Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics

Author(s): Nompumelelo Mthimkhulu, Karabo S. Mosiane, Ekene E. Nweke, Mohammed Balogun and Pascaline N. Fru*

Volume 22, Issue 9, 2022

Published on: 06 January, 2022

Page: [1699 - 1713] Pages: 15

DOI: 10.2174/1871520621666210419094623

Price: $65

conference banner
Abstract

Synthetic chemotherapeutics have played a crucial role in minimizing mostly palliative symptoms associated with cancer; however, they have also created other problems such as system toxicity due to a lack of specificity. This has led to the development of polymer-drug conjugates amongst other novel drug delivery systems. Most of the formulations designed using delivery systems consist of synthetic drugs and face issues such as drug resistance, which has already rendered drugs such as antibiotics ineffective. This is further exacerbated by toxicity due to the long-term use. Given these problems and the fact that conjugation of synthetic compounds to polymers has been relatively slow with no formulation on the market after a decade of extensive studies, the focus has shifted to using this platform with medicinal plant extracts to improve solubility, specificity and increase drug release of medicinal and herbal bioactives. In recent years, various plant extracts such as flavonoids, tannins and terpenoids have been studied extensively using this approach. The success of formulations developed using novel drug-delivery systems is highly dependent on the tumour microenvironment especially on the enhanced permeability and retention effect. As a result, the compromised lymphatic network and ‘leaky’ vasculature exhibited by tumour cells act as a guiding principle in the delivery of these formulations. This review focuses on the state of the polymer-drug conjugates and their exploration with natural compounds, the progress and difficulties thus far, and future directions concerning cancer treatment.

Keywords: Cancer, chemotherapy, drug delivery systems, medicinal plant extracts, polymer-drug conjugates, synthetic chemotherapeutic.

Graphical Abstract

[1]
Haag, R.; Kratz, F. Polymer therapeutics: concepts and applications. Angew. Chem. Int. Ed. Engl., 2006, 45(8), 1198-1215.
[http://dx.doi.org/10.1002/anie.200502113] [PMID: 16444775]
[2]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[3]
Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 1-41.
[PMID: 33538338]
[5]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[6]
Friberg, S.; Nyström, A.M. NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J. Nanobiotechnology, 2016, 14(1), 17.
[http://dx.doi.org/10.1186/s12951-016-0172-2] [PMID: 26955956]
[7]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[8]
Bilia, A.R.; Piazzini, V.; Guccione, C.; Risaliti, L.; Asprea, M.; Capecchi, G.; Bergonzi, M.C. Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Med., 2017, 83(5), 366-381.
[http://dx.doi.org/10.1055/s-0043-102949] [PMID: 28178749]
[9]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[10]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: a current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[11]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19(3), 311-330.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[12]
Duncan, R.; Vicent, M.J.; Greco, F.; Nicholson, R.I. Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr. Relat. Cancer, 2005, 12(Suppl. 1), S189-S199.
[http://dx.doi.org/10.1677/erc.1.01045]
[13]
Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4(28), 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[14]
Pillai, G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm. Pharm. Sci., 2014, 1(2), 1-13.
[http://dx.doi.org/10.15226/2374-6866/1/1/00109]
[15]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[16]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[17]
Karavasilis, V.; Reid, A.; Sinha, R.; de Bono, J.S. Conventional. Cancer Drug Design and Discovery; Elsevier Inc., 2008, pp. 405-423.
[http://dx.doi.org/10.1016/B978-0-12-369448-5.50020-3]
[18]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[19]
Liu, D.; Auguste, D.T. Cancer targeted therapeutics: From molecules to drug delivery vehicles. J. Control. Release, 2015, 219, 632-643.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.041] [PMID: 26342659]
[20]
Phi, L.T.H.; Sari, I.N.; Yang, Y-G.; Lee, S-H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int., 2018, 20185416923
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[21]
Glezerman, I.; Kris, M.G.; Miller, V.; Seshan, S.; Flombaum, C. Gemcitabine nephrotoxicity and hemolytic uremic syndrome: report of 29 cases from a single institution., Available at: https://pubmed.ncbi.nlm. nih.gov/19203505/AccessedAug 12, 2020
[http://dx.doi.org/10.5414/CNP71130]
[22]
Khodabandehloo, H.; Zahednasab, H.; Ashrafi Hafez, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, 9(2), e3966-e3971.
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[23]
Slingerland, M.; Guchelaar, H-J.; Gelderblom, H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today, 2012, 17(3-4), 160-166.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[24]
Böhmová, E.; Pola, R. Peptide-targeted polymer cancerostatics. Physiol. Res., 2016, 65(Suppl. 2), S153-S164.
[http://dx.doi.org/10.33549/physiolres.933418] [PMID: 27762582]
[25]
Duncan, R.; Vicent, M.J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev., 2013, 65(1), 60-70.
[http://dx.doi.org/10.1016/j.addr.2012.08.012] [PMID: 22981753]
[26]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[27]
Girase, M.L.; Patil, P.G.; Ige, P.P. Polymer-drug conjugates as nanomedicine: a review. Int. J. Polym. Mater. Polym. Biomater, 2020, 69(15), 990-1014.
[http://dx.doi.org/10.1080/00914037.2019.1655745]
[28]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[29]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[30]
Stinchcombe, T.E.; Socinski, M.A.; Walko, C.M.; O’Neil, B.H.; Collichio, F.A.; Ivanova, A.; Mu, H.; Hawkins, M.J.; Goldberg, R.M.; Lindley, C.; Dees, E.C. Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane) on three treatment schedules in patients with solid tumors. Cancer Chemother. Pharmacol., 2007, 60(5), 759-766.
[http://dx.doi.org/10.1007/s00280-007-0423-x] [PMID: 17285317]
[31]
Chen, H.; Huang, X.; Wang, S.; Zheng, X.; Lin, J.; Li, P.; Lin, L. Nab-paclitaxel (abraxane)-based chemotherapy to treat elderly patients with advanced non-small-cell lung cancer: a single center, randomized and open-label clinical trial. Chin. J. Cancer Res., 2015, 27(2), 190-196.
[PMID: 25937781]
[32]
Yuan, D.M.; Lv, Y.L.; Yao, Y.W.; Miao, X.H.; Wang, Q.; Xiao, X.W.; Yin, J.; Shi, Y.; Shi, M.Q.; Zhang, X.W.; Song, Y. Efficacy and safety of Abraxane in treatment of progressive and recurrent non-small cell lung cancer patients: A retrospective clinical study. Thorac. Cancer, 2012, 3(4), 341-347.
[http://dx.doi.org/10.1111/j.1759-7714.2012.00113.x] [PMID: 28920278]
[33]
Fotopoulou, C.; Hall, M.; Cruickshank, D.; Gabra, H.; Ganesan, R.; Hughes, C.; Kehoe, S.; Ledermann, J.; Morrison, J.; Naik, R.; Rolland, P.; Sundar, S. British Gynaecological Cancer Society (BGCS) epithelial ovarian/fallopian tube/primary peritoneal cancer guidelines: recommendations for practice. Eur. J. Obstet. Gynecol. Reprod. Biol., 2017, 213, 123-139.
[http://dx.doi.org/10.1016/j.ejogrb.2017.04.016] [PMID: 28457647]
[34]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[35]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[36]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[37]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[38]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[39]
Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target., 2013, 21(10), 904-913.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[40]
Sutradhar, K.B.; Amin, Md. L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[41]
Dheer, D.; Nicolas, J.; Shankar, R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv. Drug Deliv. Rev., 2019, 151-152, 130-151.
[http://dx.doi.org/10.1016/j.addr.2019.01.010] [PMID: 30690054]
[42]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[43]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[44]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[45]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[46]
Smith, B.L.; Bauer, G.B.; Povirk, L.F. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. Asymmetry in protection at the periphery of nucleosome-bound DNA. J. Biol. Chem., 1994, 269(48), 30587-30594.
[http://dx.doi.org/10.1016/S0021-9258(18)43854-9] [PMID: 7527033]
[47]
Will, P.; Guger, K.A.; Schor, N.F. Effects of neocarzinostatin upon the development of tumors from murine neuroblastoma cells. Cancer Chemother. Pharmacol., 1994, 35(2), 115-120.
[http://dx.doi.org/10.1007/BF00686632] [PMID: 7987986]
[48]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[49]
Soundararajan, A.; Bao, A.; Phillips, W.T.; Perez, R., III; Goins, B.A. [(186)Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl. Med. Biol., 2009, 36(5), 515-524.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.02.004] [PMID: 19520292]
[50]
Rey-Rico, A.; Cucchiarini, M. PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine - an overview. Int. J. Mol. Sci., 2018, 19(3), 775-789.
[http://dx.doi.org/10.3390/ijms19030775] [PMID: 29518011]
[51]
Bodratti, A.M.; Alexandridis, P. Formulation of poloxamers for drug delivery. J. Funct. Biomater., 2018, 9(1), 11-34.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[52]
Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines (Basel), 2018, 6(1), 7-26.
[http://dx.doi.org/10.3390/medicines6010007] [PMID: 30597953]
[53]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[54]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(2)(Suppl. 2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[55]
Schleich, N.; Po, C.; Jacobs, D.; Ucakar, B.; Gallez, B.; Danhier, F.; Préat, V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release, 2014, 194, 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.059] [PMID: 25178270]
[56]
Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[57]
Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine (Lond.), 2014, 10(1), 19-34.
[http://dx.doi.org/10.1016/j.nano.2013.07.001] [PMID: 23871761]
[58]
Arias, J.L. Drug targeting strategies in cancer treatment: an overview. Mini Rev. Med. Chem., 2011, 11(1), 1-17.
[http://dx.doi.org/10.2174/138955711793564024] [PMID: 21235512]
[59]
Sanchis, J.; Canal, F.; Lucas, R.; Vicent, M.J. Polymer-drug conjugates for novel molecular targets. Nanomedicine (Lond.), 2010, 5(6), 915-935.
[http://dx.doi.org/10.2217/nnm.10.71] [PMID: 20735226]
[60]
Pang, X.; Du, H-L.; Zhang, H-Q.; Zhai, Y-J.; Zhai, G-X. Polymer-drug conjugates: present state of play and future perspectives. Drug Discov. Today, 2013, 18(23-24), 1316-1322.
[http://dx.doi.org/10.1016/j.drudis.2013.09.007] [PMID: 24055841]
[61]
Ta, H.T.; Dass, C.R.; Dunstan, D.E. Injectable chitosan hydrogels for localised cancer therapy. J. Control. Release, 2008, 126(3), 205-216.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.018] [PMID: 18258328]
[62]
Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega, 2020, 5(32), 20450-20460.
[http://dx.doi.org/10.1021/acsomega.0c02548] [PMID: 32832798]
[63]
Cirillo, G.; Spizzirri, U.G.; Curcio, M.; Nicoletta, F.P.; Iemma, F. Injectable hydrogels for cancer therapy over the last decade. Pharmaceutics, 2019, 11(9), 1-51.
[http://dx.doi.org/10.3390/pharmaceutics11090486] [PMID: 31546921]
[64]
Alomrani, A.; Badran, M.; Harisa, G.I. ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J., 2019, 27(5), 603-611.
[http://dx.doi.org/10.1016/j.jsps.2019.02.008] [PMID: 31297013]
[65]
Hasan, M.; Elkhoury, K.; Belhaj, N.; Kahn, C.; Tamayol, A.; Barberi-Heyob, M.; Arab-Tehrany, E.; Linder, M. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar. Drugs, 2020, 18(4), 217.
[http://dx.doi.org/10.3390/md18040217] [PMID: 32316578]
[66]
Alshraim, M.O.; Sangi, S.; Harisa, G.I.; Alomrani, A.H.; Yusuf, O.; Badran, M.M. Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition. Molecules, 2019, 24(2), 1-11.
[http://dx.doi.org/10.3390/molecules24020250] [PMID: 30641899]
[67]
Fu, S.; Xia, J.; Wu, J. Functional chitosan nanoparticles in cancer treatment. J. Biomed. Nanotechnol., 2016, 12(8), 1585-1603.
[http://dx.doi.org/10.1166/jbn.2016.2228] [PMID: 29341581]
[68]
Adhikari, H.S.; Yadav, P.N. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater., 2018, 20182952085
[http://dx.doi.org/10.1155/2018/2952085] [PMID: 30693034]
[69]
Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11(317), 317.
[http://dx.doi.org/10.3389/fphar.2020.00317] [PMID: 32231576]
[70]
Sagita, E.; Syahdi, R.R.; Arrahman, A. Synthesis of polymer-drug conjugates using natural polymer: what, why and how? Pharma. Sci. Res., 2018, 5(3), 97-115.
[71]
Babu, A.; Ramesh, R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar. Drugs, 2017, 15(4), 1-19.
[http://dx.doi.org/10.3390/md15040096] [PMID: 28346381]
[72]
Su, Y.; Hu, Y.; Du, Y.; Huang, X.; He, J.; You, J.; Yuan, H.; Hu, F. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol. Pharm., 2015, 12(4), 1193-1202.
[http://dx.doi.org/10.1021/mp500710x] [PMID: 25751168]
[73]
Pan, Z.; Gao, Y.; Heng, L.; Liu, Y.; Yao, G.; Wang, Y.; Liu, Y. Amphiphilic N-(2,3-dihydroxypropyl)-chitosan-cholic acid micelles for paclitaxel delivery. Carbohydr. Polym., 2013, 94(1), 394-399.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.013] [PMID: 23544554]
[74]
Yang, X.; Lian, K.; Tan, Y.; Zhu, Y.; Liu, X.; Zeng, Y.; Yu, T.; Meng, T.; Yuan, H.; Hu, F. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr. Polym., 2020, 229115435
[http://dx.doi.org/10.1016/j.carbpol.2019.115435] [PMID: 31826424]
[75]
Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; Xie, H.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z.; Wang, L. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl. Mater. Interfaces, 2016, 8(10), 6411-6422.
[http://dx.doi.org/10.1021/acsami.6b00959] [PMID: 26900631]
[76]
Wang, H.; Dai, T.; Zhou, S.; Huang, X.; Li, S.; Sun, K.; Zhou, G.; Dou, H. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci. Rep., 2017, 7(1), 40011.
[http://dx.doi.org/10.1038/srep40011] [PMID: 28071743]
[77]
Yuba, E.; Tajima, N.; Yoshizaki, Y.; Harada, A.; Hayashi, H.; Kono, K. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterials, 2014, 35(9), 3091-3101.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.024] [PMID: 24406217]
[78]
Huo, M.; Wang, H.; Zhang, Y.; Cai, H.; Zhang, P.; Li, L.; Zhou, J.; Yin, T. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J. Control. Release, 2020, 321, 198-210.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.017] [PMID: 32044390]
[79]
Thambi, T.; You, D.G.; Han, H.S.; Deepagan, V.G.; Jeon, S.M.; Suh, Y.D.; Choi, K.Y.; Kim, K.; Kwon, I.C.; Yi, G-R.; Lee, J.Y.; Lee, D.S.; Park, J.H. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv. Healthc. Mater., 2014, 3(11), 1829-1838.
[http://dx.doi.org/10.1002/adhm.201300691] [PMID: 24753360]
[80]
Albukhaty, S.; Al-Musawi, S.; Abdul Mahdi, S.; Sulaiman, G.M.; Alwahibi, M.S.; Dewir, Y.H.; Soliman, D.A.; Rizwana, H. Investigation of dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules, 2020, 25(20), 1-13.
[http://dx.doi.org/10.3390/molecules25204721] [PMID: 33076247]
[81]
Sun, Q. Tumor-penetrating acetalated dextran nanoparticles capable of tandem delivery of agents for the treatment of lung cancer.. MSc Dissertation, University of Rhode Island: Kingston,. 2014.
[82]
Zhang, X.; Zhang, T.; Ma, X.; Wang, Y.; Lu, Y.; Jia, D.; Huang, X.; Chen, J.; Xu, Z.; Wen, F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci, 2020, 15(5), 605-616.
[http://dx.doi.org/10.1016/j.ajps.2019.10.001] [PMID: 33193863]
[83]
Cao, D.; He, J.; Xu, J.; Zhang, M.; Zhao, L.; Duan, G.; Cao, Y.; Zhou, R.; Ni, P. Polymeric prodrugs conjugated with reduction-sensitive dextran-camptothecin and pH-responsive dextran-doxorubicin: an effective combinatorial drug delivery platform for cancer therapy. Polym. Chem., 2016, 7(25), 4198-4212.
[http://dx.doi.org/10.1039/C6PY00701E]
[84]
Shin, J.M.; Song, S.H.; Vijayakameswara Rao, N.; Lee, E.S.; Ko, H.; Park, J.H. A carboxymethyl dextran-based polymeric conjugate as the antigen carrier for cancer immunotherapy. Biomater. Res., 2018, 22(1), 21-27.
[http://dx.doi.org/10.1186/s40824-018-0131-0] [PMID: 30128166]
[85]
Varshosaz, J.; Sadeghi-aliabadi, H.; Ghasemi, S.; Behdadfar, B. Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. BioMed Res. Int., 2013, 2013680712
[http://dx.doi.org/10.1155/2013/680712] [PMID: 24381941]
[86]
Zhang, Z.; Chen, X.; Gao, X.; Yao, X.; Chen, L.; He, C.; Chen, X. Targeted dextran-b-poly(ε-Caprolactone) micelles for cancer treatments. RSC Advances, 2015, 5(24), 18593-18600.
[http://dx.doi.org/10.1039/C4RA15696J]
[87]
Ji, W.; Wang, B.; Fan, Q.; Xu, C.; He, Y.; Chen, Y. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. PLoS One, 2017, 12(7)e0180037
[http://dx.doi.org/10.1371/journal.pone.0180037] [PMID: 28686704]
[88]
Zhang, H.; Tian, Y.; Zhu, Z.; Xu, H.; Li, X.; Zheng, D.; Sun, W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci. Rep., 2016, 6(1), 26546.
[http://dx.doi.org/10.1038/srep26546] [PMID: 27226240]
[89]
Chen, Y-J.; Wang, Z-W.; Lu, T-L.; Gomez, C.B.; Fang, H-W.; Wei, Y.; Tseng, C-L. The synergistic anticancer effect of dual drug- (Cisplatin/Epigallocatechin Gallate) loaded gelatin nanoparticles for lung cancer treatment. J. Nanomater., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/9181549]
[90]
Wang, A.; Yang, Y.; Yan, X.; Ma, G.; Bai, S.; Li, J. Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6(74), 70064-70071.
[http://dx.doi.org/10.1039/C6RA10743E]
[91]
Azarmi, S.; Huang, Y.; Chen, H.; McQuarrie, S.; Abrams, D.; Roa, W.; Finlay, W.H.; Miller, G.G.; Löbenberg, R. Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J. Pharm. Pharm. Sci., 2006, 9(1), 124-132.
[PMID: 16849014]
[92]
Lu, Z.; Yeh, T-K.; Wang, J.; Chen, L.; Lyness, G.; Xin, Y.; Wientjes, M.G.; Bergdall, V.; Couto, G.; Alvarez-Berger, F.; Kosarek, C.E.; Au, J.L-S. Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. J. Urol., 2011, 185(4), 1478-1483.
[http://dx.doi.org/10.1016/j.juro.2010.11.091] [PMID: 21334664]
[93]
Ofner, C.M., III; Pica, K.; Bowman, B.J.; Chen, C-S. Growth inhibition, drug load, and degradation studies of gelatin/methotrexate conjugates. Int. J. Pharm., 2006, 308(1-2), 90-99.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.037] [PMID: 16361072]
[94]
Selestin Raja, I.; Thangam, R.; Fathima, N.N. Polymeric micelle of a gelatin-Oleylamine conjugate: a prominent drug delivery carrier for treating triple negative breast cancer cells. ACS Appl. Bio Mater, 2018, 1(5), 1725-1734.
[http://dx.doi.org/10.1021/acsabm.8b00526]
[95]
St’astný, M.; Plocová, D.; Etrych, T.; Ulbrich, K.; Ríhová, B. HPMA-hydrogels result in prolonged delivery of anticancer drugs and are a promising tool for the treatment of sensitive and multidrug resistant leukaemia. Eur. J. Cancer, 2002, 38(4), 602-608.
[http://dx.doi.org/10.1016/S0959-8049(01)00421-X] [PMID: 11872356]
[96]
Whiteman, K.R.; Subr, V.; Ulbrich, K.; Torchilin, V.P. Poly(Hpma)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res., 2001, 11(2-3), 153-164.
[http://dx.doi.org/10.1081/LPR-100108459] [PMID: 19530930]
[97]
Kierstead, P.H.; Okochi, H.; Venditto, V.J.; Chuong, T.C.; Kivimae, S.; Fréchet, J.M.J.; Szoka, F.C. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control. Release, 2015, 213, 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.023] [PMID: 26093095]
[98]
Kramer, S.; Svatunek, D.; Alberg, I.; Gräfen, B.; Schmitt, S.; Braun, L.; van Onzen, A.H.A.M.; Rossin, R.; Koynov, K.; Mikula, H.; Zentel, R. HPMA-based nanoparticles for fast, bio-orthogonal IEDDA ligation. Biomacromolecules, 2019, 20(10), 3786-3797.
[http://dx.doi.org/10.1021/acs.biomac.9b00868] [PMID: 31535846]
[99]
Rani, S.; Gothwal, A.; Pandey, P.K.; Chauhan, D.S.; Pachouri, P.K.; Gupta, U.D.; Gupta, U. HPMA-PLGA based nanoparticles for effective in vitro delivery of Rifampicin. Pharm. Res., 2018, 36(1), 19.
[http://dx.doi.org/10.1007/s11095-018-2543-x] [PMID: 30511238]
[100]
Rani, S.; Sahoo, R.K.; Nakhate, K.T. Ajazuddin; Gupta, U. Biotinylated HPMA centered polymeric nanoparticles for Bortezomib delivery. Int. J. Pharm., 2020, 579, 1-13.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119173]
[101]
Chytil, P.; Kostka, L.; Etrych, T. HPMA Copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med., 2021, 11(2), 1-22.
[http://dx.doi.org/10.3390/jpm11020115] [PMID: 33578756]
[102]
Krakovicová, H.; Etrych, T.; Ulbrich, K. HPMA-based polymer conjugates with drug combination. Eur. J. Pharm. Sci., 2009, 37(3-4), 405-412.
[http://dx.doi.org/10.1016/j.ejps.2009.03.011] [PMID: 19491032]
[103]
Yang, J.; Kopeček, J. The Light at the End of the Tunnel-Second Generation HPMA Conjugates for Cancer Treatment. Curr. Opin. Colloid Interface Sci., 2017, 31, 30-42.
[http://dx.doi.org/10.1016/j.cocis.2017.07.003] [PMID: 29276426]
[104]
Wang, Y.; van Steenbergen, M.J.; Beztsinna, N.; Shi, Y.; Lammers, T.; van Nostrum, C.F.; Hennink, W.E. Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. J. Control. Release, 2020, 328, 970-984.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.013] [PMID: 32926885]
[105]
Bagheri, M.; Bresseleers, J.; Varela-Moreira, A.; Sandre, O.; Meeuwissen, S.A.; Schiffelers, R.M.; Metselaar, J.M.; van Nostrum, C.F.; van Hest, J.C.M.; Hennink, W.E. Effect of formulation and processing parameters on the size of mPEG- b -p(HPMA-Bz) polymeric micelles. Langmuir, 2018, 34(50), 15495-15506.
[http://dx.doi.org/10.1021/acs.langmuir.8b03576] [PMID: 30415546]
[106]
Naksuriya, O.; Shi, Y.; van Nostrum, C.F.; Anuchapreeda, S.; Hennink, W.E.; Okonogi, S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur. J. Pharm. Biopharm., 2015, 94, 501-512.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.010] [PMID: 26134273]
[107]
Zhao, Y.; Chen, G.; Meng, Z.; Gong, G.; Zhao, W.; Wang, K.; Liu, T. A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy. Drug Deliv., 2019, 26(1), 717-723.
[http://dx.doi.org/10.1080/10717544.2019.1639846] [PMID: 31293178]
[108]
Chen, S.; Yang, K.; Tuguntaev, R.G.; Mozhi, A.; Zhang, J.; Wang, P.C.; Liang, X-J. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine (Lond.), 2016, 12(2), 269-286.
[http://dx.doi.org/10.1016/j.nano.2015.10.020] [PMID: 26707818]
[109]
Pei, X.; Zhu, Z.; Gan, Z.; Chen, J.; Zhang, X.; Cheng, X.; Wan, Q.; Wang, J. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci. Rep., 2020, 10(1), 2717-2731.
[http://dx.doi.org/10.1038/s41598-020-59624-w] [PMID: 32066812]
[110]
Greenwald, R.B.; Choe, Y.H.; McGuire, J.; Conover, C.D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev., 2003, 55(2), 217-250.
[http://dx.doi.org/10.1016/S0169-409X(02)00180-1] [PMID: 12564978]
[111]
Senevirathne, S.A.; Washington, K.E.; Biewer, M.C.; Stefan, M.C. PEG based anti-cancer drug conjugated prodrug micelles for the delivery of anti-cancer agents. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(3), 360-370.
[http://dx.doi.org/10.1039/C5TB02053K] [PMID: 32263202]
[112]
Kim, D.; Le, Q-V.; Kim, Y.B.; Oh, Y-K. Safety and photochemotherapeutic application of poly(γ-glutamic acid)-based biopolymeric nanoparticle. Acta Pharm. Sin. B, 2019, 9(3), 565-574.
[http://dx.doi.org/10.1016/j.apsb.2019.01.005] [PMID: 31193800]
[113]
Liang, T-J.; Zhou, Z-M.; Cao, Y-Q.; Ma, M-Z.; Wang, X-J.; Jing, K. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer. Int. J. Pharm., 2016, 513(1-2), 564-571.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.018] [PMID: 27613255]
[114]
Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly (ethylene glycol)-polylactide micelles for cancer therapy. Front. Pharmacol., 2018, 9, 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[115]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9(1260), 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[116]
Choi, Y.; Yoon, H.Y.; Kim, J.; Yang, S.; Lee, J.; Choi, J.W.; Moon, Y.; Kim, J.; Lim, S.; Shim, M.K.; Jeon, S.; Kwon, I.C.; Kim, K.C.; Kim, K. Doxorubicin-loaded PLGA nanoparticles for cancer therapy: molecular weight effect of PLGA in doxorubicin release for controlling immunogenic cell death. Pharmaceutics, 2020, 12(12), 1165.
[http://dx.doi.org/10.3390/pharmaceutics12121165] [PMID: 33260446]
[117]
Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer, 2020, 20(1), 354.
[http://dx.doi.org/10.1186/s12885-020-06803-7] [PMID: 32345258]
[118]
Di, Y.; Gao, Y.; Gai, X.; Wang, D.; Wang, Y.; Yang, X.; Zhang, D.; Pan, W.; Yang, X. Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment. RSC Advances, 2017, 7(39), 24030-24039.
[http://dx.doi.org/10.1039/C7RA02909H]
[119]
Pasut, G.; Veronese, F.M. Polymer-drug conjugation, recent achievements and general strategies. Prog. Polym. Sci., 2007, 32(8-9), 933-961.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.008]
[120]
Duncan, R.; Kopecková-Rejmanová, P.; Strohalm, J.; Hume, I.; Cable, H.C.; Pohl, J.; Lloyd, J.B.; Kopeček, J. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer, 1987, 55(2), 165-174.
[http://dx.doi.org/10.1038/bjc.1987.33] [PMID: 3468994]
[121]
Chipman, S.D.; Oldham, F.B.; Pezzoni, G.; Singer, J.W. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int. J. Nanomedicine, 2006, 1(4), 375-383.
[http://dx.doi.org/10.2147/nano.2006.1.4.375] [PMID: 17722272]
[122]
Jornada, D.H.; dos Santos Fernandes, G.F.; Chiba, D.E.; de Melo, T.R.; dos Santos, J.L.; Chung, M.C. The Prodrug Approach: a successful tool for improving drug solubility. Molecules, 2015, 21(1), 42-72.
[http://dx.doi.org/10.3390/molecules21010042] [PMID: 26729077]
[123]
Karaman, R. Prodrug design vs. drug design. Drug Des. Open Access, 2013, 2(2), e114-e116.
[124]
Xie, A.; Hanif, S.; Ouyang, J.; Tang, Z.; Kong, N.; Kim, N.Y.; Qi, B.; Patel, D.; Shi, B.; Tao, W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56102821
[http://dx.doi.org/10.1016/j.ebiom.2020.102821] [PMID: 32505922]
[125]
Greco, F.; Vicent, M.J. Polymer-drug conjugates: current status and future trends. Front. Biosci., 2008, 13(13), 2744-2756.
[http://dx.doi.org/10.2741/2882] [PMID: 17981750]
[126]
Danhauser-Riedl, S.; Hausmann, E.; Schick, H-D.; Bender, R.; Dietzfelbinger, H.; Rastetter, J.; Hanauske, A-R. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest. New Drugs, 1993, 11(2-3), 187-195.
[http://dx.doi.org/10.1007/BF00874153] [PMID: 7505268]
[127]
Nowotnik, D.P. AP5346 (ProLindacTM), A DACH platinum polymer conjugate in Phase II trials against ovarian cancer. Curr. Bioact. Compd., 2011, 7, 21-26.
[http://dx.doi.org/10.2174/157340711795163794]
[128]
Perez, E.A.; Awada, A.; O’Shaughnessy, J.; Rugo, H.S.; Twelves, C. Im, S.A.; Gómez-Pardo, P.; Schwartzberg, L.S.; Diéras, V.; Yardley, D.A.; Potter, D.A.; Mailliez, A.; Moreno-Aspitia, A.; Ahn, J.S.; Zhao, C.; Hoch, U.; Tagliaferri, M.; Hannah, A.L.; Cortes, J. Etirinotecan pegol (NKTR-102) versus treatment of physician’s choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol., 2015, 16(15), 1556-1568.
[http://dx.doi.org/10.1016/S1470-2045(15)00332-0] [PMID: 26482278]
[129]
Tripathy, D.; Tolaney, S.M.; Seidman, A.D.; Anders, C.K.; Ibrahim, N.; Rugo, H.S.; Twelves, C.; Dieras, V.; Müller, V.; Tagliaferri, M.; Hannah, A.L.; Cortés, J. ATTAIN: Phase III study of etirinotecan pegol versus treatment of physician’s choice in patients with metastatic breast cancer and brain metastases. Future Oncol., 2019, 15(19), 2211-2225.
[http://dx.doi.org/10.2217/fon-2019-0180] [PMID: 31074641]
[130]
Patnaik, A.; Papadopoulos, K.P.; Tolcher, A.W.; Beeram, M.; Urien, S.; Schaaf, L.J.; Tahiri, S.; Bekaii-Saab, T.; Lokiec, F.M.; Rezaï, K.; Buchbinder, A. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother. Pharmacol., 2013, 71(6), 1499-1506.
[http://dx.doi.org/10.1007/s00280-013-2149-2] [PMID: 23543270]
[131]
Verma, S.; Singh, S. Current and Future Status of Herbal Medicines. Vet. World, 2008, 1(11), 347-350.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[132]
Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(Suppl. 1), 421-427.
[PMID: 25364657]
[133]
Sewell, R.D.E.; Rafieian-Kopaei, M. The history and ups and downs of herbal medicines usage. J HerbMed Pharmacol, 2014, 3(1), 1-3.
[134]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A. dos S.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomedicine, 2014, 9(1), 1-15.
[PMID: 24363556]
[135]
Devi, V.K.; Jain, N.; Valli, K.S. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev., 2010, 4(7), 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[136]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[137]
Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[138]
Gopi, S.; Amalraj, A. Introduction of nanotechnology in herbal drugs and nutraceutical: a review. J. Nanomedine Biotherapeutic Discov., 2016, 6(2), 143-150.
[http://dx.doi.org/10.4172/2155-983X.1000143]
[139]
Yadav, D.; Suri, S.; Choudhary, A.A.; Sikender, M.; Beg, M.N.; Garg, V.; Ahmad, A.; Asif, M. Novel approach: herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int. J. Pharm. Tech., 2011, 3(3), 3092-3116.
[140]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: an overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[141]
Wahle, K.W.J.; Brown, I.; Rotondo, D.; Heys, S.D. Plant phenolics in the prevention and treatment of cancer. Adv. Exp. Med. Biol., 2010, 698, 36-51.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_4] [PMID: 21520702]
[142]
López-Lázaro, M. Flavonoids as anticancer agents: structure-activity relationship study. Curr. Med. Chem. Anticancer Agents, 2002, 2(6), 691-714.
[http://dx.doi.org/10.2174/1568011023353714] [PMID: 12678721]
[143]
Mathur, M.; Vyas, G. Role of nanoparticles for production of smart herbal drug−an overview. 2013. Indian J. Nat. Prod. Resour., 2013, 4(4), 329-338.
[144]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[145]
Yuan, Z.P.; Chen, L.J.; Fan, L.Y.; Tang, M.H.; Yang, G.L.; Yang, H.S.; Du, X.B.; Wang, G.Q.; Yao, W.X.; Zhao, Q.M.; Ye, B.; Wang, R.; Diao, P.; Zhang, W.; Wu, H.B.; Zhao, X.; Wei, Y.Q. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res., 2006, 12(10), 3193-3199.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2365] [PMID: 16707620]
[146]
Kurzrock, R.; Li, L.; Mehta, K.; Aggarawal, B.B. Liposomal curcumin for treatment of cancer. U.S. Patent 7,968,115 B2, 2011.
[147]
Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[148]
Thakur, G.; Rousseau, D.; Rafanan, R.R. Gelatin based matrices for drug delivery applications.Gelatin: Production, Applications and Health Implications; Boran, G., Ed.; Nova Science Publishers: New York, 2013, pp. 49-70.
[149]
Tran, D-H.N.; Nguyen, T.H.; Vo, T.N.N.; Pham, L.P.T.; Vo, D.M.H.; Nguyen, C.K.; Bach, L.G.; Nguyen, D.H. Self-assembled poly(ethylene glycol) methyl ether-grafted gelatin nanogels for efficient delivery of curcumin in cancer treatment. J. Appl. Polym. Sci., 2019, 47544.
[http://dx.doi.org/10.1002/app.47544]
[150]
Tseng, C.L.; Wang, T.W.; Dong, G.C.; Yueh-Hsiu Wu, S.; Young, T.H.; Shieh, M.J.; Lou, P.J.; Lin, F.H. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials, 2007, 28(27), 3996-4005.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.006] [PMID: 17570484]
[151]
Magadala, P.; Amiji, M. Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J., 2008, 10(4), 565-576.
[http://dx.doi.org/10.1208/s12248-008-9065-0] [PMID: 19034673]
[152]
Tseng, C-L.; Wu, S.Y-H.; Wang, W-H.; Peng, C-L.; Lin, F-H.; Lin, C-C.; Young, T-H.; Shieh, M-J. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials, 2008, 29(20), 3014-3022.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.033] [PMID: 18436301]
[153]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[154]
Dragojevic, S.; Ryu, J.S.; Raucher, D. Polymer-based prodrugs: improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules, 2015, 20(12), 21750-21769.
[http://dx.doi.org/10.3390/molecules201219804] [PMID: 26690101]
[155]
Li, J.; Kao, W.J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biomacromolecules, 2003, 4(4), 1055-1067.
[http://dx.doi.org/10.1021/bm034069l] [PMID: 12857092]
[156]
Yu, M.; Huang, S.; Yu, K.J.; Clyne, A.M. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int. J. Mol. Sci., 2012, 13(5), 5554-5570.
[http://dx.doi.org/10.3390/ijms13055554] [PMID: 22754315]
[157]
Wang, Y.; Annunziata, O. Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J. Phys. Chem. B, 2007, 111(5), 1222-1230.
[http://dx.doi.org/10.1021/jp065608u] [PMID: 17266278]
[158]
Kono, H. Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydr. Polym., 2014, 106, 84-93.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.020] [PMID: 24721054]
[159]
Yang, Q.; Jacobs, T.M.; McCallen, J.D.; Moore, D.T.; Huckaby, J.T.; Edelstein, J.N.; Lai, S.K. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem., 2016, 88(23), 11804-11812.
[http://dx.doi.org/10.1021/acs.analchem.6b03437] [PMID: 27804292]
[160]
Cavallaro, G.; Lazzara, G.; Milioto, S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym. Degrad. Stabil., 2013, 98(12), 2529-2536.
[http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.012]
[161]
Karaman, S.; Karaipekli, A.; Sarı, A.; Biçer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2011, 95(7), 1647-1653.
[http://dx.doi.org/10.1016/j.solmat.2011.01.022]
[162]
Zalipsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev., 1995, 16(2-3), 157-182.
[http://dx.doi.org/10.1016/0169-409X(95)00023-Z]
[163]
Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release, 2006, 114(3), 343-347.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.017] [PMID: 16876898]
[164]
Nojima, Y.; Iguchi, K.; Suzuki, Y.; Sato, A. The pH-dependent formation of PEGylated bovine lactoferrin by branched polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) active esters. Biol. Pharm. Bull., 2009, 32(3), 523-526.
[http://dx.doi.org/10.1248/bpb.32.523] [PMID: 19252310]
[165]
Medina-O’Donnell, M.; Rivas, F.; Reyes-Zurita, F.J.; Martinez, A.; Galisteo-González, F.; Lupiañez, J.A.; Parra, A. Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids. Fitoterapia, 2017, 120, 25-40.
[http://dx.doi.org/10.1016/j.fitote.2017.05.006] [PMID: 28552598]
[166]
Zacchigna, M.; Cateni, F.; Drioli, S.; Procida, G.; Altieri, T. PEG-Ursolic acid conjugate: synthesis and in vitro release studies. Sci. Pharm., 2014, 82(2), 411-421.
[http://dx.doi.org/10.3797/scipharm.1309-17] [PMID: 24959409]
[167]
Zhou, M.; Zhang, R-H.; Wang, M.; Xu, G-B.; Liao, S-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem., 2017, 131, 222-236.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.005] [PMID: 28329729]
[168]
Dai, L.; Cao, X.; Liu, K-F.; Li, C-X.; Zhang, G-F.; Deng, L-H.; Si, C-L.; He, J.; Lei, J-D. Self-assembled targeted folate-conjugated eight-arm-polyethylene glycol-betulinic acid nanoparticles for co-delivery of anticancer drugs. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(18), 3754-3766.
[http://dx.doi.org/10.1039/C5TB00042D] [PMID: 32262850]
[169]
Mathiyalagan, R.; Subramaniyam, S.; Kim, Y.J.; Natarajan, S.; Min, J.W.; Kim, S.Y.; Yang, D.C. Synthesis and pharmacokinetic characterization of a pH-sensitive polyethylene glycol ginsenoside CK (PEG-CK) conjugate. Biosci. Biotechnol. Biochem., 2014, 78(3), 466-468.
[http://dx.doi.org/10.1080/09168451.2014.885827] [PMID: 25036835]
[170]
Mathiyalagan, R.; Kim, Y.J.; Wang, C.; Jin, Y.; Subramaniyam, S.; Singh, P.; Wang, D.; Yang, D.C. Protopanaxadiol aglycone ginsenoside-polyethylene glycol conjugates: synthesis, physicochemical characterizations, and in vitro studies. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1803-1809.
[http://dx.doi.org/10.3109/21691401.2015.1105236] [PMID: 26539976]
[171]
Liu, K.; Li, C.; Dai, L.; Liu, J.; Wang, L.; Lei, J.; Guo, L. Design, synthesis and in vivo antitumor efficacy of novel eight-arm-polyethylene glycol-Pterostilbene prodrugs. RSC Advances, 2015, 5(64), 51592-51599.
[http://dx.doi.org/10.1039/C5RA06253E]
[172]
Fru, P.N.; Nweke, E.E.; Mthimkhulu, N.; Mvango, S.; Nel, M.; Pilcher, L.A.; Balogun, M. Anti-Cancer and immunomodulatory activity of a polyethylene glycol-betulinic acid conjugate on pancreatic Cancer cells. Life, 2021, 11(6), 462.
[http://dx.doi.org/10.3390/life11060462]]
[173]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. (India), 2004, 63, 20-31.
[174]
Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 2011, 36(8), 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[175]
Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[176]
Quiñones, J.P.; Gothelf, K.V.; Kjems, J.; Caballero, Á.M.H.; Schmidt, C.; Covas, C.P. Self-Assembled Nanoparticles of Glycol Chitosan - Ergocalciferol succinate conjugate, for controlled release. Carbohydr. Polym., 2012, 88(4), 1373-1377.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.039]
[177]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[178]
Kritchenkov, A.S.; Skorik, Yu.A. Click reactions in chitosan chemistry. Russ. Chem. Bull., 2017, 66(5), 769-781.
[http://dx.doi.org/10.1007/s11172-017-1809-5]
[179]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol.,, 2017, 104(Pt B), 1853-1859.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.137] [PMID: 28359890]
[180]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003] [PMID: 19874862]
[181]
Mathiyalagan, R.; Subramaniyam, S.; Kim, Y.J.; Kim, Y-C.; Yang, D.C. Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr. Polym., 2014, 112, 359-366.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.098] [PMID: 25129755]
[182]
Roy, A.; Ernsting, M.J.; Undzys, E.; Li, S-D. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials, 2015, 52, 335-346.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.041] [PMID: 25818440]
[183]
Yu, D.; Peng, P.; Dharap, S.S.; Wang, Y.; Mehlig, M.; Chandna, P.; Zhao, H.; Filpula, D.; Yang, K.; Borowski, V.; Borchard, G.; Zhang, Z.; Minko, T. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J. Control. Release, 2005, 110(1), 90-102.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.050] [PMID: 16271793]
[184]
Gao, C.; Bhattarai, P.; Chen, M.; Zhang, N.; Hameed, S.; Yue, X.; Dai, Z. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug. Chem., 2018, 29(12), 3967-3981.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00692] [PMID: 30485070]
[185]
Arroyo-Crespo, J.J.; Deladriere, C.; Nebot, V.J.; Charbonnier, D.; Masiá, E.; Paul, A.; James, C.; Armiñán, A.; Vicent, M.J. Anticancer activity driven by drug linker modification in a polyglutamic acid‐based combination‐drug conjugate. Adv. Funct. Mater., 2018, 28(22), 1-13.
[http://dx.doi.org/10.1002/adfm.201800931]
[186]
Baselga, J.; Manikhas, A.; Cortés, J.; Llombart, A.; Roman, L.; Semiglazov, V.F.; Byakhov, M.; Lokanatha, D.; Forenza, S.; Goldfarb, R.H.; Matera, J.; Azarnia, N.; Hudis, C.A.; Rozencweig, M. Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Ann. Oncol., 2014, 25(3), 592-598.
[http://dx.doi.org/10.1093/annonc/mdt543] [PMID: 24401928]
[187]
Zhao, Y.; Alakhova, D.Y.; Kim, J.O.; Bronich, T.K.; Kabanov, A.V. A simple way to enhance Doxil® therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer. J. Control. Release, 2013, 168(1), 61-69.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.026] [PMID: 23474033]
[188]
El-Gogary, R.I.; Rubio, N.; Wang, J.T-W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401.
[http://dx.doi.org/10.1021/nn405155b] [PMID: 24397686]
[189]
Saneja, A.; Kumar, R.; Singh, A.; Dhar Dubey, R.; Mintoo, M.J.; Singh, G.; Mondhe, D.M.; Panda, A.K.; Gupta, P.N. Development and evaluation of long-circulating nanoparticles loaded with betulinic acid for improved anti-tumor efficacy. Int. J. Pharm., 2017, 531(1), 153-166.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.076] [PMID: 28823888]
[190]
Greco, F.; Vicent, M.J. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 2009, 61(13), 1203-1213.
[http://dx.doi.org/10.1016/j.addr.2009.05.006] [PMID: 19699247]
[191]
Feng, Q.; Tong, R. Anticancer nanoparticulate polymer-drug conjugate. Bioeng. Transl. Med. 2016, 1(3), 277-296.
[http://dx.doi.org/10.1002/btm2.10033 ] [PMID: 29313017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy