[1]
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27(14): 1650-70.
[2]
Zuma AA, Barrias E. dos S, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27(14): 1671-732.
[3]
Taylor MC, Ward AI, Olmo F, et al. Bioluminescent:Fluorescent Trypanosoma cruzi Reporter Strains as Tools for Exploring Chagas Disease Pathogenesis and Drug Activity. Curr Pharm Des 2021; 27(14): 1733-40.
[4]
de Lana M, Giunchetti RC. Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis. Curr Pharm Des 2021; 27(14): 1741-56.
[5]
Chazapi E, Magoulas GE, Prousis KC, Calogeropoulou T. Phospholipid Analogues as Chemotherapeutic Agents Against Trypanosomatids. Curr Pharm Des 2021; 27(15): 1790-806.
[6]
Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Antitrypanosomatids Activities. Curr Pharm Des 2021; 27(15): 1807-24.
[7]
da Gama AN. Silva, Soeiro MNC. Quinoline-based Compounds as Key Candidates to Tackle Drug Discovery Programs of Microbicidal Agents. Curr Pharm Des 2021; 27(15): 1757-62.
[8]
Benaim G, Paniz-Mondolfi AE, Sordillo EM. The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas’ Disease and Leishmaniasis. Curr Pharm Des 2021; 27(15): 1825-33.