Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Implementation of Quality by Design Principles for the Evolution of Optimized Sustained Release Drug Delivery System

Author(s): Lalit Singh and Vijay Sharma*

Volume 11, Issue 3, 2021

Published on: 21 April, 2021

Page: [233 - 247] Pages: 15

DOI: 10.2174/2210303111666210421121812

Price: $65

Abstract

Aim: The aim of the present work is the implementation of Quality by Design principles for the evolution of optimized sustained release drug delivery system.

Background: Quality by Design (QbD) approach refers to an advance approach to develop an optimized dosage form. QbD has become a vital modern scientific approach to develop a quality dosage form. In the modern era of science, researchers can develop an optimized dosage form with least effort, money and manpower.

Objectives: Objective of the research work was the successful development of optimized floating bioadhesive tablets of glipizide using floating-bioadhesive potential of cellulosic polymer and carbomersusing quality by design (QbD) approach.

Methods: Quality Target Product Profile (QTPP) of drug delivery system was defined as well as critical quality attributes (CQAs) were identified. A face centered central composite design (CCD) was utilized in assessing the impact of the individual critical material attribute (CMA) like Hydro Propyl Methyl Cellulose K4M(HPMC K4M)and Carbopol 934P (CP 934P) and their interactions, using least experimentation. Formulations were developed and quantitative impact on CQAs was determined using mathematical model. The optimized formulation was obtained and characterized for in-vitro as well as in-vivo parameters.

Results: A Fishikawa diagram and Failure Mode and Effect Analysis (FMEA) was performed to identify potential failure modes associated with the dosage form. The optimum formulation was embarked upon using mathematical model developed yielding desired CQAs followed for confirmation of data. Sustained release drug delivery system was successfully developed by using QbD approach. In-vivo X-ray imaging in rabbit and γ-scintigraphic study in manconfirmed the buoyant nature of the mucoadhesive floating tablet for 8 h in the upper gastrointestinal tract.

Conclusion: Optimized formulation shows phenomenal floating, bioadhesive properties and drug release retardation characteristics, utilizing a mixture of cost-effective polymers Hence, QbD approach may be regarded as an important tool in development of floating bioadhesive CR dosage forms.

Keywords: Central compositedesign, hydroxypropyl methylcellulose (HPMC) K4M, carbopol (CP) 934P, experimental design, effervescent, QTPP.

Graphical Abstract

[1]
Singh, B.; Rani, A.; Babita, ; Ahuja, N.; Kapil, R. Formulation optimization of hydrodynamically balanced oral controlled release bioadhesive tablets of tramadol hydrochloride. Sci. Pharm., 2010, 78(2), 303-323.
[http://dx.doi.org/10.3797/scipharm.1001-04] [PMID: 21179349]
[2]
Alibolandi, M.; Abnous, K.; Sadeghi, F.; Hosseinkhani, H.; Ramezani, M.; Hadizadeh, F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int. J. Pharm., 2016, 500(1-2), 162-178.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.040] [PMID: 26802496]
[3]
Dorozyński, P.; Jachowicz, R.; Kulinowski, P.; Kwieciński, S.; Szybiński, K.; Skórka, T.; Jasiński, A. The macromolecular polymers for the preparation of hydrodynamically balanced systems--methods of evaluation. Drug Dev. Ind. Pharm., 2004, 30(9), 947-957.
[http://dx.doi.org/10.1081/DDC-200037179] [PMID: 15554219]
[4]
Jamzad, S.; Fassihi, R. Development of a controlled release low dose class II drug-Glipizide. Int. J. Pharm., 2006, 312(1-2), 24-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.037] [PMID: 16481135]
[5]
Wåhlin-Boll, E.; Sartor, G.; Melander, A.; Scherstén, B. Impaired effect of sulfonylurea following increased dosage. Eur. J. Clin. Pharmacol., 1982, 22(1), 21-25.
[http://dx.doi.org/10.1007/BF00606420] [PMID: 7047168]
[6]
Singh, B.; Garg, B.; Chaturvedi, S.C.; Arora, S.; Mandsaurwale, R.; Kapil, R.; Singh, B. Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends. J. Pharm. Pharmacol., 2012, 64(5), 654-669.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01442.x] [PMID: 22471361]
[7]
Singh, B.; Kapil, R.; Nandi, M.; Ahuja, N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin. Drug Deliv., 2011, 8(10), 1341-1360.
[http://dx.doi.org/10.1517/17425247.2011.605120] [PMID: 21790511]
[8]
Patel, A.; Modasiya, M.; Shah, D.; Patel, V. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets. AAPS Pharm. Sci. Tech., 2009, 10(1), 310-315.
[http://dx.doi.org/10.1208/s12249-009-9210-9] [PMID: 19296224]
[9]
Klausner, E.A.; Lavy, E.; Friedman, M.; Hoffman, A. Expandable gastroretentive dosage forms. J. Control. Release, 2003, 90(2), 143-162.
[http://dx.doi.org/10.1016/S0168-3659(03)00203-7] [PMID: 12810298]
[10]
Doornbos, D.; Haan, P. Optimization techniques in formulation and processing. In: Encyclopedia of Pharmaceutical technology; Marcel Dekker New York, 1995; Vol. 11, pp. 75-160.
[11]
Singh, B.; Chakkal, S.K.; Ahuja, N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS Pharm. Sci. Tech., 2006, 7(1), E19-E28.
[http://dx.doi.org/10.1208/pt070103] [PMID: 28290018]
[12]
Chein, Y. W. Oral drug delivery and delivery systems. Novel drug delivery systems, 1992, 50, 139-177.
[13]
Fahmy, R.; Kona, R.; Dandu, R.; Xie, W.; Claycamp, G.; Hoag, S.W. Quality by design I: Application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS Pharm. Sci. Tech., 2012, 13(4), 1243-1254.
[http://dx.doi.org/10.1208/s12249-012-9844-x] [PMID: 22993122]
[14]
Acharya, S.; Patra, S.; Pani, N.R. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr. Polym., 2014, 102, 360-368.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.060] [PMID: 24507292]
[15]
Jiménez-Castellanos, M.R.; Zia, H.; Rhodes, C.T. Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application. Int. J. Pharm., 1994, 105(1), 65-70.
[http://dx.doi.org/10.1016/0378-5173(94)90236-4]
[16]
Ch’ng, H.S.; Park, H.; Kelly, P.; Robinson, J.R. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J. Pharm. Sci., 1985, 74(4), 399-405.
[http://dx.doi.org/10.1002/jps.2600740407] [PMID: 3998999]
[17]
Prabhu, P.; Harish, N.M.; Gulzar, A.M.; Yadav, B.; Narayana, C.R.; Satyanarayana, D.; Subrahmanayam, E. Formulation and in vitro evaluation of gastric oral floating tablets of glipizide. Ind. J. Pharm. Edu. Res., 2008, 42(2), 174-183.
[18]
Singh, B.; Singh, S. A comprehensive computer program for the study of drug release kinetics from compressed matrices. Indian J. Pharm. Sci., 1998, 60(6), 358.
[19]
Singh, B.; Kaur, T.; Singh, S. Correction of raw dissolution data for loss of drug and volume during sampling. Indian J. Pharm. Sci., 1997, 59(4), 196.
[20]
Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52(12), 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[21]
Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, 15(1), 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[22]
Razavi, M.; Karimian, H.; Yeong, C.H.; Chung, L.Y.; Nyamathulla, S.; Noordin, M.I. Gamma scintigraphic evaluation of floating gastroretentive tablets of metformin HCl using a combination of three natural polymers in rabbits. Drug Des. Devel. Ther., 2015, 9, 4373-4386.
[http://dx.doi.org/10.2147/DDDT.S86263] [PMID: 26273196]
[23]
Abdelbary, A.; El-Gazayerly, O.N.; El-Gendy, N.A.; Ali, A.A. Floating tablet of trimetazidine dihydrochloride: an approach for extended release with zero-order kinetics. AAPS Pharm. Sci. Tech., 2010, 11(3), 1058-1067.
[http://dx.doi.org/10.1208/s12249-010-9468-y] [PMID: 20582493]
[24]
Smart, J.D.; Kellaway, I.W.; Worthington, H.E. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J. Pharm. Pharmacol., 1984, 36(5), 295-299.
[http://dx.doi.org/10.1111/j.2042-7158.1984.tb04377.x] [PMID: 6145763]
[25]
Chary, R.B.; Vani, G.; Rao, Y.M. In vitro and in vivo adhesion testing of mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1999, 25(5), 685-690.
[http://dx.doi.org/10.1081/DDC-100102226] [PMID: 10219540]
[26]
Timmermans, J.; Moës, A.J. How well do floating dosage forms float? Int. J. Pharm., 1990, 62(2-3), 207-216.
[http://dx.doi.org/10.1016/0378-5173(90)90234-U]
[27]
Baumgartner, S.; Kristl, J.; Vrečer, F.; Vodopivec, P.; Zorko, B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. Int. J. Pharm., 2000, 195(1-2), 125-135.
[http://dx.doi.org/10.1016/S0378-5173(99)00378-6] [PMID: 10675690]
[28]
Singh, B.; Ahuja, N. Development of controlled-release buccoadhesive hydrophilic matrices of diltiazem hydrochloride: optimization of bioadhesion, dissolution, and diffusion parameters. Drug Dev. Ind. Pharm., 2002, 28(4), 431-442.
[http://dx.doi.org/10.1081/DDC-120003004] [PMID: 12056536]
[29]
Perez-Marcos, B.; Iglesias, R.; Gomez-amoza, J.L.; Martinez-Pacheo, R.; Souto, C.; Conchiero, R. Mechanical and drug release properties of atenolol-carbomer hydrophilic matrix tablets. J. Control. Release, 1991, 17, 267-276.
[http://dx.doi.org/10.1016/0168-3659(91)90145-4]
[30]
Rao, V.; Vasudha, M.; Bindu, K.; Samanta, S.; Rajinikanth, P.; Mishra, B.; Balasubramaniam, J. Formulation and in vitro characterization of sodium alginate-gellan beads of glipizide. Acta Pharm.Sci., 2007, 49(1)
[31]
Levina, M.; Rajabi-Siahboomi, A.R. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J. Pharm. Sci., 2004, 93(11), 2746-2754.
[http://dx.doi.org/10.1002/jps.20181] [PMID: 15389670]
[32]
Perez-Marcos, B.; Ford, J.L.; Armstrong, D.J.; Elliott, P.N.; Rostron, C.; Hogan, J.E. Release of propranolol hydrochloride from matrix tablets containing hydroxypropylmethylcellulose K4M and carbopol 974. Int. J. Pharm., 1994, 111(3), 251-259.
[http://dx.doi.org/10.1016/0378-5173(94)90348-4]
[33]
Singh, L.; Nanda, A.; Sharma, S.; Sharma, V. Design optimization and evaluation of gastric floating matrix tablet of glipizide. Trop. J. Pharm. Res., 2013, 12(6), 869-876.
[http://dx.doi.org/10.4314/tjpr.v12i6.2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy