [PMID: 31134397]
[18]
Fu, Y.; You, Z.; Xiao, A.; Liu, L.; Zhou, W. Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene. Open Chem., 2020, 18(1), 1054-1063.
[http://dx.doi.org/10.1515/chem-2020-0157]
[19]
Cai, Y.; Huang, W.; Wu, K. Morphology-controlled electrochemical sensing of erbium- benzenetricarboxylic acid frameworks for azo dyes and flavonoids. Sens. Actuators B Chem., 2020, 304127370
[http://dx.doi.org/10.1016/j.snb.2019.127370]
[20]
David, M.; Serban, A.; Radulescu, C.; Danet, A.F.; Florescu, M. Bioelectrochemical evaluation of plant extracts and gold nanozyme-based sensors for total antioxidant capacity determination. Bioelectrochemistry, 2019, 129, 124-134.
[http://dx.doi.org/10.1016/j.bioelechem.2019.05.011] [PMID: 31158797]
[21]
Raymundo-Pereira, P.A.; Gomes, N.O.; Carvalho, J.H.S.; Machado, S.A.S.; Oliveira, O.N., Jr; Janegitz, B.C. Simultaneous detection of quercetin and carbendazim in wine samples using disposable electrochemical sensors. ChemElectroChem, 2020, 7(14), 3074-3081.
[http://dx.doi.org/10.1002/celc.202000788]
[22]
Issaad, F.Z.; Fernandes, I.P.G.; Enache, T.A.; Mouats, C.; Oliveira-Brett, A.M. Honey and pollen phenolic composition, antioxidant capacity, and DNA protecting properties. Electroanalysis, 2019, 31(4), 611-618.
[http://dx.doi.org/10.1002/elan.201800752]
[23]
Kanagavalli, P.; Radhakrishnan, S.; Pandey, G.; Ravichandiran, V.; Pazhani, G.P.; Veerapandian, M.; Hegde, G. Electrochemical tracing of butein using carbon nanoparticles interfaced electrode processed from biowaste. Electroanalysis, 2020, 32(6), 1220-1225.
[http://dx.doi.org/10.1002/elan.201900717]
[24]
Manasa, G.; Mascarenhas, R.J.; Bhakta, A.K.; Mekhalif, Z. MWCNT/Nileblue heterostructured composite electrode for flavanone naringenin quantification in fruit juices. Electroanalysis, 2020, 32(5), 939-948.
[http://dx.doi.org/10.1002/elan.201900573]
[25]
Ali, I.H.; Idris, A.M.; Suliman, M.H.A. Evaluation of leaf and bark extracts of acacia tortilis as corrosion inhibitors for mild steel in seawater: Experimental and studies. Int. J. Electrochem. Sci., 2019, 14(7), 6406-6419.
[http://dx.doi.org/10.20964/2019.07.10]
[26]
Aourabi, S.; Driouch, M.; Sfaira, M.; Mahjoubi, F.; Hammouti, B.; Emran, K.M. Influence of phenolic compounds on antioxidant and anticorrosion activities of ammi visnaga extracts obtained ultrasonically in three solvent systems. Int. J. Electrochem. Sci., 2019, 14(7), 6376-6393.
[http://dx.doi.org/10.20964/2019.07.02]
[27]
Harisha, K.V.; Swamy, B.E.K.; Ganesh, P.S.; Jayadevappa, H. Electrochemical oxidation of haematoxylin at poly(alanine) modified carbon paste electrode: A cyclic voltammetric study. J. Electroanal. Chem. (Lausanne Switz.), 2019, 832, 486-492.
[http://dx.doi.org/10.1016/j.jelechem.2018.11.024]
[28]
Cardenas, A.; Frontana, C. Evaluation of a carbon ink chemically modified electrode incorporating a copper-neocuproine complex for the quantification of antioxidants. Sens. Actuators B Chem., 2020, 313.
[http://dx.doi.org/10.1016/j.snb.2020.128070]
[29]
Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C-T.; Yu, A. Infrageneric phylogenetics investigation of chimonanthus based on electroactive compound profiles. Bioelectrochemistry, 2020, 133107455
[http://dx.doi.org/10.1016/j.bioelechem.2020.107455] [PMID: 31978859]
[30]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; Su, W.; Yu, J.; Lin, C-T. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens. Bioelectron., 2020, 159112212
[http://dx.doi.org/10.1016/j.bios.2020.112212] [PMID: 32364933]
[31]
Mendes Hacke, A.C.; Lima, D.; de Costa, F.; Deshmukh, K.; Li, N.; Chow, A.M.; Marques, J.A.; Pereira, R.P.; Kerman, K. Probing the antioxidant activity of delta(9)-tetrahydrocannabinol and cannabidiol in cannabis sativa extracts. Analyst (Lond.), 2019, 144(16), 4952-4961.
[http://dx.doi.org/10.1039/C9AN00890J]
[32]
Szczepaniak, O.; Ligaj, M.; Kobus-Cisowska, J.; Tichoniuk, M.; Dziedziński, M.; Przeor, M.; Szulc, P. The genoprotective role of naringin. Biomolecules, 2020, 10(5)E700
[http://dx.doi.org/10.3390/biom10050700] [PMID: 32365989]
[33]
Miličević, A. The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals. Arh. Hig. Rada Toksikol., 2019, 70(2), 134-139.
[http://dx.doi.org/10.2478/aiht-2019-70-3290] [PMID: 31246570]
[34]
Hu, J.; Zhou, R.; Lin, H.; Wei, Q.; Hu, F.; Yang, X. Novel plant flavonoid electrochemical sensor based on in-situ and controllable double-layered membranes modified electrode. PLoS One, 2020, 15(8)e0237583
[http://dx.doi.org/10.1371/journal.pone.0237583] [PMID: 32804936]
[35]
ElShami, A.A.; Bonnet, S.; Makhlouf, M.H.; Khelidj, A.; Leklou, N. Novel green plants extract as corrosion inhibiting coating for steel embedded in concrete. Pigm. Resin Technol., 2020, 49(6), 501-514.
[http://dx.doi.org/10.1108/PRT-09-2019-0078]]
[36]
Domenech-Carbo, A.; Cervello-Bulls, P.; Miguel Gonzalez, J.; Soriano, P.; Estrelles, E.; Montoya, N. Electrochemical monitoring of ros influence on seedlings and germination response to salinity stress of three species of the tribe inuleae. RSC Advances, 2019, 9(31), 17856-17867.
[http://dx.doi.org/10.1039/C9RA02556A]
[37]
Pontaza-Licona, Y.S.; Ramos-Jacques, A.L.; Cervantes-Chavez, J.A.; Luis Lopez-Miranda, J.; de Jesus Ruiz-Baltazar, A.; Maya-Cornejo, J.; Rodriguez-Morales, A.L.; Esparza, R.; Estevez, M.; Perez, R.; Hernandez-Martinez, A.R. Alcoholic extracts from paulownia tomentosa leaves for silver nanoparticles synthesis. Results Phys., 2019, 12, 1670-1679.
[http://dx.doi.org/10.1016/j.rinp.2019.01.082]
[38]
Zareei, E.; Zaare-Nahandi, F.; Oustan, S.; Hajilou, J. Effects of magnetic solutions on some biochemical properties and production of some phenolic compounds in grapevine (vitis vinifera L.). Sci. Hortic. (Amsterdam), 2019, 253, 217-226.
[http://dx.doi.org/10.1016/j.scienta.2019.04.053]
[39]
Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the electrochemical profile of pueraria leaves for polyphyly analysis. ChemistrySelect, 2020, 5(17), 5035-5040.
[http://dx.doi.org/10.1002/slct.202001100]
[40]
Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; Yu, J.; Lin, C.T. Electrochemical sex determination of dioecious plants using polydopamine-functionalized graphene sheets. Front Chem., 2020, 8, 92.
[http://dx.doi.org/10.3389/fchem.2020.00092] [PMID: 32211371]
[41]
Fu, L.; Liu, Z.; Ge, J.; Guo, M.; Zhang, H.; Chen, F.; Su, W.; Yu, A. (001) plan manipulation of α-fe2o3 nanostructures for enhanced electrochemical cr(vi) sensing. J. Electroanal. Chem. (Lausanne Switz.), 2019, 841, 142-147.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.046]
[42]
Fu, L.; Xie, K.; Wu, D.; Wang, A.; Zhang, H.; Ji, Z. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater. Chem. Phys., 2020, 242122462
[http://dx.doi.org/10.1016/j.matchemphys.2019.122462]
[43]
Ma, Y.; Kong, Y.; Xu, J.; Deng, Y.; Lu, M.; Yu, R.; Yuan, M.; Li, T.; Wang, J. Carboxyl hydrogel particle film as a local pH buffer for voltammetric determination of luteolin and baicalein. Talanta, 2020, 208120373
[http://dx.doi.org/10.1016/j.talanta.2019.120373] [PMID: 31816717]
[44]
Jiyane, N.; Sabela, M.; Sabela, M.I.; Kanchi, S.; Mdluli, P.S.; Xhakaza, M.; Arodola, O.A.; Bisetty, K. MWCNTs-Fe2O3 nanoparticle nanohybrid-based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples. Turk. J. Chem., 2019, 43(5), 1229-1243.
[http://dx.doi.org/10.3906/kim-1904-2]
[45]
Lebrini, M.; Suedile, F.; Salvin, P. Bagassa guianensis ethanol extract used as sustainable eco-friendly inhibitor for zinc corrosion in 3% nacl: Electrochemical and xps studies. Surf. Interfaces, 2020, 20100558
[http://dx.doi.org/10.1016/j.surfin.2020.100588]
[46]
Altunay, N.; Bingöl, D.; Elik, A.; Gürkan, R. Vortex assisted-ionic liquid dispersive liquid-liquid microextraction and spectrophotometric determination of quercetin in tea, honey, fruit juice and wine samples after optimization based on response surface methodology. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 221117166
[http://dx.doi.org/10.1016/j.saa.2019.117166] [PMID: 31163328]
[47]
Ying, J.; Zheng, Y.; Zhang, H.; Fu, L. Room temperature biosynthesis of gold nanoparticles with lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2020, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[48]
Zhang, X.; Yang, R.; Li, Z.; Zhang, M.; Wang, Q.; Xu, Y.; Fu, L.; Du, J.; Zheng, Y.; Zhu, J. Electroanalytical study of infrageneric relationship of lagerstroemia using glassy carbon electrode recorded voltammograms.Rev. Mex. Ing. Quím.,, 2020, 19(Sup. 1), 281-291.
[http://dx.doi.org/10.24275/rmiq/Bio1750]
[49]
Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens. Actuators B Chem., 2020, 304127390
[http://dx.doi.org/10.1016/j.snb.2019.127390]
[50]
Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; Yu, A.; Cai, W.; Lin, C-T. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem., 2019, 298126836
[http://dx.doi.org/10.1016/j.snb.2019.126836]
[51]
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol., 2006, 57(3), 359-377.
[http://dx.doi.org/10.1002/asi.20317]
[52]
Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin. Biol. Ther., 2012, 12(5), 593-608.
[http://dx.doi.org/10.1517/14712598.2012.674507] [PMID: 22443895]
[53]
Chen, X.; Liu, Y. Visualization analysis of high-speed railway research based on citespace. Transp. Policy, 2020, 85, 1-17.
[http://dx.doi.org/10.1016/j.tranpol.2019.10.004]
[54]
Cui, Y.; Mou, J.; Liu, Y. Knowledge mapping of social commerce research: A visual analysis using citespace. Electron. Commerce Res., 2018, 18(4), 837-868.
[http://dx.doi.org/10.1007/s10660-018-9288-9]
[55]
Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using citespace. J. Sustain. Tour., 2018, 26(1), 108-126.
[http://dx.doi.org/10.1080/09669582.2017.1329310]
[56]
Li, X.; Ma, E.; Qu, H. Knowledge mapping of hospitality research − a visual analysis using citespace. Int. J. Hospit. Manag., 2017, 60, 77-93.
[http://dx.doi.org/10.1016/j.ijhm.2016.10.006]
[57]
Li, X.; Li, H. A visual analysis of research on information security risk by using citeSpace. IEEE Access, 2018, 6, 63243-63257.
[http://dx.doi.org/10.1109/ACCESS.2018.2873696]
[58]
Tho, S.W.; Yeung, Y.Y.; Wei, R.; Chan, K.W.; So, W.W. A systematic review of remote laboratory work in science education with the support of visualizing its structure through the histcite and citespace software. Int. J. Sci. Math. Educ., 2017, 15(7), 1217-1236.
[http://dx.doi.org/10.1007/s10763-016-9740-z]
[59]
Wang, W.; Lu, C. Visualization analysis of big data research based on citespace. Soft Comput., 2020, 24(11), 8173-8186.
[http://dx.doi.org/10.1007/s00500-019-04384-7]
[60]
Wei, F.; Grubesic, T.H.; Bishop, B.W. Exploring the GIS knowledge domain using citeSpace. Prof. Geogr., 2015, 67(3), 374-384.
[http://dx.doi.org/10.1080/00330124.2014.983588]
[61]
Xiao, F.; Li, C.; Sun, J.; Zhang, L. Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on citespace analysis. Front Chem., 2017, 5, 67.
[http://dx.doi.org/10.3389/fchem.2017.00067] [PMID: 28966923]
[62]
Yao, L.; Hui, L.; Yang, Z.; Chen, X.; Xiao, A. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II. Chemosphere, 2020, 245125627
[http://dx.doi.org/10.1016/j.chemosphere.2019.125627] [PMID: 31864046]
[63]
Xie, K.; Yu, S.; Wang, P.; Chen, P. Polyethylene terephthalate-based materials for lithium-ion battery separator applications: A review based on knowledge domain analysis. Int. J. Polym. Sci., 2021.6694105
[http://dx.doi.org/10.1155/2021/6694105]
[64]
Ren, H.; Zhou, J.; Dong, X.; Zhao, W.A. A simple, water soluble flavone-based fluorescent probe for fast detection of cys. J. Photochem. Photobiol. Chem., 2018, 355, 72-77.
[65]
Vestergaard, M.; Kerman, K.; Tamiya, E. An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: possible implications in copper-mediated illnesses. Anal. Chim. Acta, 2005, 538(1–2), 273-281.
[http://dx.doi.org/10.1016/j.aca.2005.01.067]
[66]
Zheng, J.; Bi, J.; Johnson, D.; Sun, Y.; Song, M.; Qiu, P.; Dong, P.; Decker, E.; Xiao, H. Analysis of 10 metabolites of polymethoxyflavones with high sensitivity by electrochemical detection in high-performance liquid chromatography. J. Agric. Food Chem., 2015, 63(2), 509-516.
[http://dx.doi.org/10.1021/jf505545x] [PMID: 25553421]
[67]
Yang, Y.; Mu, S. Antioxidant activities and radical scavenging activities of flavonoids studied by the electrochemical methods and esr technique based on the novel paramagnetic properties of poly(aniline-co-5-aminosalicylic acid). Electrochim. Acta, 2013, 109, 663-670.
[http://dx.doi.org/10.1016/j.electacta.2013.07.165]
[68]
Zielinska, D.; Zielinski, H. Antioxidant activity of flavone c-glucosides determined by updated analytical strategies. Food Chem., 2011, 124(2), 672-678.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.051] [PMID: 30634285]
[69]
Timmons, D.J.; Jordan, A.J.; Kirchon, A.A.; Murthy, N.S.; Siemers, T.J.; Harrison, D.P.; Slebodnick, C. Asymmetric flavone-based liquid crystals: synthesis and properties. Liq. Cryst., 2017, 44(9), 1436-1449.
[http://dx.doi.org/10.1080/02678292.2017.1281450]
[70]
Akao, T.; Sato, K.; He, J-X.; Ma, C-M.; Hattori, M. Baicalein 6-O-β-D-glucopyranuronoside is a main metabolite in the plasma after oral administration of baicalin, a flavone glucuronide of scutellariae radix, to rats. Biol. Pharm. Bull., 2013, 36(5), 748-753.
[http://dx.doi.org/10.1248/bpb.b12-00850] [PMID: 23649334]
[71]
Janeiro, P.; Corduneanu, O.; Brett, A. Chrysin and (+/-)-taxifolin electrochemical oxidation mechanisms. Electroanalysis, 2005, 17(12), 1059-1064.
[http://dx.doi.org/10.1002/elan.200403216]
[72]
Rudek, M.A.; Bauer, K.S., Jr; Lush, R.M., III; Stinson, S.F.; Senderowicz, A.M.; Headlee, D.J.; Arbuck, S.G.; Cox, M.C.; Murgo, A.J.; Sausville, E.A.; Figg, W.D. Clinical pharmacology of flavopiridol following a 72-hour continuous infusion. Ann. Pharmacother., 2003, 37(10), 1369-1374.
[http://dx.doi.org/10.1345/aph.1C404] [PMID: 14519054]
[73]
Chohan, S.; Booysen, I.N.; Mambanda, A. Cobalt beta-tetra(3-oxyflavone/2-(2-oxyphenyl)benzoxazole) phthalocyanines and their carbon nanotube conjugates: Formation, characterization and dopamine electrocatalysis. Polyhedron, 2015, 102, 284-292.
[http://dx.doi.org/10.1016/j.poly.2015.10.012]
[74]
Zhu, Z.; Zhao, L.; Liu, X.; Chen, J.; Zhang, H.; Zhang, G.; Chai, Y. Comparative pharmacokinetics of baicalin and wogonoside by liquid chromatography-mass spectrometry after oral administration of Xiaochaihu Tang and Radix scutellariae extract to rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(24), 2184-2190.
[http://dx.doi.org/10.1016/j.jchromb.2010.06.021] [PMID: 20643590]
[75]
Gomes, A.; Fernandes, E.; Garcia, M.B.Q.; Silva, A.M.S.; Pinto, D.C.G.A.; Santos, C.M.M.; Cavaleiro, J.A.S.; Lima, J.L.F.C. Cyclic voltammetric analysis of 2-styrylchromones: Relationship with the antioxidant activity. Bioorg. Med. Chem., 2008, 16(17), 7939-7943.
[http://dx.doi.org/10.1016/j.bmc.2008.07.072] [PMID: 18706820]
[76]
Nagarajan, P.; Sulochana, N.; Muralidharan, V. Cyclic voltammetric reduction of 7-hydroxy and acetoxy flavones at glassy carbon electrode. Bull. Electrochem., 2004, 20(2), 93-96.
[77]
Cao, Y.; Wang, Y.; Ji, C.; Ye, J. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J. Chromatogr. A, 2004, 1042(1-2), 203-209.
[http://dx.doi.org/10.1016/j.chroma.2004.05.049] [PMID: 15296407]
[78]
Kotani, A.; Nagami, K.; Mino, C.; Sugawara, Y.; Takahashi, K.; Kusu, F.; Hakamata, H. Determination of nobiletin in rat plasma after ingestion of citrus depressa juice by capillary liquid chromatography with electrochemical detection using boron-doped diamond electrode. Electrochemistry, 2015, 83(5), 363-367.
[http://dx.doi.org/10.5796/electrochemistry.83.363]
[79]
Peng, Y.; Liu, F.; Ye, J. Determination of phenolic acids and flavones in lonicera japonica thumb. by capillary electrophoresis with electrochemical detection. Electroanalysis, 2005, 17(4), 356-362.
[http://dx.doi.org/10.1002/elan.200403102]
[80]
Nagles, E.; Garcia-Beltran, O. Determination of rutin in black tea by adsorption voltammetry (adv) in the presence of morin and quercetin. Food Anal. Methods, 2016, 9(12), 3420-3427.
[http://dx.doi.org/10.1007/s12161-016-0538-y]
[81]
Ziyatdinova, G.K.; Ziganshina, E.R. Nguyen Cong, Ph.; Budnikov, H. C. Determination of the antioxidant capacity of the micellar extracts of spices in brija (r) 35 medium by differential pulse voltammetry. J. Anal. Chem., 2016, 71(6), 573-580.
[http://dx.doi.org/10.1134/S1061934816060174]
[82]
Sokolova, R.; Fiedler, T.; Ramesova, S.; Kocabova, J.; Degano, I.; Quinto, A.; Kren, V. Differences in oxidation mechanism of selected bioflavonoids, UV-Vis and IR spectroelectrochemical study. Proceedings of the international conference modern electrochemical methods XXXVIII, 2018, pp. 212-216.
[83]
De Gouveia, Y.M.; Hernandez-Rodriguez, V.; Rodriguez-Duran, J.; Suarez, A.I.; Benaim, G. Effect of a methylenedioxy-flavonoid isolated from iresine diffusa on the cellular viability of leishmania mexicana and the intracellular homeostasis of Ca2+. Invest. Clin., 2017, 58(4), 334-351.
[84]
Grygar, T.; Kuckova, S.; Hradil, D.; Hradilova, J. Electrochemical analysis of natural solid organic dyes and pigments. J. Solid State Electrochem., 2003, 7(10), 706-713.
[http://dx.doi.org/10.1007/s10008-003-0380-1]
[85]
Senboku, H.; Yamauchi, Y.; Kobayashi, N.; Fukui, A.; Hara, S. Electrochemical carboxylation of flavones: Facile synthesis of flavanone-2-carboxylic acids. Electrochemistry, 2011, 79(11), 862-864.
[http://dx.doi.org/10.5796/electrochemistry.79.862]
[86]
Wang, L-H.; Liu, H-H. Electrochemical oxidation of flavonoids at a nano- metal oxide modified carbon paste electrodes and determination their levels in human urine. Curr. Anal. Chem., 2013, 9(1), 143-149.
[http://dx.doi.org/10.2174/157341113804486428]
[87]
Kantize, K.; Booysen, I.N.; Mambanda, A. Electrochemical sensing of acetaminophen using nanocomposites comprised of cobalt phthalocyanines and multiwalled carbon nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2019, 850113391
[http://dx.doi.org/10.1016/j.jelechem.2019.113391]
[88]
Tandel, R.D.; Naik, R.S.; Seetharamappa, J.; Satpati, A.K. Electrochemical sensor based on reduced graphene oxide nanoribbons for the determination of baicalein in urine samples. J. Electrochem. Soc., 2017, 164(12), II818-II827.
[http://dx.doi.org/10.1149/2.1771712jes]
[89]
Nagarajan, P.; Sulochana, N. Electrochemistry of 4 `-Hydroxy and acetoxy flavones CV and NPP study. Ionics, 2004, 10(1-2), 109-112.
[http://dx.doi.org/10.1007/BF02410316]
[90]
Hou, Y.; Higashiya, S.; Fuchigami, T. Electrolytic partial fluorination of organic compounds. 32.(1) regioselective anodic mono- and difluorination of flavones. J. Org. Chem., 1999, 64(9), 3346-3349.
[http://dx.doi.org/10.1021/jo981979y] [PMID: 11674443]
[91]
Masek, A.; Zaborski, M.; Chrzescijanska, E. Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chem., 2011, 127(2), 699-704.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.127] [PMID: 23140722]
[92]
Hosseini, S.; Thapa, B.; Medeiros, M.J.; Pasciak, E.M.; Pence, M.A.; Twum, E.B.; Karty, J.A.; Gao, X.; Raghavachari, K.; Peters, D.G.; Mubarak, M.S. Electrosynthesis of a biaurone by controlled dimerization of flavone: mechanistic insight and large-scale application. J. Org. Chem., 2020, 85(16), 10658-10669.
[http://dx.doi.org/10.1021/acs.joc.0c01220] [PMID: 32687355]
[93]
Guney, S.; Yildiz, G.; Capan, A.; Ozturk, T. Evaluation of the electrochemical properties of 3-hydroxyflavone using voltammetric methods. Electrochim. Acta, 2010, 55(9), 3295-3300.
[http://dx.doi.org/10.1016/j.electacta.2009.12.078]
[94]
Kumar, A.; Sharma, P.; Sharma, P.K. Exploration of antioxidant activity of newly synthesized azo flavones and its correlation with electrochemical parameters along with the study of their redox behaviour. J. Anal. Chem., 2017, 72(10), 1034-1044.
[http://dx.doi.org/10.1134/S1061934817100094]
[95]
Chen, Q.; Gan, Z.; Wang, J.; Chen, G. Facile preparation of carbon nanotube/poly(ethyl 2-cyanoacrylate) composite electrode by water-vapor-initiated polymerization for enhanced amperometric detection. Chemistry, 2011, 17(44), 12458-12464.
[http://dx.doi.org/10.1002/chem.201101758] [PMID: 21928446]
[96]
Fu, Y.; Zhang, L.; Chen, G. Far infrared-assisted extraction followed by MEKC for the simultaneous determination of flavones and phenolic acids in the leaves of Rhododendron mucronulatum Turcz. J. Sep. Sci., 2012, 35(3), 468-475.
[http://dx.doi.org/10.1002/jssc.201100816] [PMID: 22213715]
[97]
Kowalski, K.; Szczupak, L.; Oehninger, L.; Ott, I.; Hikisz, P.; Koceva-Chyla, A.; Therrien, B. Ferrocenyl derivatives of pterocarpene and coumestan: synthesis, structure and anticancer activity studies. J. Organomet. Chem., 2014, 772, 49-59.
[http://dx.doi.org/10.1016/j.jorganchem.2014.08.027]
[98]
Gheno, G.; de Souza Basso, N.R.; Ceschi, M.A.; Livotto, P.R.; Nascimento, A.A.; da Rocha, Z.N.; Galland, G.B. Flavone complexes of Ti and Zr active in ethylene polymerization. Appl. Catal. Gen., 2013, 467, 439-449.
[http://dx.doi.org/10.1016/j.apcata.2013.08.015]
[99]
Sheng, S.; Liu, S.; Zhang, L.; Chen, G. Graphene/poly(ethylene-co-vinyl acetate) composite electrode fabricated by melt compounding for capillary electrophoretic determination of flavones in Cacumen platycladi. J. Sep. Sci., 2013, 36(4), 721-728.
[http://dx.doi.org/10.1002/jssc.201200856] [PMID: 23355382]
[100]
Masek, A.; Chrzescijanska, E.; Latos, M.; Zaborski, M. Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem., 2017, 215, 501-507.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.183] [PMID: 27542504]
[101]
Li, X.; Deng, S.; Li, N.; Xie, X. Inhibition effect of bamboo leaves extract on cold rolled steel in c1(3)ccooh solution. j. mater. res. technol.-. JMRT, 2017, 6(2), 158-170.
[http://dx.doi.org/10.1016/j.jmrt.2016.09.002]
[102]
Wang, F.; Yan, F.; Long, Y.; Wang, L.; Chen, Z. Interaction with deoxyribonucleic acid and determination of orientin in lophatherum gracile brongn by high-performance liquid chromatography with amperometric detection. Electrochim. Acta, 2015, 178, 829-837.
[http://dx.doi.org/10.1016/j.electacta.2015.08.094]
[103]
Saxena, A.; Prasad, D.; Haldhar, R. Investigation of corrosion inhibition effect and adsorption activities of Cuscuta reflexa extract for mild steel in 0.5 M H2SO4. Bioelectrochemistry, 2018, 124, 156-164.
[http://dx.doi.org/10.1016/j.bioelechem.2018.07.006] [PMID: 30059849]
[104]
Mulazimoglu, I.E.; Mulazimoglu, A.D. Investigation of sensitivity against different flavonoid derivatives of aminophenyl-modified glassy carbon sensor electrode and antioxidant activities. Food Anal. Methods, 2012, 5(6), 1419-1426.
[http://dx.doi.org/10.1007/s12161-012-9393-7]
[105]
Martin-Benlloch, X.; Novodomska, A.; Jacquemin, D.; Davioud-Charvet, E.; Elhabiri, M. Iron(iii) coordination properties of ladanein, a flavone lead with a broad-spectrum antiviral activity. New J. Chem., 2018, 42(10), 8074-8087.
[http://dx.doi.org/10.1039/C7NJ04867J]
[106]
Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Membrane fluidization & eryptotic properties of hesperidin-copper complex. RSC Advances, 2012, 2(29), 11138-11146.
[http://dx.doi.org/10.1039/c2ra20620j]
[107]
Diculescu, V.C.; Eda Satana, H.; Gil, E. Gil, E.de S.; Oliveira Brett, A. M. Methoxylation and glycosylation effect on the redox mechanism of citroflavones. Electroanalysis, 2012, 24(5), 1019-1026.
[http://dx.doi.org/10.1002/elan.201200037]
[108]
Hájek, T.; Skeríková, V.; Cesla, P.; Vynuchalová, K.; Jandera, P. Multidimensional LC x LC analysis of phenolic and flavone natural antioxidants with UV-electrochemical coulometric and MS detection. J. Sep. Sci., 2008, 31(19), 3309-3328.
[http://dx.doi.org/10.1002/jssc.200800249] [PMID: 18792009]
[109]
Aribal, A.; Orman, E.B.; Salan, U.; Ozkaya, A.R.; Bulut, M. Novel peripherally and non-peripherally 6-oxyflavone substituted metal-free, zinc(ii) and cobalt(ii) phthalocyanines: Electrochemical and in situ spectroelectrochemical properties. J. Porphyr. Phthalocyanines, 2018, 22(1-3), 279-290.
[http://dx.doi.org/10.1142/S1088424618500232]
[110]
Popa, O.M.; Diculescu, V.C. On the adsorption and electrochemical oxidation of flavones apigenin and acacetin at a glassy carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2013, 708, 108-115.
[http://dx.doi.org/10.1016/j.jelechem.2013.09.010]
[111]
Sokolova, R.; Ramesova, S.; Kocabova, J.; Kolivoska, V.; Degano, I.; Pitzalis, E. On the difference in decomposition of taxifolin and luteolin vs. fisetin and quercetin in aqueous media. Monatsh. Chem., 2016, 147(8), 1375-1383.
[http://dx.doi.org/10.1007/s00706-016-1737-3]
[112]
Rehová, L.; Skeríková, V.; Jandera, P. Optimisation of gradient HPLC analysis of phenolic compounds and flavonoids in beer using a coularray detector. J. Sep. Sci., 2004, 27(15-16), 1345-1359.
[http://dx.doi.org/10.1002/jssc.200401916] [PMID: 15587285]
[113]
Sokolova, R.; Ramesova, S.; Kocabova, J.; Degano, I. Oxidation of Bioflavonoids in Respect to Their Chemical Structure. XXXVI Moderni elektrochemicke metody; Navratil, T.; Fojta, M; Schwarzova, K., Ed.; , 2016, pp. 211-214.
[114]
Martin-Benlloch, X.; Haid, S.; Novodomska, A.; Rominger, F.; Pietschmann, T.; Davioud-Charvet, E.; Elhabiri, M. Physicochemical properties govern the activity of potent antiviral flavones. ACS Omega, 2019, 4(3), 4871-4887.
[http://dx.doi.org/10.1021/acsomega.8b03332] [PMID: 31459671]
[115]
Oztekin, Y.; Yazicigil, Z.; Ramanaviciene, A.; Ramanavicius, A. Polyphenol-modified glassy carbon electrodes for copper detection. Sens. Actuators B Chem., 2011, 152(1), 37-48.
[http://dx.doi.org/10.1016/j.snb.2010.09.057]
[116]
Guo, W.; He, P.; Song, J. Progress in the study on the polarographic catalytic wave of organic compound. ACTA Chim. Sin., 2004, 62(10), 929-934.
[117]
Vakulskaya, T.I.; Larina, L.I.; Vashchenko, A.V. Radical anions of flavonoids. Magn. Reson. Chem., 2011, 49(8), 508-513.
[http://dx.doi.org/10.1002/mrc.2783] [PMID: 21751247]
[118]
Teslova, T.; Corredor, C.; Livingstone, R.; Spataru, T.; Birke, R.L.; Lombardi, J.R.; Canamares, M.V.; Leona, M. Raman and surface-enhanced raman spectra of flavone and several hydroxy derivatives. J. Raman Spectrosc., 2007, 38(7), 802-818.
[http://dx.doi.org/10.1002/jrs.1695]
[119]
Senboku, H.; Yoneda, K.; Hara, S. Regioselective electrochemical carboxylation of polyfluoroarenes. Electrochemistry, 2013, 81(5), 380-382.
[http://dx.doi.org/10.5796/electrochemistry.81.380]
[120]
Jandera, P.; Skeifíková, V.; Rehová, L.; Hájek, T.; Baldriánová, L.; Skopová, G.; Kellner, V.; Horna, A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J. Sep. Sci., 2005, 28(9-10), 1005-1022.
[http://dx.doi.org/10.1002/jssc.200500003] [PMID: 16013828]
[121]
Hou, Y.; Higashiya, S.; Fuchigami, T. Selective anodic fluorination of flavones. Synlett, 1998, (9), 973.
[http://dx.doi.org/10.1055/s-1998-5738]
[122]
Temerk, Y.; Ibrahim, H.; Schuhmann, W. Simultaneous anodic adsorptive stripping voltammetric determination of luteolin and 3-hydroxyflavone in biological fluids using renewable pencil graphite electrodes. Electroanalysis, 2019, 31(6), 1095-1103.
[http://dx.doi.org/10.1002/elan.201900066]
[123]
Fernandez-la-Villa, A.; Sanchez-Barragan, D.; Pozo-Ayuso, D.F.; Castano-Alvarez, M. Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical Detection. Electrophoresis, 2012, 3, 2733-2742.
[http://dx.doi.org/10.1002/elps.201200236]
[124]
Senboku, H.; Yamauchi, Y.; Kobayashi, N.; Fukui, A.; Hara, S. Some mechanistic studies on electrochemical carboxylation of flavones to yield flavanone-2-carboxylic acids. Electrochim. Acta, 2012, 82, 450-456.
[http://dx.doi.org/10.1016/j.electacta.2012.03.131]
[125]
Arroyo-Currás, N.; Rosas-García, V.M.; Videa, M. Substituent inductive effects on the electrochemical oxidation of flavonoids studied by square wave voltammetry and ab initio calculations. Molecules, 2016, 21(11)E1422
[http://dx.doi.org/10.3390/molecules21111422] [PMID: 27801813]
[126]
Sanaei, Z.; Shahrabi, T.; Ramezanzadeh, B. Synthesis and characterization of an effective green corrosion inhibitive hybrid pigment based on zinc acetate-cichorium intybus l leaves extract (zna-cil.l): electrochemical investigations on the synergistic corrosion inhibition of mild steel in aqueous chloride solutions. Dyes Pigments, 2017, 139, 218-232.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.002]
[127]
Lai, H.; Wei, R. Synthesis of a flavone-titanium (iv) complex and its electrocatalytic activity. Int. J. Electrochem. Sci., 2018, 13(5), 4808-4816.
[http://dx.doi.org/10.20964/2018.05.18]
[128]
Mishra, L.; Singh, A.; Maeda, Y. Synthesis, spectroscopic, electrochemical and anti-hiv studies of some mononuclear and dinuclear fe-iii complexes of 3-hydroxy-4 `-benzyloxy flavone containing oxygen, nitrogen and sulphur donors as co-ligands. J. Indian Chem. Soc., 2005, 82(10), 879-885.
[129]
Pastuszko, A.; Niewinna, K.; Czyz, M.; Jozwiak, A.; Malecka, M.; Budzisz, E. Synthesis, x-ray structure, electrochemical properties and cytotoxic effects of new arene ruthenium(ii) complexes. J. Organomet. Chem., 2013, 745, 64-70.
[http://dx.doi.org/10.1016/j.jorganchem.2013.07.020]
[130]
Pastuszko, A.; Majchrzak, K.; Czyz, M.; Kupcewicz, B.; Budzisz, E. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(ii) arene complexes with chromone derivatives. J. Inorg. Biochem., 2016, 159, 133-141.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.020] [PMID: 26986980]
[131]
Dean, J.V.; Mills, J.D. Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol. Plant., 2004, 120(4), 603-612.
[http://dx.doi.org/10.1111/j.0031-9317.2004.0263.x] [PMID: 15032822]
[132]
Adam, V.; Mikelova, R.; Hubalek, J.; Hanustiak, P.; Beklova, M.; Hodek, P.; Horna, A.; Trnkova, L.; Stiborova, M.; Zeman, L.; Kizek, R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors (Basel), 2007, 7(10), 2402-2418.
[http://dx.doi.org/10.3390/s7102402] [PMID: 28903234]
[133]
Aourabi, S.; Driouch, M.; Kadiri, M.; Mahjoubi, F.; Sfaira, M.; Hammouti, B.; Emran, K.M. Valorization of zea mays hairs waste extracts for antioxidant and anticorrosive activity of mild steel in 1 m hcl environment. Arab. J. Chem., 2020, 13(9), 7183-7198.
[http://dx.doi.org/10.1016/j.arabjc.2020.08.001]
[134]
Franke, A.; Custer, L.; Arakaki, C.; Murphy, S. Vitamin c and flavonoid levels of fruits and vegetables consumed in hawaii. J. Food Compos. Anal., 2004, 17(1), 1-35.
[http://dx.doi.org/10.1016/S0889-1575(03)00066-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy