Abstract
α-Functionally substituted α,β-unsaturated aldehydes belong to the highly reactive class of compounds. They are used as versatile building blocks in organic synthesis. Due to the presence of several reactive sites in their structure, α,β-unsaturated aldehydes are widely employed as precursors of various acyclic and heterocyclic compounds, as well as complex natural products. At the same time, the acrylic systems with heteroatomic substituents (OAlk, SAlk) in the α-position are poorly studied. Therefore, it is impossible to establish the distribution of electron density reliably and evaluate the real reactivity of each new representative of this class of compounds. This minireview summarizes the works demonstrating the broad applicability of 3-substituted 2-alkoxy and 2- alkylthiopropenals in organic synthesis.
Keywords: α, β-unsaturated aldehydes, heterocycles, hydrolysis, nucleophilic addition, organic synthesis, heteroatomic substituents.
Graphical Abstract
[http://dx.doi.org/10.1002/ajoc.201600010]
(b) Keiko, N.A.; Vchislo, N.V. Synthesis of diheteroatomic five‐membered heterocyclic compounds from α,β‐unsaturated aldehydes. Asian J. Org. Chem., 2016, 5(10), 1169-1197.
[http://dx.doi.org/10.1002/ajoc.201600227]
(c) Vchislo, N.V. α,β‐unsaturated aldehydes as C‐building blocks in the synthesis of pyridines, 1,4‐dihydropyridines and 1,2‐dihydropyridines. Asian J. Org. Chem., 2019, 8(8), 1207-1226.
[http://dx.doi.org/10.1002/ajoc.201900275]
(d) Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org. Biomol. Chem., 2019, 17(15), 3670-3708.
[http://dx.doi.org/10.1039/C8OB03034K] [PMID: 30874264]
(e) Vchislo, N.V. Epoxides and Aziridines from α,β‐Unsaturated Aldehydes. Mini Rev. Org. Chem., 2017, 14(3), 197-203.
[http://dx.doi.org/10.2174/1570193X14666170206114541]
(f) Vchislo, N.V.; Verochkina, E.A. Recent Advances in Total Synthesis of Alkaloids from α,β‐Unsaturated Aldehydes. ChemistrySelect, 2020, 5(31), 9579-9589.
[http://dx.doi.org/10.1002/slct.202002872]
[http://dx.doi.org/10.1021/cr068388p] [PMID: 18072802]
(b) Pellissier, H. Recent Developments in Asymmetric Organocatalytic Domino Reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714]
(c) Vicario, J.L.; Badía, D.; Carrillo, L.; Reyes, E. Organocatalytic enantioselective conjugate addition reactions: A powerfull tool for the stereocontrolled synthesis of complex molecules, 2010, 1-16.
(d) Albrecht, Ł.; Jiang, H.; Jørgensen, K.A. 2020.
(e) Reyes-Rodríguez, G.J.; Rezayee, N.M.; Vidal-Albalat, A.; Jørgensen, K.A. Prevalence of diarylprolinol silyl ethers as catalysts in total synthesis and patents. Chem. Rev., 2019, 119(6), 4221-4260.
[http://dx.doi.org/10.1021/acs.chemrev.8b00583] [PMID: 30747525]
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwave in Organic and Medicinal Chemistry. 2012, Vol. 52
[http://dx.doi.org/10.1002/9783527647828]
[http://dx.doi.org/10.1002/tcr.20144] [PMID: 18563806]
(b) Burke, M.D.; Schreiber, S.L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(1), 46-58.
[http://dx.doi.org/10.1002/anie.200300626] [PMID: 14694470]
[http://dx.doi.org/10.1002/anie.201007004] [PMID: 22038946]
(b) van Hattum, H.; Waldmann, H. Biology-oriented synthesis: harnessing the power of evolution. J. Am. Chem. Soc., 2014, 136(34), 11853-11859.
[http://dx.doi.org/10.1021/ja505861d] [PMID: 25074019]
[http://dx.doi.org/10.1016/0045-2068(77)90030-X]
[http://dx.doi.org/10.1042/bj2720683] [PMID: 2176472]
(b) Sy, L.K.; Brown, G.D. Coniferaldehyde Derivatives from Tissue Culture of Artemisia Annua and Tanacetum Parthenium. Phytochemistry, 1999, 5(10), 781-785.
[http://dx.doi.org/10.1016/S0031-9422(98)00607-4]
[http://dx.doi.org/10.1039/b209686b] [PMID: 12929422]
[http://dx.doi.org/10.1007/BF02508278]
(b) Keiko, N.A.; Stepanova, L.G.; Voronkov, M.G.; Potapova, G.I.; Gudratov, O.N.; Treshchalina, E.M. Synthesis, DNA-Inhibiting Activity, and Antitumor Activity of 2-Formyl-2,5-dimethoxy-2,3-dihydro-4H-pyran thiosemicarbazone, a related ethyl analog, and a copper complex. Pharm. Chem. J., 2002, 36, 407.
[http://dx.doi.org/10.1023/A:1021246107534]
(c) Keiko, N.A.; Stepanova, L.G.; Kleptsova, E.A.; Vdovina, G.P.; Odegova, T.F. synthesis and antimicrobial activity of new aldehydes and acetals. Pharm. Chem. J., 2009, 43(9), 502-504.
[http://dx.doi.org/10.1007/s11094-009-0339-3]
[http://dx.doi.org/10.1007/s11094-005-0088-x]
(b) Mamashvili, T.N.; Keiko, N.A.; Sarapulova, G.I.; Voronkov, M.G. hydrolysis of 2-alkoxyalk-2-enals. Russ. Chem. Bull., 1998, 47, 2465.
[http://dx.doi.org/10.1007/BF02641556]
[http://dx.doi.org/10.1016/S0378-4274(99)00160-5] [PMID: 10597025]
[http://dx.doi.org/10.1016/j.tet.2012.12.055]
(b) Keiko, N.A.; Verochkina, E.A.; Vchislo, N.V.; Larina, L.I. One-pot, three-component cascade synthesis of new tetrasubstituted pyrroles by coupling reaction of 2-functionally substituted 2-alkenals, amines, and nitroethane. Tetrahedron, 2014, 70(46), 8959-8970.
[http://dx.doi.org/10.1016/j.tet.2014.08.040]
[http://dx.doi.org/10.1021/jo980435t] [PMID: 11672254]
[http://dx.doi.org/10.1016/j.mencom.2016.09.023]
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[http://dx.doi.org/10.1021/jm981129a] [PMID: 10514281]
(b) Mosrin, M.; Bresser, T.; Knochel, P. Regio- and chemoselective multiple functionalization of chloropyrazine derivatives. Application to the synthesis of coelenterazine. Org. Lett., 2009, 11(15), 3406-3409.\
[http://dx.doi.org/10.1021/ol901275n] [PMID: 19719188]
(c) Lu, Y.; Hendra, R.; Oakley, A.J.; Keller, P.A. Efficient synthesis and antioxidant activity of coelenterazine analogues. Tetrahedron Lett., 2014, 55, 6212.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.065]
[http://dx.doi.org/10.1016/j.mencom.2017.03.020]
[http://dx.doi.org/10.1021/jm7014217] [PMID: 18357976]
(b) Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem., 2018, 143, 542-557.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.064] [PMID: 29207337]
(c) Roy, N.; Sen, U.; Madaan, Y.; Muthukumar, V.; Varddhan, S.; Sahoo, S.K.; Panda, D.; Bose, B.; Paira, P. Mitochondria-targeting click-derived pyridinyltriazolylmethylquinoxaline-based Y-shaped binuclear luminescent ruthenium(II) and iridium(III) complexes as cancer theranostic agents. Inorg. Chem., 2020, 59(23), 17689-17711.
[http://dx.doi.org/10.1021/acs.inorgchem.0c02928] [PMID: 33210921]
[http://dx.doi.org/10.1016/j.mencom.2017.09.003]
[http://dx.doi.org/10.1002/aoc.3506]
(b) Zuo, J.; Bi, C.; Fan, Y.; Buac, D.; Nardon, C.; Daniel, K.G.; Dou, Q.P. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base-copper complexes. J. Inorg. Biochem., 2013, 118, 83-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.006] [PMID: 23142973]
(c) Duff, B.; Thangella, V.R.; Creaven, B.S.; Walsh, M.; Egan, D.A. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone schiff base complexes in hepatocarcinoma cells. Eur. J. Pharmacol., 2012, 689(1-3), 45-55.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.004] [PMID: 22705894]
(d) Devi, J.; Yadav, M.; Kumar, D.; Naik, L.S.; Jindal, D.K. Some divalent metal (II) complexes of salicylaldehyde‐derived schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem., 2019, 33e4693
[http://dx.doi.org/10.1002/aoc.4693]
[http://dx.doi.org/10.1111/cbdd.12519] [PMID: 25599975]
(b) Adamovich, S.N.; Ushakov, I.A.; Mirskova, A.N.; Mirskov, R.G.; Voronov, V.K. Novel complexes of 1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole with metal acetates and arylchalcogenylacetates. Mend. Commun., 2014, 24(5), 293-294.
[http://dx.doi.org/10.1016/j.mencom.2014.09.015]
(c) Singh, G.; Girdhar, S.; Khullarand, S.; Mandal, S.K. Imidazolyl-substituted silatranes derived from triethanolamine and tris(isopropanol)amine: syntheses and structural characterization. J. Coord. Chem., 2015, 68, 875.
[http://dx.doi.org/10.1080/00958972.2014.1003547]
[http://dx.doi.org/10.1002/aoc.4940]
(b) Materna, K.L.; Brennan, B.J.; Brudvig, G.W. Silatranes for binding inorganic complexes to metal oxide surfaces. Dalton Trans., 2015, 44(47), 20312-20315.
[http://dx.doi.org/10.1039/C5DT03463A] [PMID: 26506505]
(c) Huang, K-W.; Hsieh, C-W.; Kan, H-C.; Hsieh, M-L.; Hsieh, S.; Chau, L-K.; Chao, T-E.; Hsieh, C-W. Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as an adhesive film for anchoring gold nanoparticles on silicon surfaces. Nanosci. Nanotechnol, 2009, 9, 2894-2901.
[http://dx.doi.org/10.1166/jnn.2009.039]
[http://dx.doi.org/10.1016/j.mencom.2020.05.030]
[http://dx.doi.org/10.1016/S0040-4039(01)85305-3]
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
(b) Zhang, D.; Guo, J.; Zhang, M.; Liu, X.; Ba, M.; Tao, X.; Yu, L.; Guo, Y.; Dai, J. Oxazole-containing diterpenoids from cell cultures of salvia miltiorrhiza and their Anti-HIV-1 activities. J. Nat. Prod., 2017, 80(12), 3241-3246.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00659] [PMID: 29185738]
(c) Zhou, H.; Cheng, J.Q.; Wang, Z-S.; Chen, F.H.; Liu, X.H. Oxazole: A promising building block for the development of potent antitumor agents. Curr. Top. Med. Chem., 2016, 16(30), 3582-3589.
[http://dx.doi.org/10.2174/1568026616666160414122521] [PMID: 27086791]
(d) Swellmeen, L. 1,3-Oxazole Derivatives: A review of biological activities as antipathogenic. Pharma Chem., 2016, 8, 269.