Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking Studies for Protein-Targeted Drug Development in SARS-CoV-2

Author(s): Ahmad Dzulfikri Nurhan, Maria Apriliani Gani, Saipul Maulana, Siswandono Siswodihardjo, Chrismawan Ardianto and Junaidi Khotib*

Volume 19, Issue 5, 2022

Published on: 11 May, 2021

Page: [428 - 439] Pages: 12

DOI: 10.2174/1570180818666210512021619

Price: $65

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic and emergency. Currently, there is no therapeutic agent that has been proven effective against the virus.

Objective: We investigated and screened for 401 antiviral compounds that could inhibit one or more of the three protein targets in SARS-CoV-2 chymotrypsin-like (3CL) protease, RNA-dependent RNA polymerase, and spike glycoprotein) using the in-silico approach.

Methods: Lipinski’s rule of five was used as an initial screening for relevant compounds. Ligand preparation was conducted using JChem software and Schrödinger’s LigPrep module, while protein elucidation was conducted using AutoDockTools-1.5.6. Molecular docking was analyzed using AutoDockVina.

Results: Five antiviral compounds were obtained from each SARS-CoV-2 protein with ideal and potential binding energy as a candidate for target protein inhibition on SARS-CoV-2, TAK-981; lopinavir, mefloquine, and sitagliptin were potent inhibitors of 3CL protease; imatinib, relacatib, AZD7986, imatinib, and TAK-981 proteins showed potential as inhibitors of RdRp tetrandrine, and, selinexor, imatinib, lopinavir, and ciclesonide, showed potential as inhibitors of glycoprotein AZD7986. These compounds have better binding energy than the three comparator drugs, remdesivir, chloroquine, and hydroxychloroquine.

Conclusion: We obtained several antiviral compounds with reliable binding energies to the SARSCoV- 2 proteins and potentially better efficacy than the three comparator drugs. Furthermore, this research will help accelerate the development of Covid-19 drugs.

Keywords: COVID-19, 3CL protease, RNA-dependent RNA polymerase, spike glycoprotein, AutoDock Vina, infectious disease.

Graphical Abstract

[1]
Munster, V.J.; Koopmans, M.; van Doremalen, N.; van Riel, D.; de Wit, E. A novel coronavirus emerging in china - key questions for impact assessment. N. Engl. J. Med., 2020, 382(8), 692-694.
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[2]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
World Health Organization. Coronavirus disease (COVID-19), Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019Accessed March 22, 2021
[4]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[5]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[6]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[7]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep., 2020, 6, 1-15.
[http://dx.doi.org/10.1007/s40495-020-00216-7] [PMID: 32395418]
[8]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in china. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[9]
Abduljalil, J.M.; Abduljalil, B.M. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: A recent view. New Microbes New Infect., 2020, 35100672
[http://dx.doi.org/10.1016/j.nmni.2020.100672] [PMID: 32322400]
[10]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[11]
Cherian, S.S.; Agrawal, M.; Basu, A.; Abraham, P.; Gangakhedkar, R.R.; Bhargava, B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J. Med. Res., 2020, 151(2 & 3), 160-171.
[PMID: 32317408]
[12]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[13]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[14]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[15]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19 - preliminary report. Reply. N. Engl. J. Med., 2020, 383(10), 994.
[PMID: 32649078]
[16]
Pastick, K.A.; Okafor, E.C.; Wang, F.; Lofgren, S.M.; Skipper, C.P.; Nicol, M.R.; Pullen, M.F.; Rajasingham, R.; McDonald, E.G.; Lee, T.C.; Schwartz, I.S.; Kelly, L.E.; Lother, S.A.; Mitjà, O.; Letang, E.; Abassi, M.; Boulware, D.R. Review: Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect. Dis., 2020, 7(4), a130.
[http://dx.doi.org/10.1093/ofid/ofaa130] [PMID: 32363212]
[17]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[18]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 1-19.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[19]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[20]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[21]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[22]
Ramírez, D.; Caballero, J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 2018, 23(5), 1-17.
[http://dx.doi.org/10.3390/molecules23051038] [PMID: 29710787]
[23]
Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 2012, 28(15), 2074-2075.
[http://dx.doi.org/10.1093/bioinformatics/bts310] [PMID: 22628523]
[24]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[25]
Castro-Alvarez, A.; Costa, A.M.; Vilarrasa, J. The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules, 2017, 22(1), 1-14.
[http://dx.doi.org/10.3390/molecules22010136] [PMID: 28106755]
[26]
Chen, Y.W.; Yiu, C.B.; Wong, K. Prediction of the SARS-CoV-2 (2019-NCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 1-17.
[http://dx.doi.org/10.12688/f1000research.22457.2]
[27]
Mengist, H.M.; Fan, X.; Jin, T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther., 2020, 5(1), 67.
[http://dx.doi.org/10.1038/s41392-020-0178-y] [PMID: 32388537]
[28]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[29]
Emadi, A.; Chua, J.V. Talwani, Rohit.; Bentzen, S.M.; Baddley, J. Safety and efficacy of imatinib for hospitalized adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials, 2016, 21(1), 1-5.
[30]
Galimberti, S.; Petrini, M.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Guerrini, F.; Ciabatti, E.; Mechelli, S.; Di Paolo, A.; Baldini, C.; Baglietto, L.; Macera, L.; Spezia, P.G.; Maggi, F. Tyrosine kinase inhibitors play an antiviral action in patients affected by chronic myeloid leukemia: A possible model supporting their use in the fight against SARS-CoV-2. Front. Oncol., 2020, 10, 1428.
[http://dx.doi.org/10.3389/fonc.2020.01428] [PMID: 33014780]
[31]
Nejat, R.; Sadr, A.S. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol., 2020, 9(1), 1-22.
[http://dx.doi.org/10.1007/s40203-020-00058-7] [PMID: 33294307]
[32]
Decque, A.; Joffre, O.; Magalhaes, J.G.; Cossec, J.C.; Blecher-Gonen, R.; Lapaquette, P.; Silvin, A.; Manel, N.; Joubert, P.E.; Seeler, J.S.; Albert, M.L.; Amit, I.; Amigorena, S.; Dejean, A. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol., 2016, 17(2), 140-149.
[http://dx.doi.org/10.1038/ni.3342] [PMID: 26657003]
[33]
Seeler, J.S.; Dejean, A. SUMO and the robustness of cancer. Nat. Rev. Cancer, 2017, 17(3), 184-197.
[http://dx.doi.org/10.1038/nrc.2016.143] [PMID: 28134258]
[34]
Mamidala, E.; Davella, R.; Gurrapu, S. An in silico approach for identification of inhibitors as a potential therapeutics targeting SARS-Cov-2 protease. Asian J. Pharm. Res. Health Care, 2020, 12(1), 3-9.
[http://dx.doi.org/10.18311/ajprhc/2020/25080]
[35]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252117652
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[36]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[37]
Choy, K.T.; Wong, A.Y.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178(104786)104786
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[38]
Mehta, N.; Mazer-Amirshahi, M.; Alkindi, N.; Pourmand, A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am. J. Emerg. Med., 2020, 38(7), 1488-1493.
[http://dx.doi.org/10.1016/j.ajem.2020.04.035] [PMID: 32336586]
[39]
Smith, T.; Bushek, J.; Prosser, T. COVID-19 drug therapy. Clin. Drug Inf., Elsevier, (NI) 2020, 1-21.
[40]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[41]
Sachdeva, C.; Wadhwa, A.; Kumari, A.; Hussain, F.; Jha, P.; Kaushik, N.K. In silico potential of approved antimalarial drugs for repurposing against COVID-19. OMICS, 2020, 24(10), 568-580.
[http://dx.doi.org/10.1089/omi.2020.0071] [PMID: 32757981]
[42]
Fan, H.H.; Wang, L.Q.; Liu, W.L.; An, X.P.; Liu, Z.D.; He, X.Q.; Song, L.H.; Tong, Y.G. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. (Engl.), 2020, 133(9), 1051-1056.
[http://dx.doi.org/10.1097/CM9.0000000000000797] [PMID: 32149769]
[43]
Pitocco, D.; Tartaglione, L.; Viti, L.; Di Leo, M.; Pontecorvi, A.; Caputo, S. SARS-CoV-2 and DPP4 inhibition: Is it time to pray for Janus Bifrons? Diabetes Res. Clin. Pract., 2020, 163(108162)108162
[http://dx.doi.org/10.1016/j.diabres.2020.108162] [PMID: 32335097]
[44]
Strollo, R.; Pozzilli, P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab. Res. Rev., 2020, 36(8)e3330
[http://dx.doi.org/10.1002/dmrr.3330] [PMID: 32336007]
[45]
Eleftheriou, P.; Amanatidou, D.; Petrou, A.; Geronikaki, A. In silico evaluation of the effectivity of approved protease inhibitors against the main protease of the novel SARS-CoV-2 virus. Molecules, 2020, 25(11), 1-20.
[http://dx.doi.org/10.3390/molecules25112529] [PMID: 32485894]
[46]
Venkataraman, S.; Prasad, B.V.L.S.; Selvarajan, R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 2018, 10(2), 1-23.
[http://dx.doi.org/10.3390/v10020076] [PMID: 29439438]
[47]
Singh, S.; Florez, H. Coronavirus disease 2019 drug discovery through molecular docking. F1000 Res., 2020, 9(502), 502.
[http://dx.doi.org/10.12688/f1000research.24218.1] [PMID: 32704354]
[48]
Heister, P.M.; Poston, R.N. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol. Res. Perspect., 2020, 8(5)e00653
[http://dx.doi.org/10.1002/prp2.653] [PMID: 32930523]
[49]
Brömme, D.; Lecaille, F.; Cathepsin, K. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin. Investig. Drugs, 2009, 18(5), 585-600.
[http://dx.doi.org/10.1517/13543780902832661] [PMID: 19388876]
[50]
Palmér, R.; Mäenpää, J.; Jauhiainen, A.; Larsson, B.; Mo, J.; Russell, M.; Root, J.; Prothon, S.; Chialda, L.; Forte, P.; Egelrud, T.; Stenvall, K.; Gardiner, P. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin. Pharmacol. Ther., 2018, 104(6), 1155-1164.
[http://dx.doi.org/10.1002/cpt.1053] [PMID: 29484635]
[51]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[52]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[53]
El Bairi, K.; Trapani, D.; Petrillo, A.; Le Page, C.; Zbakh, H.; Daniele, B.; Belbaraka, R.; Curigliano, G.; Afqir, S. Repurposing anticancer drugs for the management of COVID-19. Eur. J. Cancer, 2020, 141, 40-61.
[http://dx.doi.org/10.1016/j.ejca.2020.09.014] [PMID: 33125946]
[54]
Osman, E.E.A.; Toogood, P.L.; Neamati, N. COVID-19: Living through another pandemic. ACS Infect. Dis., 2020, 6(7), 1548-1552.
[http://dx.doi.org/10.1021/acsinfecdis.0c00224] [PMID: 32388976]
[55]
Peterson, T.J.; Orozco, J.; Buege, M. Selinexor: A first-in-class nuclear export inhibitor for management of multiply relapsed multiple myeloma. Ann. Pharmacother., 2020, 54(6), 577-582.
[http://dx.doi.org/10.1177/1060028019892643] [PMID: 31793336]
[56]
Sencanski, M.; Perovic, V.; Pajovic, S.B.; Adzic, M.; Paessler, S.; Glisic, S. Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel In silico method. Molecules, 2020, 25(17), 1-13.
[http://dx.doi.org/10.3390/molecules25173830] [PMID: 32842509]
[57]
Matsuyama, S.; Kawase, M.; Nao, N.; Shirato, K.; Ujike, M.; Kamitani, W.; Shimojima, M.; Fukushi, S. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv, 2020.
[58]
Iwabuchi, K.; Yoshie, K.; Kurakami, Y. Takahashi.; Kato, Y.; Morishima, T. Therapeutic potential of ciclesonide inhalation for COVID-19 pneumonia: Report of three cases. J. Infect. Chemother., 2020, 26, 625-632.
[http://dx.doi.org/10.1016/j.jiac.2020.04.007] [PMID: 32362440]
[59]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[60]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]

© 2025 Bentham Science Publishers | Privacy Policy