Review Article

针对病毒-ACE2或病毒-TMPRSS2相互作用的SARS-CoV-2进入抑制剂

卷 29, 期 4, 2022

发表于: 20 April, 2021

页: [682 - 699] 页: 18

弟呕挨: 10.2174/0929867328666210420103021

价格: $65

摘要

COVID-19 是一种由 SARS-CoV-2 引起的传染病。 SARS-CoV-2的生命周期包括进入靶细胞、复制酶翻译、复制和转录基因组、翻译结构蛋白、组装和释放新的病毒粒子。进入宿主细胞是病毒生命周期早期的关键阶段,阻断这一阶段可以有效防止病毒感染。 SARS通过病毒S蛋白与靶细胞表面受体血管紧张素转换酶2(ACE2)的相互作用以及II型跨膜丝氨酸蛋白酶(TMPRSS2)对S蛋白的切割作用介导进入靶细胞.因此,ACE2受体和TMPRSS2是SARS-CoV-2进入抑制剂的重要靶点。在此,我们提供了一份关于针对病毒-ACE2或病毒-TMPRSS2相互作用具有潜在治疗价值的药物的简明报告/信息,为设计和发现针对SARS-CoV-2的潜在进入抑制剂提供参考。

关键词: S ARS-CoV-2、COVID-19、刺突蛋白、血管紧张素转换酶 2、跨膜蛋白酶、丝氨酸 2、药物设计。

[1]
Alexander, E. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[2]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[3]
Teissier, E.; Penin, F.; Pécheur, E.I. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules, 2010, 16(1), 221-250.
[http://dx.doi.org/10.3390/molecules16010221] [PMID: 21193846]
[4]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[5]
Hulswit, R.J.; de Haan, C.A.; Bosch, B.J. Coronavirus spike protein and tropism changes. Adv. Virus Res., 2016, 96, 29-57.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.004] [PMID: 27712627]
[6]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[7]
Fung, T.S.; Liu, D.X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73, 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[8]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[9]
Walls, A.C.; Tortorici, M.A.; Snijder, J.; Xiong, X.; Bosch, B.J.; Rey, F.A.; Veesler, D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. USA, 2017, 114(42), 11157-11162.
[http://dx.doi.org/10.1073/pnas.1708727114] [PMID: 29073020]
[10]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[11]
Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Lv, Q.; Wang, W.; Xue, J.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Zhao, L.; Liu, P.; Zhao, L.; Ye, F.; Wang, H.; Zhou, W.; Zhu, N.; Zhen, W.; Yu, H.; Zhang, X.; Guo, L.; Chen, L.; Wang, C.; Wang, Y.; Wang, X.; Xiao, Y.; Sun, Q.; Liu, H.; Zhu, F.; Ma, C.; Yan, L.; Yang, M.; Han, J.; Xu, W.; Tan, W.; Peng, X.; Jin, Q.; Wu, G.; Qin, C. The pathogenicity of SARS- CoV-2 in hACE2 transgenic mice. Nature, 2020, 583(7818), 830-833.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[12]
Li, J.; Zhan, P.; Liu, X. Targeting the entry step of SARS- CoV-2: a promising therapeutic approach. Signal Transduct. Target. Ther., 2020, 5(1), 98.
[http://dx.doi.org/10.1038/s41392-020-0195-x] [PMID: 32555145]
[13]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[14]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[15]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[16]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[17]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[18]
Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of SARS-CoV-2 entry: current and future opportunities. J. Med. Chem., 2020, 63(21), 12256-12274.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502] [PMID: 32539378]
[19]
Haga, S.; Nagata, N.; Okamura, T.; Yamamoto, N.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res., 2010, 85(3), 551-555.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.001] [PMID: 19995578]
[20]
Matsuyama, S.; Ujike, M.; Morikawa, S.; Tashiro, M.; Taguchi, F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12543-12547.
[http://dx.doi.org/10.1073/pnas.0503203102] [PMID: 16116101]
[21]
da Silva, J.S.; Gabriel-Costa, D.; Wang, H.; Ahmad, S.; Sun, X.; Varagic, J.; Sudo, R.T.; Ferrario, C.M.; Dell Italia, L.J.; Sudo, G.Z.; Groban, L. Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. J. Renin Angiotensin Aldosterone Syst., 2017, 18(3), 1470320317722270.
[http://dx.doi.org/10.1177/1470320317722270] [PMID: 28748720]
[22]
Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), e01815-18.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[23]
Li, S.R.; Tang, Z.J.; Li, Z.H.; Liu, X. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1021-1026.
[http://dx.doi.org/10.1007/s10096-020-03883-y] [PMID: 32285293]
[24]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[25]
Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res., 2016, 118(8), 1313-1326.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307708] [PMID: 27081112]
[26]
Meirson, T; Bomze, D; Markel, G. Structural basis of SARS-CoV-2 spike protein induced by ACE2. Bioinformatics, 2021, 37(7), 929-936.
[http://dx.doi.org/10.1093/bioinformatics/btaa744]
[27]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[28]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e120-e127.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[29]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[30]
Chen, X.; Wu, Y.; Chen, C.; Gu, Y.; Zhu, C.; Wang, S.; Chen, J.; Zhang, L.; Lv, L.; Zhang, G.; Yuan, Y.; Chai, Y.; Zhu, M.; Wu, C. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B, 2021, 11(1), 222-236.
[PMID: 33072499]
[31]
Batlle, D.; Wysocki, J.; Satchell, K. Soluble angiotensin- converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.), 2020, 134(5), 543-545.
[http://dx.doi.org/10.1042/CS20200163] [PMID: 32167153]
[32]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[33]
Sharifkashani, S.; Bafrani, M.A.; Khaboushan, A.S.; Pirzadeh, M.; Kheirandish, A.; Yavarpour Bali, H.; Hessami, A.; Saghazadeh, A.; Rezaei, N. Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: Potential therapeutic targeting. Eur. J. Pharmacol., 2020, 884, 173455.
[http://dx.doi.org/10.1016/j.ejphar.2020.173455] [PMID: 32745604]
[34]
Han, Y.; Duan, X.; Yang, L.; Benjamin, E. Nilsson- Payant; Pengfei Wang; Fuyu Duan; Xuming Tang; Tomer M. Yaron; Tuo Zhang; Skyler Uhl; Yaron Bram; Chanel Richardson; Jiajun Zhu; Zeping Zhao; David Redmond; Sean Houghton; Duc-Huy T. Nguyen; Dong Xu; Xing Wang; Jose Jessurun; Alain Borczuk; Yaoxing Huang; Jared L. Johnson; Yuru Liu; Jenny Xiang; Hui Wang; Lewis C. Cantley; Benjamin R. TenOever; David D. Ho; Fong Cheng Pan; Todd Evans; Huanhuan Joyce Chen; Robert E. Schwartz; Shuibing Chen. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270–275.
[35]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the Past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[36]
Bian, J.; Li, Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm. Sin. B, 2021, 11(1), 1-12.
[PMID: 33072500]
[37]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[38]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[39]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[40]
Li, X.; Liu, Y.; Song, J.; Zhong, J. Increased plasma ACE2 concentration does not mean increased risk of SARS-CoV-2 infection and increased fatality rate of COVID-19. Acta Pharm. Sin. B, 2020, 10(10), 2010-2014.
[http://dx.doi.org/10.1016/j.apsb.2020.09.003] [PMID: 32923317]
[41]
Zhang, X.L.; Li, Z.M.; Ye, J.T.; Lu, J.; Ye, L.L.; Zhang, C.X.; Liu, P.Q.; Duan, D.D. Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol. Sin., 2020, 41(11), 1377-1386.
[http://dx.doi.org/10.1038/s41401-020-00519-x] [PMID: 32968208]
[42]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[43]
Celı K, I.; Onay-Besı Kcı, A.; Ayhan-Kilcigı L, G. Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: a molecular docking study. J. Biomol. Struct. Dyn., 2020, 39(15), 5792-5798.
[http://dx.doi.org/10.1080/07391102.2020.1792993] [PMID: 32677545]
[44]
Yuan, Z.; Pavel, M.A.; Wang, H.; Hansen, S.B. Hydroxychloroquine: mechanism of action inhibiting SARS- CoV2 entry. bioRxiv, 2020, 2020.08.13.250217.
[PMID: 32817933]
[45]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[46]
Hoffmann, M.; Mösbauer, K.; Hofmann-Winkler, H.; Kaul, A.; Kleine-Weber, H.; Krüger, N.; Gassen, N.C.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826), 588-590.
[http://dx.doi.org/10.1038/s41586-020-2575-3] [PMID: 32698190]
[47]
Choudhary, S. Yashpal S. Malik; Shailly Tomar. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front. Immunol., 2020, 11, 1664.
[48]
Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv., 2020, 11(28), eabb8097.
[http://dx.doi.org/10.1126/sciadv.abb8097] [PMID: 32691011]
[49]
Francisco Wagner, Q. Almeida-Neto; Maria Geysillene Castro Matos; Emanuelle Machado Marinho; Márcia Machado Marinho; Ramon Róseo Paula Pessoa Bezerra De Menezes; Tiago Lima Sampaio; Paulo Nogueira Bandeira; Carla Freire Celedonio Fernandes; Alexandre Magno Rodrigues Teixeira; Emmanuel Silva Marinho; Pedro de Lima-Neto; Hélcio Silva Dos Santos. In silico study of the potential interactions of 4′-acetamidechalcones with protein targets in SARS-CoV-2. Biochem. Biophys. Res. Commun., 2021, 537, 71-77.
[50]
Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 2020, 17(7), 765-767.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[51]
Dwight, L. McKee; Ariane Sternberg; Ulrike Stange; Stefan Laufer; Cord Naujokat. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859]
[52]
Bhattarai, Apurba; Pawnikar, Shristi; Miao, Yinglong Mechanism of ligand recognition by human ACE2 receptor. bioRxiv: the preprint server for biology, 2020, 2020. 10.30.362749.
[http://dx.doi.org/10.1101/2020.10.30.362749] [PMID: 33140043]
[53]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[54]
Hoffmann, M.; Simon, Schroeder; Hannah, Kleine-Weber; Marcel A., Müller; Christian, Drosten; Stefan, Pöhlmann. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Ch, 2020, 64(6), e00754-20.
[55]
Yamamoto, M.; Kiso, M.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Takeda, M.; Kinoshita, N.; Ohmagari, N.; Gohda, J.; Semba, K.; Matsuda, Z.; Kawaguchi, Y.; Kawaoka, Y.; Inoue, J.I. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses, 2020, 12(6), 629.
[http://dx.doi.org/10.3390/v12060629] [PMID: 32532094]
[56]
Jared, M. Lucas; Cynthia Heinlein; Tom Kim; Susana A. Hernandez; Muzdah S. Malik; Lawrence D. True; Colm Morrissey; Eva Corey; Bruce Montgomery; Elahe Mostaghel; Nigel Clegg; Ilsa Coleman; Christopher M. Brown; Eric L. Schneider; Charles Craik; Julian A. Simon; Antonio Bedalov; Peter S. Nelson. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov., 2014, 4(11), 1310-25.
[57]
Cannalire, R.; Stefanelli, I.; Cerchia, C.; Beccari, A.R.; Pelliccia, S.; Summa, V. SARS-CoV-2 entry inhibitors: Small molecules and peptides targeting virus or host cells. Int. J. Mol. Sci., 2020, 21(16), E5707.
[http://dx.doi.org/10.3390/ijms21165707] [PMID: 32784899]
[58]
Shen, L.W.; Qian, M.Q.; Yu, K.; Narva, S.; Yu, F.; Wu, Y.L.; Zhang, W. Inhibition of Influenza A virus propagation by benzoselenoxanthenes stabilizing TMPRSS2 Gene G-quadruplex and hence down-regulating TMPRSS2 expression. Sci. Rep., 2020, 10(1), 7635.
[http://dx.doi.org/10.1038/s41598-020-64368-8] [PMID: 32376987]
[59]
Mikkonen, L.; Pihlajamaa, P.; Sahu, B.; Zhang, F.P.; Jänne, O.A. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell. Endocrinol., 2010, 317(1-2), 14-24.
[http://dx.doi.org/10.1016/j.mce.2009.12.022] [PMID: 20035825]
[60]
Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? Cancer Discov., 2020, 10(6), 779-782.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0451] [PMID: 32276929]
[61]
Wambier, C.G.; Goren, A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J. Am. Acad. Dermatol., 2020, 83(1), 308-309.
[http://dx.doi.org/10.1016/j.jaad.2020.04.032] [PMID: 32283245]
[62]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[63]
Gierer, S.; Bertram, S.; Kaup, F.; Wrensch, F.; Heurich, A.; Krämer-Kühl, A.; Welsch, K.; Winkler, M.; Meyer, B.; Drosten, C.; Dittmer, U.; von Hahn, T.; Simmons, G.; Hofmann, H.; Pöhlmann, S. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J. Virol., 2013, 87(10), 5502-5511.
[http://dx.doi.org/10.1128/JVI.00128-13] [PMID: 23468491]
[64]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[65]
Hammer, Q.; Rückert, T.; Romagnani, C. Natural killer cell specificity for viral infections. Nat. Immunol., 2018, 19(8), 800-808.
[http://dx.doi.org/10.1038/s41590-018-0163-6] [PMID: 30026479]
[66]
Zhou, L.; Huntington, K.; Zhang, S.; Carlsen, L.; So, E.Y.; Parker, C.; Sahin, I.; Safran, H.; Kamle, S.; Lee, C.M.; Lee, C.G.; Elias, J.A.; Campbell, K.S.; Naik, M.T.; Atwood, W.J.; Youssef, E.; Pachter, J.A.; Navaraj, A.; Seyhan, A.A.; Liang, O.; El-Deiry, W.S. Natural Killer cell activation, reduced ACE2, TMPRSS2, cytokines G-CSF, M-CSF and SARS-CoV-2-S pseudovirus infectivity by MEK inhibitor treatment of human cells. bioRxiv, 2020, 2020.08.02.230839.
[PMID: 32793908]
[67]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[68]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[69]
Wu, G.; Zhao, T.; Kang, D.; Zhang, J.; Song, Y.; Namasivayam, V.; Kongsted, J.; Pannecouque, C.; De Clercq, E.; Poongavanam, V.; Liu, X.; Zhan, P. Overview of Recent Strategic Advances in Medicinal Chemistry. J. Med. Chem., 2019, 62(21), 9375-9414.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00359] [PMID: 31050421]
[70]
Zhang, S.; Zhang, J.; Gao, P.; Sun, L.; Song, Y.; Kang, D.; Liu, X.; Zhan, P. Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discov. Today, 2019, 24(3), 805-813.
[http://dx.doi.org/10.1016/j.drudis.2018.11.021] [PMID: 30529326]
[71]
Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem., 2014, 6(8), 885-901.
[http://dx.doi.org/10.4155/fmc.14.50] [PMID: 24962281]
[72]
Bestle, D.; Heindl, M.R.; Limburg, H.; Van Lam Van, T.; Pilgram, O.; Moulton, H.; Stein, D.A.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Klenk, H.D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance, 2020, 3(9), e202000786.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy