Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Flavonoids, the Family of Plant-Derived Antioxidants Making Inroads into Novel Therapeutic Design Against Ionizing Radiation-Induced Oxidative Stress in Parkinson’s Disease

Author(s): Tapan Behl*, Gagandeep Kaur, Aayush Sehgal, Gokhan Zengin, Sukhbir Singh, Amirhossein Ahmadi and Simona Bungau

Volume 20, Issue 2, 2022

Published on: 07 February, 2022

Page: [324 - 343] Pages: 20

DOI: 10.2174/1570159X19666210524152817

Price: $65

Abstract

Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation- induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species.

Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease.

Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for indepth database collection.

Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms.

Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.

Keywords: Parkinson’s disease, ionizing radiation, oxidative stress, ROS, flavonoids, antioxidants.

Graphical Abstract

[1]
Betlazar, C.; Middleton, R.J.; Banati, R.B.; Liu, G.J. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol., 2016, 9, 144-156.
[http://dx.doi.org/10.1016/j.redox.2016.08.002] [PMID: 27544883]
[2]
Harada, K.H.; Niisoe, T.; Imanaka, M.; Takahashi, T.; Amako, K.; Fujii, Y.; Kanameishi, M.; Ohse, K.; Nakai, Y.; Nishikawa, T.; Saito, Y.; Sakamoto, H.; Ueyama, K.; Hisaki, K.; Ohara, E.; Inoue, T.; Yamamoto, K.; Matsuoka, Y.; Ohata, H.; Toshima, K.; Okada, A.; Sato, H.; Kuwamori, T.; Tani, H.; Suzuki, R.; Kashikura, M.; Nezu, M.; Miyachi, Y.; Arai, F.; Kuwamori, M.; Harada, S.; Ohmori, A.; Ishikawa, H.; Koizumi, A. Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant. Proc. Natl. Acad. Sci. USA, 2014, 111(10), E914-E923.
[http://dx.doi.org/10.1073/pnas.1315684111] [PMID: 24567380]
[3]
Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 6th ed; Lippincott Williams & Wilkins: Philadelphia, PA, 2006.
[4]
Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev., 2004, 23(3-4), 311-322.
[http://dx.doi.org/10.1023/B:CANC.0000031769.14728.bc] [PMID: 15197331]
[5]
Mapuskar, K.A.; Anderson, C.M.; Spitz, D.R.; Batinic-Haberle, I.; Allen, B.G.E.; Oberley-Deegan, R. Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues. Semin. Radiat. Oncol., 2019, 29(1), 72-80.https://dpi.org/10.1016/j.semradonc.2018.10.005
[http://dx.doi.org/10.1016/j.semradonc.2018.10.005] [PMID: 30573187]
[6]
Kempf, S.J.; Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Long-term effects of ionising radiation on the brain: cause for concern? Radiat. Environ. Biophys., 2013, 52(1), 5-16.
[http://dx.doi.org/10.1007/s00411-012-0436-7] [PMID: 23100112]
[7]
HAnne-Marie Arel-Dubeau, F.; Fanny Longpré, L.; Bournival, J.; Tremblay, C.; Demers-Lamarche, J. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid. Med. Cell. Longev., 2014, 425496, 1-15.
[http://dx.doi.org/10.1155/2014/425496]
[8]
Hemmati-Dinarvand, M.; Saedi, S.; Valilo, M.; Kalantary-Charvadeh, A.; Alizadeh Sani, M.; Kargar, R.; Safari, H.; Samadi, N. Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci. Lett., 2019, 709134296
[http://dx.doi.org/10.1016/j.neulet.2019.134296] [PMID: 31153970]
[9]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[10]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.https://dx.doi.org/10.3389%2Ffnagi.2010.00012
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[11]
Greenamyre, J.T.; Hastings, T.G. Biomedicine. Parkinson’s-divergent causes, convergent mechanisms. Science, 2004, 304(5674), 1120-1122.
[http://dx.doi.org/10.1126/science.1098966] [PMID: 15155938]
[12]
Licker, V.; Kövari, E.; Hochstrasser, D.F.; Burkhard, P.R. Proteomics in human Parkinson’s disease research. J. Proteomics, 2009, 73(1), 10-29.
[http://dx.doi.org/10.1016/j.jprot.2009.07.007] [PMID: 19632367]
[13]
Prithivirajsingh, S.; Story, M.D.; Bergh, S.A.; Geara, F.B.; Ang, K.K.; Ismail, S.M.; Stevens, C.W.; Buchholz, T.A.; Brock, W.A. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett., 2004, 571(1-3), 227-232.
[http://dx.doi.org/10.1016/j.febslet.2004.06.078] [PMID: 15280047]
[14]
Arduíno, D.M.; Esteves, A.R.; Cardoso, S.M. Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis., 2011, 2011767230
[http://dx.doi.org/10.4061/2011/767230] [PMID: 21403911]
[15]
Büeler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp. Neurol., 2009, 218(2), 235-246.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.006] [PMID: 19303005]
[16]
Kobashigawa, S.; Suzuki, K.; Yamashita, S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem. Biophys. Res. Commun., 2011, 414(4), 795-800.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.006] [PMID: 22005465]
[17]
Dalfó, E.; Portero-Otín, M.; Ayala, V.; Martínez, A.; Pamplona, R.; Ferrer, I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol., 2005, 64(9), 816-830.
[http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a] [PMID: 16141792]
[18]
Gundersen, V. Protein aggregation in Parkinson’s disease. Acta Neurol. Scand. Suppl., 2010, 122(190), 82-87.
[http://dx.doi.org/10.1111/j.1600-0404.2010.01382.x] [PMID: 20586742]
[19]
Sharma, N.K.; Sharma, R.; Mathur, D.; Sharad, S.; Minhas, G.; Bhatia, K.; Anand, A.; Ghosh, S.P. Role of Ionizing Radiation in Neurodegenerative Diseases. Front. Aging Neurosci., 2018, 10, 134.
[http://dx.doi.org/10.3389/fnagi.2018.00134] [PMID: 29867445]
[20]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[21]
Lumniczky, K.; Szatmári, T.; Sáfrány, G. Ionizing radiation-induced immune and inflammatory reactions in the brain. Front. Immunol., 2017, 8, 517.https://dx.doi.org/10.3389%2Ffimmu.2017.00517
[http://dx.doi.org/10.3389/fimmu.2017.00517] [PMID: 28529513]
[22]
Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in Parkinson’s Disease. Oxid. Med. Cell. Longev., 2015, 2015314560
[http://dx.doi.org/10.1155/2015/314560] [PMID: 26576219]
[23]
Sharma, B.; Gupta, V.K. Modulations of mammalian brain functions by antidepressant drugs: role of some phytochemicals as prospective antidepressants. Evid. Based Med. Pract, 2016, 2, 1-2.
[http://dx.doi.org/10.4172/ebmp.1000103]
[24]
Gupta, V.K.; Sharma, B. Role of phytochemicals in neurotrophins mediated regulation of Alzheimer’s Disease. Int. J. Complement. Alt. Med., 2017, 7(4), 00231.
[http://dx.doi.org/10.15406/ijcam.2017.07.00231]
[25]
Khushboo, S.B. Antidepressants: mechanism of action, toxicity and possible amelioration. J. Appl. Biotechnol. Bioeng., 2017, 3(5), 437-448.
[http://dx.doi.org/10.15406/jabb.2017.03.00082]
[26]
de Andrade Teles, R.B.; Diniz, T.C.; Costa Pinto, T.C.; de Oliveira Júnior, R.G.; Gama, E. Silva, M.; de Lavor, É.M.; Fernandes, A.W.C.; de Oliveira, A.P.; de Almeida Ribeiro, F.P.R.; da Silva, A.A.M.; Cavalcante, T.C.F.; Quintans, J.L.J.; da Silva Almeida, J.R.G. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 20187043213
[http://dx.doi.org/10.1155/2018/7043213] [PMID: 29861833]
[27]
Singh, N.; Gupta, V.K.; Doharey, P.K.; Srivastava, N.; Kumar, A.; Sharma, B. A Study on redox potential of phytochemicals and their impact on DNA. J. DNA & RNA Res., 2020, 1(2), 10-22.
[http://dx.doi.org/10.14302/issn.2575-7881.jdrr-20-3267]
[28]
Gupta, V.K.; Sharma, B. Phytochemicals from indian traditional plants as natural potential therapeutic agents against adenosquamous lungs. 2018 Pharmogia, 9(1), 39-45.
[29]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 20198748253
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[30]
Behl, T.; Kaur, G.; Sehgal, A.; Bhardwaj, S.; Singh, S.; Buhas, C.; Judea-Pusta, C.; Uivarosan, D.; Munteanu, M.A.; Bungau, S. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int. J. Mol. Sci., 2021, 22(3), 1413.
[http://dx.doi.org/10.3390/ijms22031413] [PMID: 33573368]
[31]
Behl, T.; Kaur, G.; Bungau, S.; Jhanji, R.; Kumar, A.; Mehta, V.; Zengin, G.; Brata, R.; Hassan, S.S.U.; Fratila, O. Distinctive evidence involved in the role of endocannabinoid signalling in parkinson’s disease: a perspective on associated therapeutic interventions. Int. J. Mol. Sci., 2020, 21(17), 6235.
[http://dx.doi.org/10.3390/ijms21176235] [PMID: 32872273]
[32]
Kaur, G.; Behl, T.; Bungau, S.; Kumar, A.; Uddin, M.S.; Mehta, V.; Zengin, G.; Mathew, B.; Shah, M.A.; Arora, S. Dysregulation of the Gut-Brain Axis, Dysbiosis and Influence of numerous factors on Gut Microbiota associated Parkinson’s Disease. Curr. NeuroPharm., 2020, 18, 1-15.
[http://dx.doi.org/10.2174/1570159X18666200606233050] [PMID: 32504503]
[33]
Schapira, A.H.; Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord., 2011, 26(6), 1049-1055.
[http://dx.doi.org/10.1002/mds.23732] [PMID: 21626550]
[34]
Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl. Neurodegener., 2021, 10(1), 4.
[http://dx.doi.org/10.1186/s40035-020-00226-x] [PMID: 33446243]
[35]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012428010
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[36]
Bosco, D.A.; Fowler, D.M.; Zhang, Q.; Nieva, J.; Powers, E.T.; Wentworth, P., Jr; Lerner, R.A.; Kelly, J.W. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol., 2006, 2(5), 249-253.
[http://dx.doi.org/10.1038/nchembio782] [PMID: 16565714]
[37]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 20178416763
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[38]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[39]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[40]
Kumar Sharma, A.; Taneja, G.; Khanna, D.; Rajput, S.K. Reactive oxygen species: friend or foe? RSC Adv, 2015, 5, 57267-57276.
[http://dx.doi.org/10.1039/C5RA07927F]
[41]
Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci., 2016, 148, 183-193.
[http://dx.doi.org/10.1016/j.lfs.2016.02.002] [PMID: 26851532]
[42]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2012.05.009] [PMID: 25774178]
[43]
An, Z.; Yan, J.; Zhang, Y.; Pei, R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(38), 8748-8767.
[http://dx.doi.org/10.1039/D0TB01380C] [PMID: 32869050]
[44]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[45]
Zündorf, G.; Reiser, G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal., 2011, 14(7), 1275-1288.
[http://dx.doi.org/10.1089/ars.2010.3359] [PMID: 20615073]
[46]
Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis., 2014, 42(Suppl. 3), S125-S152.
[http://dx.doi.org/10.3233/JAD-132738] [PMID: 25056458]
[47]
Conway, K.A.; Rochet, J.C.; Bieganski, R.M.; Lansbury, P.T., Jr Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science, 2001, 294(5545), 1346-1349.
[http://dx.doi.org/10.1126/science.1063522] [PMID: 11701929]
[48]
Martinez-Vicente, M.; Talloczy, Z.; Kaushik, S.; Massey, A.C.; Mazzulli, J.; Mosharov, E.V.; Hodara, R.; Fredenburg, R.; Wu, D.C.; Follenzi, A.; Dauer, W.; Przedborski, S.; Ischiropoulos, H.; Lansbury, P.T.; Sulzer, D.; Cuervo, A.M. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest.,, 2008, 118(2), 777-788.https://dx.doi.org/10.1172%2FJCI32806
[PMID: 18172548]
[49]
Zecca, L.; Wilms, H.; Geick, S.; Claasen, J.H.; Brandenburg, L.O.; Holzknecht, C.; Panizza, M.L.; Zucca, F.A.; Deuschl, G.; Sievers, J.; Lucius, R. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol., 2008, 116(1), 47-55.
[http://dx.doi.org/10.1007/s00401-008-0361-7] [PMID: 18343932]
[50]
Hastings, T.G. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J. Bioenerg. Biomembr., 2009, 41(6), 469-472.
[http://dx.doi.org/10.1007/s10863-009-9257-z] [PMID: 19967436]
[51]
Qian, L.; Flood, P.M.; Hong, J.S. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J. Neural Transm. (Vienna), 2010, 117(8), 971-979.
[http://dx.doi.org/10.1007/s00702-010-0428-1] [PMID: 20571837]
[52]
Betarbet, R.; Sherer, T.B.; Greenamyre, J.T. Animal models of Parkinson’s disease. BioEssays, 2002, 24(4), 308-318.
[http://dx.doi.org/10.1002/bies.10067] [PMID: 11948617]
[53]
Banerjee, R.; Starkov, A.A.; Beal, M.F.; Thomas, B. Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim. Biophys. Acta, 2009, 1792(7), 651-663.
[http://dx.doi.org/10.1016/j.bbadis.2008.11.007] [PMID: 19059336]
[54]
Bender, A.; Krishnan, K.J.; Morris, C.M.; Taylor, G.A.; Reeve, A.K.; Perry, R.H.; Jaros, E.; Hersheson, J.S.; Betts, J.; Klopstock, T.; Taylor, R.W.; Turnbull, D.M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet., 2006, 38(5), 515-517.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[55]
Devi, L.; Raghavendran, V.; Prabhu, B.M.; Avadhani, N.G.; Anandatheerthavarada, H.K. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem., 2008, 283(14), 9089-9100.
[http://dx.doi.org/10.1074/jbc.M710012200] [PMID: 18245082]
[56]
Martin, L.J.; Pan, Y.; Price, A.C.; Sterling, W.; Copeland, N.G.; Jenkins, N.A.; Price, D.L.; Lee, M.K. Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci., 2006, 26(1), 41-50.
[http://dx.doi.org/10.1523/JNEUROSCI.4308-05.2006] [PMID: 16399671]
[57]
Valentin, J. Low-dose extrapolation of radiation-related cancer risk. Ann. ICRP, 2005, 35(4), 1-140.
[http://dx.doi.org/10.1016/j.icrp.2005.11.002] [PMID: 16782497]
[58]
Pospisil, P.; Kazda, T.; Bulik, M.; Dobiaskova, M.; Burkon, P.; Hynkova, L.; Slampa, P.; Jancalek, R. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences. Radiat. Oncol., 2015, 10, 211.
[http://dx.doi.org/10.1186/s13014-015-0518-1] [PMID: 26474857]
[59]
Morgan, W.F.; Bair, W.J. Issues in low dose radiation biology: the controversy continues. A perspective. Radiat. Res., 2013, 179(5), 501-510.
[http://dx.doi.org/10.1667/RR3306.1] [PMID: 23560636]
[60]
Acharya, M.M.; Patel, N.H.; Craver, B.M.; Tran, K.K.; Giedzinski, E.; Tseng, B.P.; Parihar, V.K.; Limoli, C.L. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment. PLoS One, 2015, 10(6)e0128316
[http://dx.doi.org/10.1371/journal.pone.0128316] [PMID: 26042591]
[61]
Greene-Schloesser, D.; Moore, E.; Robbins, M.E. Molecular pathways: radiation-induced cognitive impairment. Clin. Cancer Res., 2013, 19(9), 2294-2300.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2903] [PMID: 23388505]
[62]
Vaiserman, A.; Koliada, A.; Zabuga, O.; Socol, Y. Health impacts of low-dose ionizing radiation: current scientific debates and regulatory issues. Dose Response, 2018, 16(3)1559325818796331
[http://dx.doi.org/10.1177/1559325818796331] [PMID: 30263019]
[63]
Gori, T.; Münzel, T. Biological effects of low-dose radiation: of harm and hormesis. Eur. Heart J., 2012, 33(3), 292-295.
[http://dx.doi.org/10.1093/eurheartj/ehr288] [PMID: 21862465]
[64]
Su, P.; Zhang, J.; Wang, D.; Zhao, F.; Cao, Z.; Aschner, M.; Luo, W. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience, 2016, 319, 155-167.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.035] [PMID: 26827945]
[65]
O’Neill, P.; Wardman, P. Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol., 2009, 85(1), 9-25.
[http://dx.doi.org/10.1080/09553000802640401] [PMID: 19205982]
[66]
Azzam, E.I.; Little, J.B. The radiation-induced bystander effect: evidence and significance. Hum. Exp. Toxicol., 2004, 23(2), 61-65.
[http://dx.doi.org/10.1191/0960327104ht418oa] [PMID: 15070061]
[67]
Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 2012, 327(1-2), 48-60.
[http://dx.doi.org/10.1016/j.canlet.2011.12.012] [PMID: 22182453]
[68]
Limoli, C.L.; Giedzinski, E.; Rola, R.; Otsuka, S.; Palmer, T.D.; Fike, J.R. Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat. Res., 2004, 161(1), 17-27.
[http://dx.doi.org/10.1667/RR3112] [PMID: 14680400]
[69]
Ye, J.; Jiang, Z.; Chen, X.; Liu, M.; Li, J.; Liu, N. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production. Exp. Cell Res., 2016, 340(2), 315-326.
[http://dx.doi.org/10.1016/j.yexcr.2015.10.026] [PMID: 26511505]
[70]
Kam, T.I.; Hinkle, J.T.; Dawson, T.M.; Dawson, V.L. Microglia and astrocyte dysfunction in parkinson’s disease. Neurobiol. Dis., 2020, 144105028
[http://dx.doi.org/10.1016/j.nbd.2020.105028] [PMID: 32736085]
[71]
Pathipati, P.; Müller, S.; Jiang, X.; Ferriero, D. Phenotype and secretory responses to oxidative stress in microglia. Dev. Neurosci., 2013, 35(2-3), 241-254.
[http://dx.doi.org/10.1159/000346159] [PMID: 23548608]
[72]
Boche, D.; Perry, V.H.; Nicoll, J.A. Review: activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18.
[http://dx.doi.org/10.1111/nan.12011] [PMID: 23252647]
[73]
Liu, X.; Quan, N. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front. Neurol., 2018, 9, 8.https://dx.doi.org/10.3389%2Ffneur.2018.00008
[http://dx.doi.org/10.3389/fneur.2018.00008] [PMID: 29410649]
[74]
Carreira, B.P.; Morte, M.I.; Santos, A.I.; Lourenço, A.S.; Ambrósio, A.F.; Carvalho, C.M.; Araújo, I.M. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling. Front. Cell. Neurosci., 2014, 8, 343.
[http://dx.doi.org/10.3389/fncel.2014.00343] [PMID: 25389386]
[75]
L’Episcopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Deleidi, M.; Serapide, M.F.; Pluchino, S.; Marchetti, B. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J. Neurosci., 2012, 32(6), 2062-2085.
[http://dx.doi.org/10.1523/JNEUROSCI.5259-11.2012] [PMID: 22323720]
[76]
Bisht, K.; Sharma, K.P.; Lecours, C.; Sánchez, M.G.; El Hajj, H.; Milior, G.; Olmos-Alonso, A.; Gómez-Nicola, D.; Luheshi, G.; Vallières, L.; Branchi, I.; Maggi, L.; Limatola, C.; Butovsky, O.; Tremblay, M.È. Dark microglia: A new phenotype predominantly associated with pathological states. Glia, 2016, 64(5), 826-839.https://dx.doi.org/10.1002%2Fglia.22966
[http://dx.doi.org/10.1002/glia.22966] [PMID: 26847266]
[77]
Wake, H.; Moorhouse, A.J.; Jinno, S.; Kohsaka, S.; Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci., 2009, 29(13), 3974-3980.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[78]
Di Filippo, M.; de Iure, M.A.; Giampa, C.; Chiasserini, D.; Tozzi, A.; Orvietani, P.L.; Ghiglieri, V.; Tantucci, M.; Durante, V.; Quiroga-Varela, A. Persistent activation of microglia and nadph drive hippocampal dysfunction in experimental multiple sclerosis. Sci. Rep., 2016, 6, 20926.
[http://dx.doi.org/10.1038/srep20926] [PMID: 26887636]
[79]
Benedek, G.; Zhang, J.; Bodhankar, S.; Nguyen, H.; Kent, G.; Jordan, K.; Manning, D.; Vandenbark, A.A.; Offner, H. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2016, 293, 45-53.
[http://dx.doi.org/10.1016/j.jneuroim.2016.02.009] [PMID: 27049561]
[80]
Wang, J.; Song, N.; Jiang, H.; Wang, J.; Xie, J. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim. Biophys. Acta, 2013, 1832(5), 618-625.
[http://dx.doi.org/10.1016/j.bbadis.2013.01.021] [PMID: 23376588]
[81]
Haas, S.J.; Zhou, X.; Machado, V.; Wree, A.; Krieglstein, K.; Spittau, B. Expression of tgfbeta1 and inflammatory markers in the 6-hydroxydopamine mouse model of parkinson’s disease. Front. Mol. Neurosci., 2016, 9, 7.
[http://dx.doi.org/10.3389/fnmol.2016.00007] [PMID: 26869879]
[82]
Allen, B.D.; Syage, A.R.; Maroso, M.; Baddour, A.A.D.; Luong, V.; Minasyan, H.; Giedzinski, E.; West, B.L.; Soltesz, I.; Limoli, C.L.; Baulch, J.E.; Acharya, M.M. Mitigation of helium irradiation-induced brain injury by microglia depletion. J. Neuroinflammation, 2020, 17(1), 159.
[http://dx.doi.org/10.1186/s12974-020-01790-9] [PMID: 32429943]
[83]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[84]
Banati, R.B.; Egensperger, R.; Maassen, A.; Hager, G.; Kreutzberg, G.W.; Graeber, M.B. Mitochondria in activated microglia in vitro. J. Neurocytol., 2004, 33(5), 535-541.
[http://dx.doi.org/10.1007/s11068-004-0515-7] [PMID: 15906160]
[85]
Deng, Z.; Sui, G.; Rosa, P.M.; Zhao, W. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One, 2012, 7(5)e36739
[http://dx.doi.org/10.1371/journal.pone.0036739] [PMID: 22606284]
[86]
Yin, F.; Boveris, A.; Cadenas, E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal., 2014, 20(2), 353-371.
[http://dx.doi.org/10.1089/ars.2012.4774] [PMID: 22793257]
[87]
Guilarte, T.R.; Loth, M.K.; Guariglia, S.R. Tspo finds nox2 in microglia for redox homeostasis. Trends Pharm. Sci., 2016, 37(5), 334-343.
[http://dx.doi.org/10.1016/j.tips.2016.02.008] [PMID: 27113160]
[88]
Chen, S.H.; Oyarzabal, E.A.; Hong, J.S. Critical role of the mac1/nox2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr. Opin. Pharm., 2016, 26, 54-60.
[89]
Haslund-Vinding, J.; McBean, G.; Jaquet, V.; Vilhardt, F. Nadph oxidases in microglia oxidant production: activating receptors, Pharmogy, and association with disease. Br. J. Pharm., 2016, 174, 1733-1749.
[http://dx.doi.org/10.1111/bph.13425] [PMID: 26750203]
[90]
Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322.
[http://dx.doi.org/10.3389/fncel.2015.00322] [PMID: 26347610]
[91]
Sharma, N.; Nehru, B. Apocyanin, a microglial nadph oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced parkinson’s disease model. Mol. Neurobiol., 2016, 53(5), 3326-3337.
[http://dx.doi.org/10.1007/s12035-015-9267-2] [PMID: 26081143]
[92]
Yadav, S.; Gandham, S.K.; Panicucci, R.; Amiji, M.M. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine (Lond.), 2016, 12(4), 987-1002.
[http://dx.doi.org/10.1016/j.nano.2015.12.374] [PMID: 26767514]
[93]
Rojo, A.I.; McBean, G.; Cindric, M.; Egea, J.; López, M.G.; Rada, P.; Zarkovic, N.; Cuadrado, A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid. Redox Signal., 2014, 21(12), 1766-1801.
[http://dx.doi.org/10.1089/ars.2013.5745] [PMID: 24597893]
[94]
Han, J.E.; Choi, J.W. Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Arch. Pharm. Res., 2012, 35(4), 709-715.
[http://dx.doi.org/10.1007/s12272-012-0415-1] [PMID: 22553064]
[95]
Ungvari, Z.; Podlutsky, A.; Sosnowska, D.; Tucsek, Z.; Toth, P.; Deak, F.; Gautam, T.; Csiszar, A.; Sonntag, W.E. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(12), 1443-1457.
[http://dx.doi.org/10.1093/gerona/glt057] [PMID: 23689827]
[96]
Wang, H-L.; Chou, A-H.; Wu, A-S.; Chen, S-Y.; Weng, Y-H.; Kao, Y-C.; Yeh, T.H.; Chu, P.J.; Lu, C.S. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim. Biophys. Acta, 2011, 1812(6), 674-684.
[http://dx.doi.org/10.1016/j.bbadis.2011.03.007] [PMID: 21421046]
[97]
Ji, S.; Tian, Y.; Lu, Y.; Sun, R.; Ji, J.; Zhang, L.; Duan, S. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription. Brain Res., 2014, 1577, 77-88.
[http://dx.doi.org/10.1016/j.brainres.2014.06.035] [PMID: 25020123]
[98]
Osipov, A.N.; Buleeva, G.; Arkhangelskaya, E.; Klokov, D. In vivo γ-irradiation low dose threshold for suppression of DNA double strand breaks below the spontaneous level in mouse blood and spleen cells. Mutat. Res., 2013, 756(1-2), 141-145.
[http://dx.doi.org/10.1016/j.mrgentox.2013.04.016] [PMID: 23664857]
[99]
Sweet, T.B.; Panda, N.; Hein, A.M.; Das, S.L.; Hurley, S.D.; Olschowka, J.A.; Williams, J.P.; O’Banion, M.K. Central nervous system effects of whole-body proton irradiation. Radiat. Res., 2014, 182(1), 18-34.
[http://dx.doi.org/10.1667/RR13699.1] [PMID: 24937778]
[100]
Roughton, K.; Boström, M.; Kalm, M.; Blomgren, K. Irradiation to the young mouse brain impaired white matter growth more in females than in males. Cell Death Dis., 2013, 4e897
[http://dx.doi.org/10.1038/cddis.2013.423] [PMID: 24176855]
[101]
Rana, P.; Khan, A.R.; Modi, S.; Hemanth Kumar, B.S.; Javed, S.; Tripathi, R.P.; Khushu, S. Altered brain metabolism after whole body irradiation in mice: a preliminary in vivo 1H MRS study. Int. J. Radiat. Biol., 2013, 89(3), 212-218.
[http://dx.doi.org/10.3109/09553002.2013.734944] [PMID: 23020784]
[102]
Jenrow, K.A.; Brown, S.L.; Lapanowski, K.; Naei, H.; Kolozsvary, A.; Kim, J.H. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat. Res., 2013, 179(5), 549-556.
[http://dx.doi.org/10.1667/RR3026.1] [PMID: 23560629]
[103]
Mizumatsu, S.; Monje, M.L.; Morhardt, D.R.; Rola, R.; Palmer, T.D.; Fike, J.R. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res., 2003, 63(14), 4021-4027.
[PMID: 12874001]
[104]
Monje, M.L.; Toda, H.; Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science, 2003, 302(5651), 1760-1765.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[105]
Kalm, M.; Fukuda, A.; Fukuda, H.; Ohrfelt, A.; Lannering, B.; Björk-Eriksson, T.; Blennow, K.; Márky, I.; Blomgren, K. Transient inflammation in neurogenic regions after irradiation of the developing brain. Radiat. Res., 2009, 171(1), 66-76.
[http://dx.doi.org/10.1667/RR1269.1] [PMID: 19138045]
[106]
Hwang, S.Y.; Jung, J.S.; Kim, T.H.; Lim, S.J.; Oh, E.S.; Kim, J.Y.; Ji, K.A.; Joe, E.H.; Cho, K.H.; Han, I.O. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol. Dis., 2006, 21(3), 457-467.
[http://dx.doi.org/10.1016/j.nbd.2005.08.006] [PMID: 16202616]
[107]
Lee, W.H.; Sonntag, W.E.; Mitschelen, M.; Yan, H.; Lee, Y.W. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int. J. Radiat. Biol., 2010, 86(2), 132-144.https://dx.doi.org/10.3109%2F09553000903419346
[http://dx.doi.org/10.3109/09553000903419346] [PMID: 20148699]
[108]
Schnegg, C.I.; Kooshki, M.; Hsu, F.C.; Sui, G.; Robbins, M.E. PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-κB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway. Free Radic. Biol. Med., 2012, 52(9), 1734-1743.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.032] [PMID: 22387176]
[109]
Fishman, K.; Baure, J.; Zou, Y.; Huang, T.T.; Andres-Mach, M.; Rola, R.; Suarez, T.; Acharya, M.; Limoli, C.L.; Lamborn, K.R.; Fike, J.R. Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic. Biol. Med., 2009, 47(10), 1459-1467.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.016] [PMID: 19703553]
[110]
Malakhova, L.; Bezlepkin, V.G.; Antipova, V.; Ushakova, T.; Fomenko, L.; Sirota, N.; Gaziev, A.I. The increase in mitochondrial DNA copy number in the tissues of gamma-irradiated mice. Cell. Mol. Biol. Lett., 2005, 10(4), 721-732.
[PMID: 16341280]
[111]
Winterbourn, C.C.; Hampton, M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med., 2008, 45(5), 549-561.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.004] [PMID: 18544350]
[112]
Yamaoka, K.; Mori, S.; Nomura, T.; Taguchi, T.; Ito, T.; Hanamoto, K.; Kojima, S. Elevation of antioxidant potency in mice brain by low-dose X-ray irradiation and its effect on Fe-NTA-induced brain damage. Physiol. Chem. Phys. Med. NMR, 2002, 34(2), 119-132.
[PMID: 12841329]
[113]
El-Ghazaly, M.A.; Sadik, N.A.; Rashed, E.R.; Abd-El-Fattah, A.A. Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson’s disease. Toxicol. Ind. Health, 2015, 31(12), 1128-1143.
[http://dx.doi.org/10.1177/0748233713487251] [PMID: 23696346]
[114]
Coskun, P.; Wyrembak, J.; Schriner, S.E.; Chen, H.W.; Marciniack, C.; Laferla, F.; Wallace, D.C. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta, 2012, 1820(5), 553-564.
[http://dx.doi.org/10.1016/j.bbagen.2011.08.008] [PMID: 21871538]
[115]
Breydo, L.; Wu, J.W.; Uversky, V.N. A-synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta, 2012, 1822(2), 261-285.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.002] [PMID: 22024360]
[116]
Wördehoff, M.M.; Shaykhalishahi, H.; Groß, L.; Gremer, L.; Stoldt, M.; Buell, A.K.; Willbold, D.; Hoyer, W. Opposed effects of dityrosine formation in soluble and aggregated alpha-synuclein on fibril growth. J. Mol. Biol., 2017, 429(20), 3018-3030.
[http://dx.doi.org/10.1016/j.jmb.2017.09.005] [PMID: 28918091]
[117]
Martin, C.; Rubio, I.; Fatome, M. Early and transient effects of neutron irradiation on dopamine receptors in the adult rat brain. Neurosci. Lett., 1993, 155(1), 77-80.
[http://dx.doi.org/10.1016/0304-3940(93)90677-D] [PMID: 8361668]
[118]
Robinson, P.A. Protein stability and aggregation in Parkinson’s disease. Biochem. J., 2008, 413(1), 1-13.
[http://dx.doi.org/10.1042/BJ20080295] [PMID: 18537793]
[119]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[120]
Calabrese, V.; Santoro, A.; Trovato, S.A.; Modafferi, S.; Scuto, M.; Albouchi, F.; Monti, D.; Giordano, J.; Zappia, M.; Franceschi, C.; Calabrese, E.J. Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res., 2018, 96(10), 1641-1662.
[http://dx.doi.org/10.1002/jnr.24244] [PMID: 30098077]
[121]
Di Rosa, G.; Brunetti, G.; Scuto, M.; Trovato, S.A.; Calabrese, E.J.; Crea, R.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan enhancement by olive polyphenols in C. elegans Wild Type and Parkinson’s Models. Int. J. Mol. Sci., 2020, 21(11), 3893.
[http://dx.doi.org/10.3390/ijms21113893] [PMID: 32486023]
[122]
Agathokleous, E.; Calabrese, E.J. Hormesis: The dose response for the 21st century: The future has arrived. Toxicology, 2019, 425152249
[http://dx.doi.org/10.1016/j.tox.2019.152249] [PMID: 31330228]
[123]
Calabrese, E.J.; Baldwin, L.A. Defining hormesis. Hum. Exp. Toxicol., 2002, 21(2), 91-97.
[http://dx.doi.org/10.1191/0960327102ht217oa] [PMID: 12102503]
[124]
Mattson, M.P. Hormesis defined. Ageing Res. Rev., 2008, 7(1), 1-7.
[http://dx.doi.org/10.1016/j.arr.2007.08.007] [PMID: 18162444]
[125]
Genard, G.; Lucas, S.; Michiels, C. Reprogramming of tumorassociated macrophages with anticancer therapies: Radiotherapy versus chemo- and immunotherapies. Front. Immunol., 2017, 8, 828.
[http://dx.doi.org/10.3389/fimmu.2017.00828] [PMID: 28769933]
[126]
Walton, E.L. Radiotherapy and the tumor microenvironment: The “macro” picture. Biomed. J., 2017, 40(4), 185-188.
[http://dx.doi.org/10.1016/j.bj.2017.07.001] [PMID: 28918906]
[127]
Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; Franceschi, C. Aging and Parkinson’s Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic. Biol. Med., 2018, 115, 80-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.379] [PMID: 29080843]
[128]
Calabrese, E.J.; Calabrese, V.; Tsatsakis, A.; Giordano, J.J. Hormesis and Ginkgo biloba (GB): Numerous biological effects of GB are mediated via hormesis. Ageing Res. Rev., 2020, 64101019
[http://dx.doi.org/10.1016/j.arr.2020.101019] [PMID: 31931153]
[129]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s Disease in Mice. Antioxidants, 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[130]
Pilipenko, V.; Narbute, K.; Amara, I.; Trovato, A.; Scuto, M.; Pupure, J.; Jansone, B.; Poikans, J.; Bisenieks, E.; Klusa, V.; Calabrese, V. GABA-containing compound gammapyrone protects against brain impairments in Alzheimer’s disease model male rats and prevents mitochondrial dysfunction in cell culture. J. Neurosci. Res., 2019, 97(6), 708-726.
[http://dx.doi.org/10.1002/jnr.24396] [PMID: 30742328]
[131]
Tanaka, M.; Vécsei, L. Monitoring the redox status in multiple sclerosis. Biomedicines, 2020, 8(10), 406.
[http://dx.doi.org/10.3390/biomedicines8100406] [PMID: 33053739]
[132]
Peters, V.; Calabrese, V.; Forsberg, E.; Volk, N.; Fleming, T.; Baelde, H.; Weigand, T.; Thiel, C.; Trovato, A.; Scuto, M.; Modafferi, S.; Schmitt, C.P. Protective Actions of anserine under diabetic conditions. Int. J. Mol. Sci., 2018, 19(9), 2751.
[http://dx.doi.org/10.3390/ijms19092751] [PMID: 30217069]
[133]
Ismail, A.F.; El-Sonbaty, S.M. Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain. J. Photochem. Photobiol. B, 2016, 158, 154-163.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.039] [PMID: 26974576]
[134]
Agati, G.; Tattini, M. Multiple functional roles of flavonoids in photoprotection. New Phytol., 2010, 186(4), 786-793.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03269.x] [PMID: 20569414]
[135]
Pollastri, S.; Tattini, M. Flavonols: old compounds for old roles. Ann. Bot., 2011, 108(7), 1225-1233.
[http://dx.doi.org/10.1093/aob/mcr234] [PMID: 21880658]
[136]
Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci., 2013, 14(2), 3540-3555.https://dx.doi.org/10.3390%2Fijms14023540
[http://dx.doi.org/10.3390/ijms14023540] [PMID: 23434657]
[137]
Gurung, R.B.; Kim, E.H.; Oh, T.J.; Sohng, J.K. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells, 2013, 36(4), 355-361.https://dx.doi.org/10.1007%2Fs10059-013-0164-0
[http://dx.doi.org/10.1007/s10059-013-0164-0] [PMID: 24170092]
[138]
Kim, T.Y.; Leem, E.; Lee, J.M.; Kim, S.R. Control of reactive oxygen species for the prevention of parkinson’s disease: the possible application of flavonoids. Antioxidants, 2020, 9(7), 583.https://dx.doi.org/10.3390%2Fantiox9070583
[http://dx.doi.org/10.3390/antiox9070583] [PMID: 32635299]
[139]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. NeuroPharm., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[140]
Rendeiro, C.; Vauzour, D.; Rattray, M.; Waffo-Téguo, P.; Mérillon, J.M.; Butler, L.T.; Williams, C.M.; Spencer, J.P.E. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One, 2013, 8(5)e63535
[http://dx.doi.org/10.1371/journal.pone.0063535] [PMID: 23723987]
[141]
Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr., 2015, 6(1), 64-72.
[http://dx.doi.org/10.3945/an.114.007500] [PMID: 25593144]
[142]
Castellano, G.; González-Santander, J.L.; Lara, A.; Torrens, F. Classification of flavonoid compounds by using entropy of information theory. Phytochemistry, 2013, 93, 182-191.
[http://dx.doi.org/10.1016/j.phytochem.2013.03.024] [PMID: 23642389]
[143]
Spencer, J.P.E.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med., 2012, 33(1), 83-97.
[http://dx.doi.org/10.1016/j.mam.2011.10.016] [PMID: 22107709]
[144]
Leonardo, C.C.; Doré, S. Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr. Neurosci., 2011, 14(5), 226-236.
[http://dx.doi.org/10.1179/1476830511Y.0000000013] [PMID: 22005287]
[145]
Yang, J.; Jia, M.; Zhang, X.; Wang, P. Calycosin attenuates MPTP-induced Parkinson’s disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother. Res., 2019, 33(2), 309-318.
[http://dx.doi.org/10.1002/ptr.6221] [PMID: 30421460]
[146]
Salama, S.A.; Arab, H.H.; Maghrabi, I.A. Troxerutin down-regulates KIM-1, modulates p38 MAPK signaling, and enhances renal regenerative capacity in a rat model of gentamycin-induced acute kidney injury. Food Funct., 2018, 9(12), 6632-6642.
[http://dx.doi.org/10.1039/C8FO01086B] [PMID: 30511081]
[147]
Lan, X.; Han, X.; Li, Q.; Wang, J. (-)-Epicatechin, a natural flavonoid compound, protects astrocytes against hemoglobin toxicity via Nrf2 and AP-1 signaling pathways. Mol. Neurobiol., 2017, 54(10), 7898-7907.
[http://dx.doi.org/10.1007/s12035-016-0271-y] [PMID: 27864733]
[148]
de Freitas Silva, M.; Pruccoli, L.; Morroni, F.; Sita, G.; Seghetti, F.; Viegas, C.; Tarozzi, A. The Keap1/Nrf2-ARE pathway as a Pharmogical target for chalcones. Molecules, 2018, 23(7), 1803.https://dx.doi.org/10.3390%2Fmolecules23071803
[http://dx.doi.org/10.3390/molecules23071803] [PMID: 30037040]
[149]
Wang, X.; Chen, S.; Ma, G.; Ye, M.; Lu, G. Genistein protects dopaminergic neurons by inhibiting microglial activation. Neuroreport, 2005, 16(3), 267-270.
[http://dx.doi.org/10.1097/00001756-200502280-00013] [PMID: 15706233]
[150]
Sonee, M.; Sum, T.; Wang, C.; Mukherjee, S.K. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology, 2004, 25(5), 885-891.
[http://dx.doi.org/10.1016/j.neuro.2003.11.001] [PMID: 15288519]
[151]
Gao, H.M.; Jiang, J.; Wilson, B.; Zhang, W.; Hong, J.S.; Liu, B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J. Neurochem., 2002, 81(6), 1285-1297.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00928.x] [PMID: 12068076]
[152]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules, 2018, 23(4), 814.
[http://dx.doi.org/10.3390/molecules23040814] [PMID: 29614843]
[153]
Jung, U.J.; Kim, S.R. Beneficial Effects of Flavonoids Against Parkinson’s Disease. J. Med. Food, 2018, 21(5), 421-432.
[http://dx.doi.org/10.1089/jmf.2017.4078] [PMID: 29412767]
[154]
Makino, T.; Hishida, A.; Goda, Y.; Mizukami, H. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J. Nat. Med., 2008, 62(3), 294-299.
[http://dx.doi.org/10.1007/s11418-008-0230-7] [PMID: 18404307]
[155]
Zhang, X.; Du, L.; Zhang, W.; Yang, Y.; Zhou, Q.; Du, G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci. Rep., 2017, 7(1), 9968.
[http://dx.doi.org/10.1038/s41598-017-07442-y] [PMID: 28855526]
[156]
Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139.
[http://dx.doi.org/10.1002/jnr.23307] [PMID: 24166733]
[157]
Chen, M.; Gu, H.; Ye, Y.; Lin, B.; Sun, L.; Deng, W.; Zhang, J.; Liu, J. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol., 2010, 48(10), 2980-2987.
[http://dx.doi.org/10.1016/j.fct.2010.07.037] [PMID: 20678535]
[158]
Antunes, M.S.; Goes, A.T.R.; Boeira, S.P.; Prigol, M.; Jesse, C.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 2014, 30(11-12), 1415-1422.
[http://dx.doi.org/10.1016/j.nut.2014.03.024] [PMID: 25280422]
[159]
Tamilselvam, K.; Braidy, N.; Manivasagam, T.; Essa, M.M.; Prasad, N.R.; Karthikeyan, S.; Thenmozhi, A.J.; Selvaraju, S.; Guillemin, G.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev., 2013, 2013102741https://dx.doi.org/10.1155%2F2013%2F102741
[http://dx.doi.org/10.1155/2013/102741] [PMID: 24205431]
[160]
Yin, L.; Cheng, W.; Qin, Z.; Yu, H.; Yu, Z.; Zhong, M.; Sun, K.; Zhang, W. Effects of naringin on proliferation and osteogenic differentiation of human periodontal ligament stem cells In Vitro and In Vivo. Stem Cells Int., 2015, 2015758706
[http://dx.doi.org/10.1155/2015/758706] [PMID: 26078764]
[161]
Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z.; Liu, C. Systematic analysis of main constituents in rat biological samples after oral administration of the methanol extract of fructus aurantii by HPLC-ESI-MS/MS. Iran. J. Pharm. Res., 2014, 13(2), 493-503.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4157024/
[PMID: 25237344]
[162]
Wong, K.C.; Pang, W.Y.; Wang, X.L.; Mok, S.K.; Lai, W.P.; Chow, H.K.; Leung, P.C.; Yao, X.S.; Wong, M.S. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br. J. Nutr., 2013, 110(3), 475-485.
[http://dx.doi.org/10.1017/S0007114512005405] [PMID: 23302510]
[163]
Chtourou, Y.; Gargouri, B.; Kebieche, M.; Fetoui, H. Naringin Abrogates Cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged Rats. J. Mol. Neurosci., 2015, 56(2), 349-362.
[http://dx.doi.org/10.1007/s12031-015-0547-0] [PMID: 25896911]
[164]
Nam, J.H.; Leem, E.; Jeon, M-T.; Kim, Y-J.; Jung, U.J.; Choi, M-S.; Maeng, S.; Jin, B.K.; Kim, S.R. Inhibition of prothrombin kringle-2-induced inflammation by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Neuroreport, 2014, 25(7), 489-495.
[http://dx.doi.org/10.1097/WNR.0000000000000122] [PMID: 24488033]
[165]
Gopinath, K.; Sudhandiran, G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 2012, 227, 134-143.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.060] [PMID: 22871521]
[166]
Lou, H.; Jing, X.; Wei, X.; Shi, H.; Ren, D.; Zhang, X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. NeuroPharmogy, 2014, 79, 380-388.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[167]
Bhathena, S.J.; Velasquez, M.T. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr., 2002, 76(6), 1191-1201.
[http://dx.doi.org/10.1093/ajcn/76.6.1191] [PMID: 12450882]
[168]
Zuk, M.; Kulma, A.; Dymińska, L.; Szołtysek, K.; Prescha, A.; Hanuza, J.; Szopa, J. Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol., 2011, 11, 10.https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1186%2F1472-6750-12-47
[http://dx.doi.org/10.1186/1472-6750-11-10] [PMID: 21276227]
[169]
Schroeter, H.; Spencer, J.P.; Rice-Evans, C.; Williams, R.J. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem. J., 2001, 358(Pt 3), 547-557.
[http://dx.doi.org/10.1042/bj3580547] [PMID: 11535118]
[170]
Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446.
[http://dx.doi.org/10.1016/S0891-5849(00)00498-6] [PMID: 11182299]
[171]
Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol. Aging, 2012, 33(4), 767-785.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[172]
Watanabe, Y.; Himeda, T.; Araki, T. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Med. Sci. Monit., 2005, 11(1), RA17-RA23.
[PMID: 15614202]
[173]
Arjumand, W.; Seth, A.; Sultana, S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB, TNF-α and caspase-3 expression in wistar rats. Food Chem. Toxicol., 2011, 49(9), 2013-2021.
[http://dx.doi.org/10.1016/j.fct.2011.05.012] [PMID: 21605616]
[174]
Khan, M.M.; Raza, S.S.; Javed, H.; Ahmad, A.; Khan, A.; Islam, F.; Safhi, M.M.; Islam, F. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox. Res., 2012, 22(1), 1-15.
[http://dx.doi.org/10.1007/s12640-011-9295-2] [PMID: 22194158]
[175]
Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int. J. Mol. Med., 2013, 32(1), 235-240.
[http://dx.doi.org/10.3892/ijmm.2013.1375] [PMID: 23670213]
[176]
Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev., 2018, 20186241017
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[177]
Park, S-E.; Sapkota, K.; Choi, J-H.; Kim, M.K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H.N.; Kim, S.J.; Kim, S. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem. Res., 2014, 39(4), 707-718.
[http://dx.doi.org/10.1007/s11064-014-1259-5] [PMID: 24549762]
[178]
Lim, R.; Morwood, C.J.; Barker, G.; Lappas, M. Effect of silibinin in reducing inflammatory pathways in in vitro and in vivo models of infection-induced preterm birth. PLoS One, 2014, 9(3)e92505https://dx.doi.org/10.1371%2Fjournal.pone.0092505
[http://dx.doi.org/10.1371/journal.pone.0092505] [PMID: 24647589]
[179]
Wang, M.; Li, Y.J.; Ding, Y.; Zhang, H.N.; Sun, T.; Zhang, K.; Yang, L.; Guo, Y.Y.; Liu, S.B.; Zhao, M.G.; Wu, Y.M. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol. Neurobiol., 2016, 53(2), 932-943.
[http://dx.doi.org/10.1007/s12035-014-9062-5] [PMID: 25561437]
[180]
Song, X.; Zhou, B.; Cui, L.; Lei, D.; Zhang, P.; Yao, G.; Xia, M.; Hayashi, T.; Hattori, S.; Ushiki-Kaku, Y.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress. Neurochem. Res., 2017, 42(4), 1073-1083.
[http://dx.doi.org/10.1007/s11064-016-2141-4] [PMID: 28004303]
[181]
Chen, H.; Wang, X.; Wang, M.; Yang, L.; Yan, Z.; Zhang, Y.; Liu, Z. Behavioral and neurochemical deficits in aging rats with increased neonatal iron intake: silibinin’s neuroprotection by maintaining redox balance. Front. Aging Neurosci., 2015, 7(7), 206.https://dx.doi.org/10.3389%2Ffnagi.2015.00206
[http://dx.doi.org/10.3389/fnagi.2015.00206] [PMID: 26578951]
[182]
Lee, Y.; Park, H.R.; Chun, H.J.; Lee, J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res., 2015, 93(5), 755-765.
[http://dx.doi.org/10.1002/jnr.23544] [PMID: 25677261]
[183]
Li, Y.; Yao, J. Quercetin, inflammation and immunity. Nutrients, 2016, 8, 167.
[184]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2017, 17, 30683-30689.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[185]
Kim, M.J.; Rehman, S.U.; Amin, F.U.; Kim, M.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine (Lond.), 2017, 13(8), 2533-2544.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[186]
Godoy, J.A.; Lindsay, C.B.; Quintanilla, R.A.; Carvajal, F.J.; Cerpa, W.; Inestrosa, N.C. Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: the role of mitochondria. Mol. Neurobiol., 2017, 54(9), 7116-7128.
[http://dx.doi.org/10.1007/s12035-016-0203-x] [PMID: 27796749]
[187]
Ghaffari, F.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: biochemical and behavioral evidence. Basic Clin. Neurosci., 2018, 9(5), 317-324.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]
[188]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience, 2016, 324, 163-176.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.055] [PMID: 26944603]
[189]
Zheng, X.; Chen, A.; Hoshi, T.; Anzai, J.; Li, G. Electrochemical studies of (-)-epigallocatechin gallate and its interaction with DNA. Anal. Bioanal. Chem., 2006, 386(6), 1913-1919.
[http://dx.doi.org/10.1007/s00216-006-0752-3] [PMID: 17019576]
[190]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[191]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[192]
Van Hoorn, D.E.; Nijveldt, R.J.; Van Leeuwen, P.A.; Hofman, Z.; M’Rabet, L.; De Bont, D.B.; Van Norren, K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharm., 2002, 451(2), 111-118.
[http://dx.doi.org/10.1016/S0014-2999(02)02192-1] [PMID: 12231379]
[193]
Gupta, V.K.; Sharma, B. Forensic applications of indian traditional toxic plants and their Constituents. Forensic Res Criminol Int J., 2017, 4(1), 27-32.
[http://dx.doi.org/10.15406/frcij.2017.04.00101]
[194]
Shieh, D.E.; Liu, L.T.; Lin, C.C. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res., 2000, 20(5A), 2861-2865.
[PMID: 11062694]
[195]
Tournaire, C.; Croux, S.; Maurette, M.T.; Beck, I.; Hocquaux, M.; Braun, A.M.; Oliveros, E. Antioxidant activity of flavonoids: efficiency of singlet oxygen (1 delta g) quenching. J. Photochem. Photobiol. B, 1993, 19(3), 205-215.
[http://dx.doi.org/10.1016/1011-1344(93)87086-3] [PMID: 8229463]
[196]
Treml, J.; Šmejkal, K. Flavonoids as potent scavengers of hydroxyl radicals. Compr. Rev. Food Sci. Food Saf., 2016, 15(4), 720-738.
[http://dx.doi.org/10.1111/1541-4337.12204] [PMID: 33401843]
[197]
Fan, Z.L.; Wang, Z.Y.; Zuo, L.L.; Tian, S.Q. Protective effect of anthocyanins from lingonberry on radiation-induced damages. Int. J. Environ. Res. Public Health, 2012, 9(12), 4732-4743.
[http://dx.doi.org/10.3390/ijerph9124732] [PMID: 23249859]
[198]
Gakova, N.; Mishurova, E.; Kropachova, K. Effects of flavobion on nucleic acids in tissues of rats irradiated with gamma rays. Biull. Eksp. Biol. Med., 1992, 113(3), 275-277.
[PMID: 1384778]
[199]
Adhikari, M.; Arora, R.; Chawla, R.; Sharma, J.; Dhaker, A.S.; Gupta, D.; Dubey, N.; Kumar, R.; Ivanov, V.; Gadjeva, V.; Gevrenova, R.; Sharma, R.K. Evaluation of silymarin as a promising radioprotector. Z. Natforsch. C J. Biosci., 2010, 65(5-6), 337-346.
[http://dx.doi.org/10.1515/znc-2010-5-605] [PMID: 20653235]
[200]
Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular Stress Responses in Radiotherapy. Cells, 2019, 8(9), 1105.
[http://dx.doi.org/10.3390/cells8091105] [PMID: 31540530]
[201]
Singh, N.; Yarla, N.S.; Siddiqi, N.J.; de Lourdes Pereira, M.; Sharma, B. Features, Pharmogical chemistry, molecular mechanism and health benefits of Lemon. Med. Chem., 2021, 17(3), 187-202.
[http://dx.doi.org/10.2174/1573406416666200909104050] [PMID: 32901586]
[202]
Hosseinimehr, S.J. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov. Today, 2010, 15(21-22), 907-918.
[http://dx.doi.org/10.1016/j.drudis.2010.09.005] [PMID: 20933097]
[203]
Surai, P.F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants, 2015, 4(1), 204-247.https://dx.doi.org/10.3390%2Fantiox4010204
[http://dx.doi.org/10.3390/antiox4010204] [PMID: 26785346]
[204]
Kale, A.; Piskin, Ö.; Bas, Y.; Aydin, B.G.; Can, M.; Elmas, Ö.; Büyükuysal, Ç. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J. Radiat. Res. (Tokyo), 2018, 59(4), 404-410.
[http://dx.doi.org/10.1093/jrr/rry032] [PMID: 29688418]
[205]
Zhang, Y.; Cheng, Z.; Wang, C.; Ma, H.; Meng, W.; Zhao, Q. Neuroprotective effects of kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem. Res., 2016, 41(10), 2549-2558.
[http://dx.doi.org/10.1007/s11064-016-1967-0] [PMID: 27241194]
[206]
Hu, X.; Song, Q.; Li, X.; Li, D.; Zhang, Q.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement. NeuroPharmogy, 2017, 117, 352-363.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.022] [PMID: 28238714]
[207]
Wang, S.; Jing, H.; Yang, H.; Liu, Z.; Guo, H.; Chai, L.; Hu, L. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J. EthnoPharm., 2015, 164, 247-255.
[http://dx.doi.org/10.1016/j.jep.2015.01.042] [PMID: 25666429]
[208]
Dai, C.; Liu, Y.; Dong, Z. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage. Mol. Brain, 2017, 10(1), 52.
[http://dx.doi.org/10.1186/s13041-017-0332-9] [PMID: 29137683]
[209]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[210]
Angelopoulou, E.; Pyrgelis, E.S.; Piperi, C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem. Int., 2020, 132104612
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[211]
Lin, M.W.; Lin, C.C.; Chen, Y.H.; Yang, H.B.; Hung, S.Y. Celastrol inhibits dopaminergic neuronal death of parkinson’s disease through activating mitophagy. Antioxidants, 2019, 9(1), 37.https://dx.doi.org/10.3390%2Fantiox9010037
[http://dx.doi.org/10.3390/antiox9010037] [PMID: 31906147]
[212]
Skibola, C.F.; Smith, M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., 2000, 29(3-4), 375-383.
[http://dx.doi.org/10.1016/S0891-5849(00)00304-X] [PMID: 11035267]
[213]
Saponara, S.; Fusi, F.; Iovinelli, D.; Ahmed, A.; Trezza, A.; Spiga, O.; Sgaragli, G.; Valoti, M. Flavonoids and hERG channels: Friends or foes? Eur. J. Pharm., 2021, 899174030
[http://dx.doi.org/10.1016/j.ejphar.2021.174030] [PMID: 33727059]
[214]
Bondonno, N.P.; Dalgaard, F.; Kyrø, C.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A.; Tjønneland, A.; Overvad, K.; Hodgson, J.M. Flavonoid intake is associated with lower mortality in the Danish Diet cancer and health cohort. Nat. Commun., 2019, 10(1), 3651.
[http://dx.doi.org/10.1038/s41467-019-11622-x] [PMID: 31409784]
[215]
Albaayit, S.F.; Abba, Y.; Abdullah, R.; Abdullah, N. evaluation of antioxidant activity and acute toxicity of Clausena excavata leaves extract. Evid. Based Complement. Alternat. Med., 2014, 2014975450
[http://dx.doi.org/10.1155/2014/975450] [PMID: 25610488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy