Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Review of 10,11-Dehydrocurvularin: Synthesis, Structural Diversity, Bioactivities and Mechanisms

Author(s): FuGui Zhou, Yiqing Zhou , ZhiYong Guo , XianJun Yu and Zhangshuang Deng *

Volume 22, Issue 6, 2022

Published on: 13 January, 2022

Page: [836 - 847] Pages: 12

DOI: 10.2174/1389557521666210428132256

Price: $65

conference banner
Abstract

10,11-Dehydrocurvularin is a natural benzenediol lactone (BDL) with a 12-membered macrolide fused to a resorcinol ring produced as a secondary metabolite by many fungi. In this review, we summarized the pieces of literature regarding biosynthesis, chemical synthesis, biological activities, and assumed work mechanisms of 10,11-dehydrocurvularin, which presented a potential for agricultural and pharmaceutical uses.

Keywords: 10, 11-Dehydrocurvularin, bioactivity, antitumor, structure-activity-relationship, target, benzenediol lactone (BDL).

Graphical Abstract

[1]
Xu, J.; Jiang, C.S.; Zhang, Z.L.; Ma, W.Q.; Guo, Y.W. Recent progress regarding the bioactivities, biosynthesis and synthesis of naturally occurring resorcinolic macrolides. Acta Pharmacol. Sin., 2014, 35(3), 316-330.
[http://dx.doi.org/10.1038/aps.2013.155] [PMID: 24464049]
[2]
Shen, W.; Mao, H.; Huang, Q.; Dong, J. Benzenediol lactones: A class of fungal metabolites with diverse structural features and biological activities. Eur. J. Med. Chem., 2015, 97, 747-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.067] [PMID: 25559850]
[3]
Xu, Y.; Zhou, T.; Zhou, Z.; Su, S.; Roberts, S.A.; Montfort, W.R.; Zeng, J.; Chen, M.; Zhang, W.; Lin, M.; Zhan, J.; Molnár, I. Rational reprogramming of fungal polyketide first-ring cyclization. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5398-5403.
[http://dx.doi.org/10.1073/pnas.1301201110] [PMID: 23509261]
[4]
Liu, J.; Hu, Y.; Waller, D.L.; Wang, J.; Liu, Q. Natural products as kinase inhibitors. Nat. Prod. Rep., 2012, 29(3), 392-403.
[http://dx.doi.org/10.1039/c2np00097k] [PMID: 22231144]
[5]
Wei, L.; Wu, J.; Li, G.; Shi, N. Cis-enone resorcylic acid lactones (RALs) as irreversible protein kinase inhibitors. Curr. Pharm. Des., 2012, 18(9), 1186-1198.
[http://dx.doi.org/10.2174/138161212799436395] [PMID: 22316158]
[6]
Hofmann, T.; Altmann, K. Resorcylic acid lactones as new lead structures for kinase inhibition. C. R. Chim., 2008, 11, 1318-1335.
[http://dx.doi.org/10.1016/j.crci.2008.06.010]
[7]
Winssinger, N.; Fontaine, J.G.; Barluenga, S. Hsp90 inhibition with resorcyclic acid lactones (RALs). Curr. Top. Med. Chem., 2009, 9(15), 1419-1435.
[http://dx.doi.org/10.2174/156802609789895665] [PMID: 19860733]
[8]
Delmotte, P.; Delmotte-Plaque, J. A new antifungal substance of fungal origin. Nature, 1953, 171(4347), 344.
[http://dx.doi.org/10.1038/171344a0] [PMID: 13036885]
[9]
Atrash, B.; Cooper, T.S.; Sheldrake, P.; Workman, P.; McDonald, E. Development of synthetic routes to macrocyclic compounds based on the HSP90 inhibitor radicicol. Tetrahedron Lett., 2006, 47, 2237-2240.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.116]
[10]
Buayairaksa, M.; Kanokmedhakul, S.; Kanokmedhakul, K.; Moosophon, P.; Hahnvajanawong, C.; Soytong, K. Cytotoxic lasiodiplodin derivatives from the fungus Syncephalastrum racemosum. Arch. Pharm. Res., 2011, 34(12), 2037-2041.
[http://dx.doi.org/10.1007/s12272-011-1205-x] [PMID: 22210028]
[11]
Aldridge, D.C.; Galt, S.; Giles, D.; Turner, W.B. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. C, 1971, 1623-1627.
[http://dx.doi.org/10.1039/j39710001623]
[12]
Musgrave, O.C. 828. Curvularin. Part I. Isolation and partial characterisation of a metabolic product from a new species of Curvularia. J. Chem. Soc. C, 1956, 4301-4305.
[http://dx.doi.org/10.1039/jr9560004301]
[13]
Birch, A.J.; Moore, B.; Rickards, R.W. 41. Curvularin. Part IV. Synthesis of a degradation product. J. Chem. Soc. C, 1962, 220-222.
[http://dx.doi.org/10.1039/jr9620000220]
[14]
Munro, H.D.; Musgrave, O.C.; Templeton, R. Curvularin. Part V. The compound C16H18O5, αβ-10,11-Dehydrocurvularin. J. Chem. Soc. C, 1967, 947-948.
[http://dx.doi.org/10.1039/J39670000947]
[15]
Zhao, L.L.; Zhang, H.P. Isolation of Secondary Metabolites of 9F Series Marine Fungi and Their Bioactivities against Pyricularia oryzae. Nat. Prod. Res. Develop., 2005, 17, 677-680.
[16]
Liu, F.G.; Deng, A.P.; Yang, J.; Guo, Z.Y.; Cheng, F.; Deng, Z.S. Secondary metabolites of endophytic fungus (SQ12) from Spirobolus bungii Brandt. J. Central China Normal Univ., 2013, 47, 209-212.
[17]
Ye, X.; Anjum, K.; Song, T.; Wang, W.; Yu, S.; Huang, H.; Lian, X.Y.; Zhang, Z. A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat. Prod. Res., 2016, 30(10), 1156-1161.
[http://dx.doi.org/10.1080/14786419.2015.1047775] [PMID: 26119337]
[18]
Bicalho, B.; Gonçalves, R.A.; Zibordi, A.P.M.; Manfio, G.P.; Marsaioli, A.J. Antimicrobial compounds of fungi vectored by Clusia spp. (Clusiaceae) pollinating bees. Z. Natforsch. C J. Biosci., 2003, 58(9-10), 746-751.
[http://dx.doi.org/10.1515/znc-2003-9-1027] [PMID: 14577643]
[19]
Jiang, S.J.; Qiang, S.; Zhu, Y.Z.; Dong, Y.F. Isolation and phytotoxicity of a metabolite from Curvularia eragrostidis and characterisation of its modes of action. Ann. Appl. Biol., 2008, 152, 103-111.
[http://dx.doi.org/10.1111/j.1744-7348.2007.00202.x]
[20]
Meepagala, K.M.; Johnson, R.D.; Duke, S.O. Curvularin and Dehydrocurvularin as Phytotoxic Constituents from Curvularia intermedia Infecting Pandanus amaryllifolius. J. Agric. Chem. Environ., 2016, 5, 12-22.
[21]
Mondol, M.A.; Farthouse, J.; Islam, M.T.; Schüffler, A.; Laatsch, H. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against phytophthora capsici zoospores. J. Nat. Prod., 2017, 80(2), 347-355.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00785] [PMID: 28195475]
[22]
Starratt, A.N.; White, G.A. Identification of some metabolites of Alternaria cucumerina (E. & E.). Ell. Phytochemistry, 1968, 7, 1883-1884.
[http://dx.doi.org/10.1016/S0031-9422(00)86666-2]
[23]
Hyeon, S.B.; Ozaki, A.; Suzuki, A.; Tamura, S. Isolation of α,β-Dehydrocurvularin and β-Hydroxycurvularin from Alternaria tomato as Sporulation-suppressing Factors. Agric. Biol. Chem., 1976, 40, l663-l1664.
[http://dx.doi.org/10.1271/bbb1961.40.1663]
[24]
Robeson, D.J.; Strobel, G.A. αβ-Dehydrocurvularin and curvularin from Alternaria cinerariae. Zeitschrift Für Naturforschung C, 1981, 36, 1081-1083.
[http://dx.doi.org/10.1515/znc-1981-11-1231]
[25]
Robeson, D.J.; Strobel, G.A.; Strange, R.N. The identification of a major phytotoxic component from alternaria macrospora as αβ-Dehydrocurvularin. J. Nat. Prod., 1985, 48, 139-141.
[http://dx.doi.org/10.1021/np50037a028]
[26]
Vurro, M.; Evidente, A.; Andolfi, A.; Zonno, M.C.; Giordano, F. Motta. Brefeldin A and α,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Sci., 1998, 138, 69-79.
[http://dx.doi.org/10.1016/S0168-9452(98)00131-9]
[27]
Jeon, Y.; Ryu, K.; Kang, M.; Park, S.; Yun, H.Q.T. P.; Kim, S. Alternariol monomethyl ether and α,β-Dehydrocurvularin from endophytic fungi Alternaria spp. inhibit Appressorium Formation of Magnaporthe grisea. J. Korean Soc. Appl. Biol. Chem., 2009, 53, 39-42.
[http://dx.doi.org/10.3839/jksabc.2010.007]
[28]
Bashyal, B.P.; Wijeratne, E.M.K.; Tillotson, J.; Arnold, A.E.; Chapman, E.; Gunatilaka, A.A.L. Chlorinated dehydrocurvularins and alterperylenepoxide A from Alternaria sp. AST0039, a fungal endophyte of Astragalus lentiginosus. J. Nat. Prod., 2017, 80(2), 427-433.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00960] [PMID: 28139929]
[29]
Kobayashi, A.; Hino, T.; Yata, S.; Itoh, T.J.; Sato, H.; Kawazu, K. Unique spindle poisons, curvularin and its derivatives, isolated from Penicillium species. Agric. Biol. Chem., 1988, 12, 3119-3123.
[http://dx.doi.org/10.1271/bbb1961.52.3119]
[30]
Zhan, J.; Wijeratne, E.M.K.; Seliga, C.J.; Zhang, J.; Pierson, E.E.; Pierson, L.S., III; Vanetten, H.D.; Gunatilaka, A.A.L. A new anthraquinone and cytotoxic curvularins of a Penicillium sp. from the rhizosphere of Fallugia paradoxa of the Sonoran desert. J. Antibiot. (Tokyo), 2004, 57(5), 341-344.
[http://dx.doi.org/10.7164/antibiotics.57.341] [PMID: 15317106]
[31]
Aly, A.H.; Debbab, A.; Clements, C.; Edrada-Ebel, R.; Orlikova, B.; Diederich, M.; Wray, V.; Lin, W.; Proksch, P. NF kappa B inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg. Med. Chem., 2011, 19(1), 414-421.
[http://dx.doi.org/10.1016/j.bmc.2010.11.012] [PMID: 21146414]
[32]
Li, D.; Zhu, T.J.; Gu, Q.Q.; Li, D.H. Secondary metabolites and their bioactivities of Hibiscus tiliaceus L. endophytic fungi. Chin J Mar Drug., 2012, 31, 17-22.
[33]
Rudolph, K.; Serwe, A.; Erkel, G. Inhibition of TGF-β signaling by the fungal lactones (S)-curvularin, dehydrocurvularin, oxacyclododecindione and galiellalactone. Cytokine, 2013, 61(1), 285-296.
[http://dx.doi.org/10.1016/j.cyto.2012.10.011] [PMID: 23134667]
[34]
Meng, L.H.; Li, X.M.; Lv, C.T.; Li, C.S.; Xu, G.M.; Huang, C.G.; Wang, B.G. Sulfur-containing cytotoxic curvularin macrolides from Penicillium sumatrense MA-92, a fungus obtained from the rhizosphere of the mangrove Lumnitzera racemosa. J. Nat. Prod., 2013, 76(11), 2145-2149.
[http://dx.doi.org/10.1021/np400614f] [PMID: 24195466]
[35]
Chen, H.; Aktas, N.; Konuklugil, B.; Mándi, A.; Daletos, G.; Lin, W.; Dai, H.; Kurtán, T.; Proksch, P. A new fusarielin analogue from Penicillium sp. isolated from the Mediterranean sponge Ircinia oros. Tetrahedron Lett., 2015, 56, 5317-5320.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.072]
[36]
de Castro, M.V.; Ióca, L.P.; Williams, D.E.; Costa, B.Z.; Mizuno, C.M.; Santos, M.F.C.; de Jesus, K.; Ferreira, É.L.F.; Seleghim, M.H.R.; Sette, L.D.; Pereira Filho, E.R.; Ferreira, A.G.; Gonçalves, N.S.; Santos, R.A.; Patrick, B.O.; Andersen, R.J.; Berlinck, R.G. Condensation of macrocyclic polyketides produced by Penicillium sp. DRF2 with Mercaptopyruvate represents a new fungal detoxification pathway. J. Nat. Prod., 2016, 79(6), 1668-1678.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00295] [PMID: 27227682]
[37]
Shang, Z.; Khalil, Z.; Li, L.; Salim, A.A.; Quezada, M.; Kalansuriya, P.; Capon, R.J. Roseopurpurins: Chemical diversity enhanced by convergent biosynthesis and forward and reverse michael additions. Org. Lett., 2016, 18(17), 4340-4343.
[http://dx.doi.org/10.1021/acs.orglett.6b02099] [PMID: 27537356]
[38]
Ha, T.M.; Ko, W.; Lee, S.J.; Kim, Y.C.; Son, J.Y.; Sohn, J.H.; Yim, J.H.; Oh, H. Anti-Inflammatory effects of curvularin-Type metabolites from a marine-derived fungal strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages. Mar. Drugs, 2017, 15(9), 282-297.
[http://dx.doi.org/10.3390/md15090282] [PMID: 28869509]
[39]
Assante, G.; Locci, R.; Camarda, L.; Merlini, L.; Nasinit, G. Screening of the genus Cercospora for secondary metabolites. Phytochemistry, 1977, 16, 243-247.
[http://dx.doi.org/10.1016/S0031-9422(00)86794-1]
[40]
Ghisalberti, E.L.; Rowland, C.Y. 6-Chlorodehydrocurvularin, a New Metabolite from Cochliobolus spicifer. J. Nat. Prod., 1993, 56, 2175-2177.
[http://dx.doi.org/10.1021/np50102a022]
[41]
Kusano, M.; Nakagami, K.; Fujioka, S.; Kawano, T.; Shimada, A.; Kimura, Y. Betagamma-dehydrocurvularin and related compounds as nematicides of Pratylenchus penetrans from the fungus Aspergillus sp. Biosci. Biotechnol. Biochem., 2003, 67(6), 1413-1416.
[http://dx.doi.org/10.1271/bbb.67.1413] [PMID: 12843675]
[42]
He, J.; Wijeratne, E.M.K.; Bashyal, B.P.; Zhan, J.; Seliga, C.J.; Liu, M.X.; Pierson, E.E.; Pierson, L.S., III; VanEtten, H.D.; Gunatilaka, A.A.L. Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J. Nat. Prod., 2004, 67(12), 1985-1991.
[http://dx.doi.org/10.1021/np040139d] [PMID: 15620238]
[43]
Boruta, T.; Bizukojc, M. Culture-based and sequence-based insights into biosynthesis of secondary metabolites by Aspergillus terreus ATCC 20542. J. Biotechnol., 2014, 175, 53-62.
[http://dx.doi.org/10.1016/j.jbiotec.2014.01.038] [PMID: 24534845]
[44]
Choochuay, J.; Xu, X.; Rukachaisirikul, V.; Guedduaythong, P.; Phongpaichit, S.; Sakayaroj, J.; Chen, J.; Shen, X. Curvularin derivatives from the soil-derived fungus Aspergillus polyporicola PSU-RSPG187. Phytochem. Lett., 2017, 22, 122-127.
[http://dx.doi.org/10.1016/j.phytol.2017.09.011]
[45]
Gutiérrez, M.; Theoduloz, C.; Rodríguez, J.; Lolas, M.; Schmeda-Hirschmann, G. Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile. J. Agric. Food Chem., 2005, 53(20), 7701-7708.
[http://dx.doi.org/10.1021/jf051021l] [PMID: 16190620]
[46]
Xie, L.W.; Ouyang, Y.C.; Zou, K.; Wang, G.H.; Chen, M.J.; Sun, H.M.; Dai, S.K.; Li, X. Isolation and difference in anti-Staphylococcus aureus bioactivity of curvularin derivates from fungus Eupenicillium sp. Appl. Biochem. Biotechnol., 2009, 159(1), 284-293.
[http://dx.doi.org/10.1007/s12010-009-8591-2] [PMID: 19333565]
[47]
Andersen, B.; Hollensted, M. Metabolite production by different Ulocladium species. Int. J. Food Microbiol., 2008, 126(1-2), 172-179.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.05.036] [PMID: 18599140]
[48]
Kumar, C.G.; Mongolla, P.; Sujitha, P.; Joseph, J.; Babu, K.S.; Suresh, G.; Ramakrishna, K.V.; Purushotham, U.; Sastry, G.N.; Kamal, A. Metabolite profiling and biological activities of bioactive compounds produced by Chrysosporium lobatum strain BK-3 isolated from Kaziranga National Park, Assam, India. Springerplus, 2013, 2(1), 122.
[http://dx.doi.org/10.1186/2193-1801-2-122] [PMID: 23565355]
[49]
Dong, J.; Zhao, L.; Cai, L.; Fang, H.; Chen, X.; Ding, Z. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 2014, 118(4), 396-399.
[http://dx.doi.org/10.1016/j.jbiosc.2014.03.003] [PMID: 24742631]
[50]
Arai, K.; Rawlings, B.J.; Yoshizawa, Y.; Vederas, J.C. Biosyntheses of antibiotic A26771B by Penicillium turbatum and dehydrocurvularin by Alternaria cinerariae: comparison of stereochemistry of polyketide and fatty acid enoyl thiol ester reductases. J. Am. Chem. Soc., 1989, 111, 3391-3399.
[http://dx.doi.org/10.1021/ja00191a042]
[51]
Yoshizawa, Y.; Li, Z.; Reese, P.B.; Vederas, J.C. Intact incorporation of acetate-derived di- and tetraketides during biosynthesis of dehydrocurvularin, a macrolide phytotoxin from Alternaria cinerariae. J. Am. Chem. Soc., 1990, 112, 3212-3213.
[http://dx.doi.org/10.1021/ja00164a053]
[52]
Li, Z.; Martin, F.M.; Vedera, J.C. Biosynthetic Incorporation of Labeled Tetraketide Intermediates into Dehydrocurvularin, a Phytotoxin from Alternaría cinerariae, with Assistance of β-Oxidation Inhibitors. J. Am. Chem. Soc., 1992, 114, 1531-1533.
[http://dx.doi.org/10.1021/ja00030a088]
[53]
Xu, Y.; Espinosa-Artiles, P.; Schubert, V.; Xu, Y.M.; Zhang, W.; Lin, M.; Gunatilaka, A.A.L.; Süssmuth, R.; Molnár, I. Characterization of the biosynthetic genes for 10,11-dehydrocurvularin, a heat shock response-modulating anticancer fungal polyketide from Aspergillus terreus. Appl. Environ. Microbiol., 2013, 79(6), 2038-2047.
[http://dx.doi.org/10.1128/AEM.03334-12] [PMID: 23335766]
[54]
Xu, Y.; Zhou, T.; Zhang, S.; Xuan, L.J.; Zhan, J.; Molnár, I. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. J. Am. Chem. Soc., 2013, 135(29), 10783-10791.
[http://dx.doi.org/10.1021/ja4041362] [PMID: 23822773]
[55]
Cochrane, R.V.K.; Gao, Z.; Lambkin, G.R.; Xu, W.; Winter, J.M.; Marcus, S.L.; Tang, Y.; Vederas, J.C. Comparison of 10,11-Dehydrocurvularin polyketide synthases from Alternaria cinerariae and Aspergillus terreus highlights key structural motifs. ChemBioChem, 2015, 16(17), 2479-2483.
[http://dx.doi.org/10.1002/cbic.201500428] [PMID: 26493380]
[56]
Deng, Z.; Deng, A.; Luo, D.; Gong, D.; Zou, K.; Peng, Y.; Guo, Z. Biotransformation of (-)-(10E,15S)-10,11-Dehydrocurvularin. Nat. Prod. Commun., 2015, 10(7), 1277-1278.
[http://dx.doi.org/10.1177/1934578X1501000735] [PMID: 26411029]
[57]
Liang, Q.; Sun, Y.; Yu, B.; She, X.; Pan, X. First total syntheses and spectral data corrections of 11-α-methoxycurvularin and 11-β-methoxycurvularin. J. Org. Chem., 2007, 72(25), 9846-9849.
[http://dx.doi.org/10.1021/jo701885n] [PMID: 17988150]
[58]
Lai, S.; Gao, X.; Shizuri, Y.; Yamamura, S. Total Syntheses of Curvularin-type Macrolides 12-Oxocurvularin and Citreofuran. Chin. Chem. Lett., 1994, 5, 481-484.
[59]
Baker, P.M.; Bycroft, B.W.; Roberts, J.C. Synthesis of (+)-Di-O-methylcurvularin. J. Chem. Soc. C, 1967, 19, 1913-1915.
[http://dx.doi.org/10.1039/J39670001913]
[60]
Fürstner, A.; Castanet, A.S.; Radkowski, K.; Lehmann, C.W. Total synthesis of (s)-(+)-citreofuran by ring closing alkyne metathesis. J. Org. Chem., 2003, 68(4), 1521-1528.
[http://dx.doi.org/10.1021/jo026686q] [PMID: 12585897]
[61]
Peter, P.; Josep, L.; Rudy, L. de Haro Teresa; Robert, S.; Azusa, K.; Alois, F. Increasing the structural span of alkyne metathesis. Chemistry, 2013, 19, 13047-13058.
[http://dx.doi.org/10.1002/chem.201302320]
[62]
Allu, S.R.; Banne, S.; Jiang, J.; Qi, N.; Guo, J.; He, Y. A unified synthetic approach to optically pure Curvularin-Type metabolites. J. Org. Chem., 2019, 84(11), 7227-7237.
[http://dx.doi.org/10.1021/acs.joc.9b00776] [PMID: 31083915]
[63]
Kobayashi, H.; Namikoshi, M.; Yoshimoto, T.; Yokochi, T. A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae, modification and application to tropical marine fungi. J. Antibiot. (Tokyo), 1996, 49(9), 873-879.
[http://dx.doi.org/10.7164/antibiotics.49.873] [PMID: 8931720]
[64]
Gai, Y. Studies on the bioactive metabolites of sponge-associated fungi. PhD Thesis, Fudan University: Shanghai, 2007.
[65]
Zhao, Q.; Bi, Y.; Zhong, J.; Li, X.; Guo, J.; Liu, Y.X.; Pan, L.R.; Tan, Y.; Deng, Z.S.; Yu, X.J. 10,11-dehydrocurvularin exerts antitumor effect against human breast cancer by suppressing STAT3 activation. Acta Pharmacol. Sin., 2020.
[http://dx.doi.org/10.1038/s41401-020-0499-y] [PMID: 32868906]
[66]
Jing, Z.; Qun, Z.; Yulan, L.; Xianjun, Y.; Zhangshuang, D. LPS¬simulated inflammatory response by dehydrocurvularin in macrophages. BioResources, 2020, 42, 248-253.
[67]
Zhang, S.; Yang, X.; Coburn, R.A.; Morris, M.E. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem. Pharmacol., 2005, 70(4), 627-639.
[http://dx.doi.org/10.1016/j.bcp.2005.05.017] [PMID: 15979586]
[68]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[69]
Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U. Characterization of the radical scavenging activity of lignins--natural antioxidants. Bioresour. Technol., 2004, 95(3), 309-317.
[http://dx.doi.org/10.1016/j.biortech.2004.02.024] [PMID: 15288274]
[70]
Lai, S.; Shizuri, Y.; Yamamura, S.; Kawai, K.; Furukawa, H. New Curvularin-Type Metabolites from the Hybrid Strain ME 0005 Derived from Penicillium citreo-viride B. IFO 4692 and 6200. Bull. Chem. Soc. Jpn., 1991, 64, 1048-1050.
[http://dx.doi.org/10.1246/bcsj.64.1048]
[71]
Deng, Z.; Wong, N.K.; Guo, Z.; Zou, K.; Xiao, Y.; Zhou, Y. Dehydrocurvularin is a potent antineoplastic agent irreversibly blocking ATP-citrate lyase: Evidence from chemoproteomics. Chem. Commun. (Camb.), 2019, 55(29), 4194-4197.
[http://dx.doi.org/10.1039/C9CC00256A] [PMID: 30895984]
[72]
Ióca, L.P.; Castro, M.V.; Ferreira, A.G.; Berlinck, R.G.S. 5th Brazilion Conference on Natural Products, Atibaia, BrazilOct. 26-29, 2015
[73]
Wnag, H.L. Study on chemical constituents of Polygonum amplexicaule var. sinense and an endophytic fungus Trichoderma gamsii. Master’s Thesis, Peking Union Medical College: Beijing, June. 2011. (in Chinese).
[74]
Dai, J.; Krohn, K.; Flörke, U.; Pescitelli, G.; Kerti, G.; Papp, T.; Kövér, K.E.; Bényei, A.C.; Draeger, S.; Schulz, B. Curvularin-Type metabolites from the fungus Curvularia sp. isolated from a marine alga. Eur. J. Org. Chem., 2010, 2010, 6928-6937.
[http://dx.doi.org/10.1002/ejoc.201001237]
[75]
Greve, H.; Schupp, P.J.; Eguereva, E.; Kehraus, S.; Kelter, G.; Maier, A.; Fiebig, H.H.; König, G.M. Apralactone A and a new stereochemical class of curvularins from the marine-derived fungus Curvularia sp. Eur. J. Org. Chem., 2008, 2008(30), 5085-5092.
[http://dx.doi.org/10.1002/ejoc.200800522] [PMID: 24260014]
[76]
Jiang, S.J.; Qang, S. The Effect of the Mycotoxin of α,β-dehydrocurvularin from Curvulari aeragrostidis on PSII in Digitaria sanguinalis. Zhongguo Nong Ye Ke Xue, 2005, 1373-1378.
[77]
Hoagland, R.E. Bioherbicides Phytotoxic Natural Products. Acs Symposium, 2001, 774, pp. 72-90.
[78]
Xiang, C.; Liu, Y.; Liu, S.M.; Huang, Y.F.; Kong, L.A.; Peng, H.; Liu, M.Y.; Liu, J.; Peng, D.L.; Huang, W.K. αβ-Dehydrocurvularin isolated from the fungus Aspergillus welwitschiae effectively inhibited the behaviour and development of the root-knot nematode Meloidogyne graminicola in rice roots. BMC Microbiol., 2020, 20(1), 48.
[http://dx.doi.org/10.1186/s12866-020-01738-2] [PMID: 32126973]
[79]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun, Jin K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. Global Burden of Disease Cancer Collaboration. The Global Burden of Cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[80]
Evidente, A.; Kornienko, A.; Cimmino, A.; Andolfi, A.; Lefranc, F.; Mathieu, V.; Kiss, R. Fungal metabolites with anticancer activity. Nat. Prod. Rep., 2014, 31(5), 617-627.
[http://dx.doi.org/10.1039/C3NP70078J] [PMID: 24651312]
[81]
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[82]
Turnera, M.D. Belinda Nedjai; Tara Hurst; Pennington, D. J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843, 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014]
[83]
Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007), 461-466.
[http://dx.doi.org/10.1038/nature02924] [PMID: 15329734]
[84]
Schreiber, D.; Marx, L.; Felix, S.; Clasohm, J.; Weyland, M.; Schäfer, M.; Klotz, M.; Lilischkis, R.; Erkel, G.; Schäfer, K.H. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models. Front. Physiol., 2017, 8, 566.
[http://dx.doi.org/10.3389/fphys.2017.00566] [PMID: 28824460]
[85]
Richter, J.; Sandjo, L.P.; Liermann, J.C.; Opatz, T.; Erkel, G. 4-Dechloro-14-deoxy-oxacyclododecindione and 14-deoxy-oxacylododecindione, two inhibitors of inducible connective tissue growth factor expression from the imperfect fungus Exserohilum rostratum. Bioorg. Med. Chem., 2015, 23(3), 556-563.
[http://dx.doi.org/10.1016/j.bmc.2014.12.004] [PMID: 25537529]
[86]
Boutros, R.; Lobjois, V.; Ducommun, B. CDC25 phosphatases in cancer cells: Key players? Good targets? Nat. Rev. Cancer, 2007, 7(7), 495-507.
[http://dx.doi.org/10.1038/nrc2169] [PMID: 17568790]
[87]
Ray, D.; Terao, Y.; Nimbalkar, D.; Chu, L.H.; Donzelli, M.; Tsutsui, T.; Zou, X.; Ghosh, A.K.; Varga, J.; Draetta, G.F.; Kiyokawa, H. Transforming growth factor β facilitates β-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol. Cell. Biol., 2005, 25(8), 3338-3347.
[http://dx.doi.org/10.1128/MCB.25.8.3338-3347.2005] [PMID: 15798217]
[88]
Wu, X.Y.; Ren, X.; Zheng, H.Z.; Li, Y.Y.; Fan, Y.L.; Zheng, Z.H.; Zhang, Z.L.; Lu, X.H.; Zhao, B.H. Studies on F09ZB-860H, the inhibitor of regulator CDC25A and B in cell cycle. Chin. J. Antibiot., 2014, 39, 571-573.
[89]
Whitesell, L.; Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005, 5(10), 761-772.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[90]
West, J.D.; Wang, Y.; Morano, K.A. Small molecule activators of the heat shock response: Chemical properties, molecular targets, and therapeutic promise. Chem. Res. Toxicol., 2012, 25(10), 2036-2053.
[http://dx.doi.org/10.1021/tx300264x] [PMID: 22799889]
[91]
Santagata, S.; Xu, Y.M.; Wijeratne, E.M.K.; Kontnik, R.; Rooney, C.; Perley, C.C.; Kwon, H.; Clardy, J.; Kesari, S.; Whitesell, L.; Lindquist, S.; Gunatilaka, A.A. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem. Biol., 2012, 7(2), 340-349.
[http://dx.doi.org/10.1021/cb200353m] [PMID: 22050377]
[92]
Joseph, T.; Bashyal, P.B. MinJin, K.; Taoda, S.; De La Cruz Fabian; Gunatilaka, L. A. A.; Eli, C. Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Org. Biomol. Chem., 2016, 14, 5918-5921.
[http://dx.doi.org/10.1039/C6OB00560H]
[93]
Anderson, D.J.; Le Moigne, R.; Djakovic, S.; Kumar, B.; Rice, J.; Wong, S.; Wang, J.; Yao, B.; Valle, E.; Kiss von Soly, S.; Madriaga, A.; Soriano, F.; Menon, M.K.; Wu, Z.Y.; Kampmann, M.; Chen, Y.; Weissman, J.S.; Aftab, B.T.; Yakes, F.M.; Shawver, L.; Zhou, H.J.; Wustrow, D.; Rolfe, M. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell, 2015, 28(5), 653-665.
[http://dx.doi.org/10.1016/j.ccell.2015.10.002] [PMID: 26555175]
[94]
Pasca di Magliano, M.; Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer, 2003, 3(12), 903-911.
[http://dx.doi.org/10.1038/nrc1229] [PMID: 14737121]
[95]
Yang, Z.; Lv, Y.; Wang, L.; Chen, Y.; Han, J.; Zhao, S.; Liu, W. Inhibition of hedgehog pathway reveals the regulatory role of SMO in gastric cancer cells. Tumour Biol., 2017, 39(7)1010428317715546
[http://dx.doi.org/10.1177/1010428317715546] [PMID: 28675107]
[96]
Byrne, E.F.; Luchetti, G.; Rohatgi, R.; Siebold, C. Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates. Curr. Opin. Cell Biol., 2018, 51, 81-88.
[http://dx.doi.org/10.1016/j.ceb.2017.10.004] [PMID: 29268141]
[97]
Chen, F.; Zhou, L.; Wang, L. Application of dehydrocurvularin in inhibiting hedgehog pathway., China Patent, CN 109010333 A,, 2018.
[98]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[99]
Zaidi, N.; Royaux, I.; Swinnen, J.V.; Smans, K. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol. Cancer Ther., 2012, 11(9), 1925-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0095] [PMID: 22718913]
[100]
Ference, B.A.; Ray, K.K.; Catapano, A.L.; Ference, T.B.; Burgess, S.; Neff, D.R.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; Di Angelantonio, E.; Danesh, J.; Kastelein, J.J.P.; Nicholls, S.J. Mendelian Randomization Study of ACLY and Cardiovascular Disease. N. Engl. J. Med., 2019, 380(11), 1033-1042.
[http://dx.doi.org/10.1056/NEJMoa1806747] [PMID: 30865797]
[101]
Nikolic, D.; Mikhailidis, D.P.; Davidson, M.H.; Rizzo, M.; Banach, M. ETC-1002: A future option for lipid disorders? Atherosclerosis, 2014, 237(2), 705-710.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.099] [PMID: 25463109]
[102]
K, Z. N.; Srikanth, Y.; Christopher, N.; H, F. W. Bempedoic Acid (ETC-1002): ATP citrate lyase Inhibitor: Review of A first in class medication with potential benefit in statin-refractory cases. Cardiol. Rev., 2018, 27, 49-56.
[103]
Bos, J.L. RAS oncogenes in human cancer: A review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
[104]
Iwasaki, S.; Omura, S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups. J. Antibiot. (Tokyo), 2007, 60(1), 1-12.
[http://dx.doi.org/10.1038/ja.2007.1] [PMID: 17390583]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy